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We describe a molecular-dynamics model for the calculation of the rate of electron transfer in an

outer-shell electron transfer reaction at the electrode-electrolyte interface. The model consists of
216 water molecules in a box together with one iron ion that can be in either its ferrous or its ferric

valence state. In previous work we have established the validity of the model for the ion in bulk

aqueous solution. Here we report the algorithm for the electron transfer rate which we are using

and present results using it. The results are in reasonable accord with experiment, but the calcula-

tion is not yet parameter free.

INTRODUCTION

The theory of chemical reactions at the electrode-
electrolyte interface has a long history, but the main
ideas used by experimental chemists arise from the
theories of Marcus. ' While these theories have been
enormously influential, comparison between theory and
experiment has sometimes led to marked disagreement,
even in the case of relatively simple "outer sphere" elec-
tron transfer reactions. While various improved theories
have been suggested concerning the possible origins of
these discrepancies, it has not been possible to reach
definitive conclusions.

This paper reports progress on a project to shed light
on this set of questions by making a detailed calculation
of the rate of a simple electron transfer reaction by com-
puter simulation. We have chosen the ferric-ferrous elec-
tron transfer reaction at a gold electrode for study. A
parallel experimental study of the temperature depen-
dence of the reaction is being carried out at Argonne
National Laboratory. An advantage of choosing hetero-
geneous electron transfer for such a study is that the bar-
rier height can be controlled through the potential on the
electrode and thus the barrier can be lowered suSciently
so that the reaction occurs reasonably often in a
molecular-dynamics simulation. The reaction was also
chosen because the ion can be made aquocoordinated ex-
perimentally so that the molecular-dynamics calculation
does not need to include potentials describing other
ligands such as CN groups. In previous papers ' we
have established that our model of the ion in the bulk
electrolyte gives reasonably realistic results for the coor-
dination number of the solvation shell of both valence
states of the ion and also reproduces whatever informa-
tion is available about the vibrational spectrum of the so1-
vation shell of the ions quite well. The model for water is
the Toukan-Rahman molecular-dynamics model that
contains a full description of the internal modes of the
water molecules (treated classically). In the calculations
reported here and in Refs. 7 and 8 we had 216 water mol-
ecules and one ion in the molecular-dynamics sample.
The potentials between the ion and the water used in the
work reported here were the potentials called "empirical"

in Ref. 7.
In this paper we report our first results on the electron

transfer rate itself using the molecular-dynamics model
developed in the work described in Refs. 7 and 8. To
produce these results required a model for the electrode
surface and a quantum-mechanical model for the electron
transfer process itself. In the work reported here we are
using a relatively crude model for the surface and focus
our attention on the second aspect: the algorithm for
describing the electron transfer process. A more refined
model of the electrode will be reported elsewhere.

Our algorithm of the electron transfer rate is entirely
in the spirit of existing theories of electron transfer by
Marcus' and others. ' ' We are particularly indebted to
the work of Warshel, ' ' who has used a similar ap-
proach.

In the next section we describe our algorithm and the
third section gives results. The last section contains dis-
cussion.

DESCRIPTION OF THE ALGORITHM

=H%,
Bt

(2)

where H is the electronic part of the Hamiltonian in the
Born-Oppenheimer approximation and also depends on
IR;). ~e multiply this equation by %&~2~ and integrate
on the electonic coordinates. Neglecting f %*, V2 and

the time dependence of the 0, 2 arising from the R; when

We assume that the electron transfer process is rapid
compared to any motion of the reactant (here the iron
ion) and that the motion of the ionic nuclei is purely clas-
sical. The wave functions describing the electrons of the
system when the ion is in state I (2) are denoted 4& ~2~, re-

spectively. (This is sometimes called the "tight-binding"
formulation of the electron transfer problem. ) These
wave functions depend parametrically on the positions

IR, (t)I of the atoms in the electrolyte. The wave func-
tion %(t) of the system is written in the form

%(t)=c, (t) P, +c,(t)4, .

The time-dependent Schrodinger equation is written
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taking the time derivative one finds

E~(t) A&z(t) c,
iA

c, A„(t) E (t) C2

in which E&~2~(t) = f 0", ~2~H%, ~2~ and A, 2(t) =f p", H'It,
and the integrals are over electronic coordinates. The

time dependence of the E, 2 comes from the dependence
of the electronic energies on the atomic positions. We
suppose that at time t=0, c, (t =0)=1, c2(t =0)=0 and
work to lowest order in A, 2. Then by changing to an ap-
propriately defined "interaction representation" (see Ap-
pendix A) we find that the probability

~
c, 2(t)

~

that
the ion has changed from state 1 to state 2 if it started in
state 1 at time tp is given by the following expression:

+tp —i A&2 7 ~0+f
cl z(t}

I =, exp —' f [E,(t"}—E2(t")]dt" dt' (4)

In this expression we estimate the energies E& and Ez as
the potential energies of the ion if it is in state 1 and if it
is in state 2 in the same atomic positions. Thus in es-
timating E, 2 we make use of the fact that the potentials
used in the molecular-dynamics simulation to obtain the
forces on the atoms and ions arise from the electronic
state of the system in the Born-Oppenheimer sense. AI2
may be regarded as the electron transfer matrix element.
In our preliminary calculations we took AI2 to be con-
stant but we also report results for a position-dependent
function A&2 below. In Appendix B we show that this ex-
pression gives the Landau-Zener expression for the prob-
ability in the case that the energy difference E, —Ez in-
creases linearly with the time. Appendix B also describes
some other special cases of Eq. (4) and its physical mean-
ing in more detail.

We start the classical simulation with the ion in one of
its charge states, say Fe +. At each step in the classical
simulation of the trajectories we determine whether the
energy difference EI —E2 is in a "mixing region"'
defined by the inequality

~
E& E2

~
& E, wh—ere E, is the

reciprocal of a dephasing time after which the quantum-
mechanical phase coherence described by Eq. (4) is lost. '

This time must be longer than the time for a sound wave
to propagate across the molecular-dynamics sample. For
a given overpotential we use the last requirement to
determine E,: Specifically, we set a time ~, and then set
E, so that ~, is the average time during which

~
E, E2

~
&E, at that ov—erpotential. We find that the

reaction rates calculated as described below are essential-
ly independent of the value of ~, for large enough v., in
this definition of the mixing region. A,s the ion enters the
mixing region defined in this way, we begin calculation of
the quantity

~
c, 2 ~

as given by Eq. (4). The calcula-
tion of

~
c, 2 ~

continues for succeeding time steps until
the system moves out of the "mixing region" in the sense
that

~
E, E2

~

becomes lar—ger than E, . Call the value
of

~
c, z ~

after the crossing P, . Start calculating c, z

again when the system passes back into the mixing region
and continue until the next crossing out of the mixing re-
gion. When the crossing occurs calculate P2 and so forth
for X, trials. Then the rate constant is k

~ 2

=(I/T}g, '
I P, T is the total run time. One can see

that this procedure should give the rate constant by not-
ing that, from the usual formulation' [see, for exam-

pie, Eq. (2.4) of Ref. 19], the rate constant is k~

dN~ /—dt ~, 0 where N, is the (nonequilibrium) value
of the occupation number for state 1 of the ion and where
we assume, as in our simulations, N, (t =0)=1 and

N2(t =0)=0.

RESULTS

Here we report results using a code which implements
this algorithm for 216 water molecules and an iron ion in
an unrepeated box surrounded by soft walls. The poten-
tials describing the interaction of the wall with the water
are as follows:

0.265
Vo „,s(x ) =

/x —xo /9

0.265
VH s(x) =

X —Xp

0.028
3X —Xp

0
The units of energy are e /A. xp is the position of the
"wall. " The interactions between the oxygen and hydro-
gen components of the water rnolecules are described in
Ref. 9. The interaction between the iron ion and the wa-
ter is described in Refs. 7 and 8. The ion was fixed at 8 A
from the wall in the simulations reported here. This dis-
tance corresponds to fixing the coordination shell of the
ion so that it just touches the first monolayer of water at
the surface. A full calculation of the rate requires that
the ion be placed at a variety of starting positions and al-
lowed to move. These features will be added to the calcu-
lation later as described in the discussion of the last sec-
tion. They are not required for the tests of the basic
features of the algorithm which are reported here.

Characteristic results for 5E as a function of simula-
tion time are shown in Fig. 1 (top, dark curve). These
calculations were done for 9000 steps with 4.0&10'
sec./step. The calculated reaction rates are reproducible
in successive runs. The probability

~
c, 2 ~

=P is
shown as the lower, dashed curve for two values of E, .
The electrostatic effects of charging the walls are not yet
realistic so we have simulated the effect of th'e electrode
potential by adding a constant AEo to E, Ez. (We can-
estimate the average values of EI and E2 from 1ong runs
when the ion is in each of the two valence states. ) In Fig.
2 we show results for the "potential, " that is EEp depen-
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FIG. 1. Calculations of the energy difference 5E =E& —E& as
a function of time (top, dark curves) and of the probability P of
transition to state 2 according to Eq. (4) (lower, dotted curves).
5E is the same in (a) and (b). The value of E, used to calculate P
according to the algorithm discussed in the text is different
(dashed line). In Figs. 1-3 we have taken A» ——10 ' e /A.

dence of the rate as calculated with constant A&z and E,
fixed for all potentials at the value 0.1 e /A (rather than
by fixing r, as described above). With this procedure, the
rate is not really exponential in the potential as expected
and observed experimentally. On the other hand, in Fig.
3 we show the result of fixing ~, instead of E, so that we
are using the algorithm described in the previous section.
Now the potential dependence of the rate has the expect-
ed exponential form, and we can calculate a value of the
parameter a which characterizes the slope as a/ksT.
With A, 2 constant as in the calculations which resulted in
Fig. 3, the result is a =0.3. The value is somewhat small-
er than the one reported experimentally. ' While the ex-
perimental results are based on analysis of a pulsed exper-
iment which may require further refinement, it is interest-
ing to explore the effects of lifting the assumption that
A, 2 is constant in our model. In Fig. 4 we show the result
of repeating the calculation of the rate with the assump-
tion that Ai2 ——Aoexp( —

~

5E
~
/g) where, in the results

shown, g=0.02 e /A. With this choice, the calculated
rate gives a value of a which is quite consistent with —,.

Finally we have made a preliminary exploration of
whether the "crossings" at which 5E=0 in this model
correspond to excursions of the A

&8
coordinate associat-

ed with the breathing mode of the octahedron of water
surrounding the ion toward the value which it takes when
5E=O and no other displacernents of the octahedron
have occurred. This is the behavior expected if the A,
coordinate is the "reaction coordinate" associated with
the reaction, as is often supposed in applications of
Marcus theory. In Fig. 5 we show a graph of 5E versus
the Ai coordinate R„ for one of the calculations from

1g

which the data of Figs. 2-4 were collected. If the A,g
coordinate is the reaction coordinate then one expects
that, as 5E~O then the trajectory of the system in this
plane should follow the dark line in Fig. 5. One sees that,
though this sometimes occurs, it does not always do so.
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FIG. 2. Reaction rate as a function of "overpotential" EEO
calculated using an algorithm in which E, is fixed independent
of AEO. The resulting rate is not exponential in LEO.

3
~ E (10 e ~/A)

0

FIG. 3. Same as Fig. 2 except that the value of E, changes
with bEo in order to keep the time r, during which ~5E

~
&E,

fixed as discussed in the text. The calculated rate is now ex-
ponential in EEO. Here r, is 0.7 ps. A line with slope
a/k~ T= 1/2k& T is shown for reference.
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FIG. 4. Same as Fig. 3 except that the matrix element A, 2 is
now made dependent on 5E as discussed in the text (with
A0 ——10 ' e /A) instead of being constant as in Figs. 2 and 3.
The transfer coefficient associated with the slope of ink vs AED
is now near one-half (dashed line).

FIG. 6. Fourier-transform squared of the energy difference
5E(t) showing regions of metal oxygen (MO) stretch, water li-
bration, water scissors modes (HOH) and OH stretch (OH) fre-
quencies.

Some zero crossings seem to be associated with
configurations which are not simply related to the A,
breathing mode. What configurations these are and how
important they are is still under study.

Another interesting feature of our results is that the
high-frequency dynamics of the water molecules in the
solvation shell, including the OH stretching modes and
the HOH scissors and libration modes, may be playing a
role in the dynamics of the electron transfer process.
This is suggested by the high-frequency oscillations of the
probability P which are evident in Fig. 1. The shortest
period of these high-frequency oscillations is the period
of the OH stretch frequency of the water molecule. Un-
fortunately, quantum-mechanical effects are significant in
these high-frequency modes, so that the present classical
calculation cannot describe these effects accurately. The
librational and scissors motions of the water are also

AJ

Q3

0

0
1.92 1.94 1.96 1.98 2. 00 2. 02

R (A)

FIG. 5. 6E vs the traditional reaction coordinate R& for a
lg

molecular-dynamics run. The dark line shows the expected tra-
jectory near 5E =0 in the traditional theory.

present in the temporal variation of 5E(t) as can be seen
from the Fourier transform of 5E(t) which is shown in
Fig. 6. The lower-frequency librational and scissors
modes are treated somewhat better by our classical mod-
el, though quantum-mechanical effects are probably still
playing some role. We have the preliminary impression
that the low-frequency part of the spectrum in Fig. 6 is
not determining the calculated reaction rate, as suggested
by some models of homogeneous electron transfer reac-
tions. This question, however, requires further study.

DISCUSSION AND CONCLUSIONS

We have shown that the application of the proposed
tight-binding algorithm for calculation of electron
transfer reaction rates can reproduce basic qualitative
features of the ferrous-ferric heterogeneous electron
transfer rate such as exponential dependence on the over-
potential with a transfer coefficient close to one-half when
it is applied to a (rather oversimplified) molecular-
dynarnics model of the metal-electrolyte interface. This
resolves some basic issues concerning the relation of the
calculation to the observed rates, by showing, for exam-
ple, that the sampling time ~, must be held fixed as the
overpotential is varied in order to obtain reasonable re-
sults. On the other hand, we found that the potential
dependence of the rates was very sensitive to the form
chosen for the dependence of the matrix element A&2 on
the atomic coordinates.

In future work, we will extend the "box" model con-
sidered here by reproducing the cell an infinite number of
times in the two directions parallel to the metal surface
by Ewald techniques. This will permit a more electros-
tatically realistic simulation. Second, we plan to allow
the ion to diffuse away from the surface, in order to take
the effects of ion motion and the distribution of ion-
electrode distances at which electron transfer takes place
into account. Third, we have begun in collaboration with
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L. Curtiss to obtain more realistic forms for the depen-
dence of A&2 on atomic coordinates and will employ them

in these simulations. Finally, we are interested in explor-
ing the effects of the high-frequency modes of the water

by including quantum effects on atomic motion in the
simulation.
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—i
c, ,=b, , e~p

~
dt'E, 2(t') .

Inserting this into Eq. (3) gives

(Al)

Equation (3) is solved by introducing the coeScients
b, 2 of an interaction representation by the equation
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tabb, =A»b, (t)e~p f dt'[E, (t') E, (—t')].
o

This can be integrated from t =0 to time t. Assuming
that b2 ——0 at time 0 and using the fact that to lowest or-
der in A&2 b& can be set equal to its initial value of 1 on
the right-hand side of the last equation one finds that to
lowest order in A, 2

I&2 I'=
I
br I'=

I

f exp —' f [E&(t")—E2(t")]dt" dt'
to fo

which is Eq. (4).

APPENDIX B: SOME LIMITING CASES OF EQ. (4)

Averaging over a period of the oscillating term one ob-
tains

2A)2Pi= cz I
=—

5E

which is just the result expected from stationary pertur-
bation theory.

Secondly, consider the case in which 5E(t)=5Et so
that 5E is increasing linearly in time. Then inserting this
into Eq. (4) gives

2~A, 2P2= cz I—
A5E

which is the Landau-Zener result ' in the nonadiabatic
limit.

We can qualitatively understand some features of our
numerical results in terms of a sum of contributions from
these two limits. Because 5E has a finite average in time,
we can consider that there is a contribution of the type
P, so that, by use of our algorithm there will be a contri-
bution of the rate of approximately

back c 1 ~ (Bl)

where N, is the number of times 5E passes within E, of 0.
This contribution arises from the mixing of the two states
over long times when their energy is very different and is
irrelevant to the real reaction rate. It depends on the

First consider the case E& E2 5E, —a con——stant. Then
the integrals are easily done and one finds

2 4A12 . 2 SEt
Ic2I = sin

gE2 2A'

damping time ~, . The nonexponential character of the
results in Fig. 2 can be qualitatively understood as arising
from a large contribution from this term that arises at
large overpotentials at fixed E, . When ~, is fixed at a
large value, then the contribution of this term does not
increase strongly with overpotential and the spurious
effects of the term are not seen in the results (as in Fig. 3).

By study of the Landau-Zener limit we can understand
the relation of our results to the theories of Marcus and
others in more detail. If we write the contribution to the
reaction rate from each time 5E passes through zero in
terms of P2 we obtain a contribution to the reaction rate
from these processes of approximately

k„,=N„P2/T (B2)

in which N„ is the number of times that 5E passes
through zero during the run. In the theories of Marcus

), /

v

1
/

3
~ F, (~o'E, '/A)

FIG. 7. Comparison of the rate calculated by the molecular-

dynamics algorithm with rate obtained by summing Eqs. (B1)
and (B2) of Appendix B.
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FIG. 8. Sketch of parabolic levels in the traditional model for
definition of terms.

E = 1 — 1—
( A, 3

—A, 2 )

so that
—Eb/k~ T

N„=Noe

'3 —1
A2

EEO —1
A2

1/2 2

Here No is the number of times 6E would pass through
zero if the barrier height were zero, or as one sees from
the preceding equation within the traditional model, the

and Levich and Dogonadze this is precisely the ap-
proach used. It amounts to assuming there is no quan-
turn coherence between zero crossings as well as that the
only contribution to the rate is from the region near the
crossing where the energy difference 5E is linear in the
time. In Fig. 7 we compare the result of summing the ap-
proximate expressions (Bl) and (B2) with the calculation
from Eq. (4) of the rate. Here we used a fit to the number
N„of zero crossings taken from the molecular-dynamics
simulation itself in Eq. (B2) (see Fig. 9). One sees that the
approximations seriously underestimate the rate at large
overpotentials. While we do not have a complete analysis
of the reason for this, it appears to arise because the
effects of quantum interference between zero crossings or
near zero crossings can be qorrelated.

Finally we can compare the number of zero crossings
N„as calculated from the molecular-dynamics simulation
with the result of the traditional theories of Refs. 26 and
27. In those theories one assumes that the energy sur-
faces are parabolic in the reaction coordinate r as
sketched in Fig. 8. The number of zero crossings N is

supposed to be exponential in the barrier height Eb which
is given in terms of the rearrangement energies A,2 and A, 3

defined in the figure as

FIG. 9. Comparison of the actual number of zero crossings
observed in the molecular-dynamics simulation (crosses) with
the number of zero crossings as estimated from the traditional
theory for the parameters of this model [curve (b)]. Curve (a) is

a fit of the molecular-dynamics results to the form

exp[ —y(EEO —A,, ) ].

number of times that 5E passes through zero if b,Ep were
equal to A.2. We can use these expressions to calculate the
value of N„predicted in our model by the traditional
theories by. estimating the energies A, 2 and A,3 from the
molecular-dynamics runs. When the forces are calculat-
ed using the potentials appropriate to the Fe + ion, we
obtain A,2=6Ep —5E where the bar indicates the time
average over the run. Similarly when the forces are cal-
culated from the Fe + potentials we get A,3=5E b,Ep. —
In our simulations we find A, z

——0. 1 e /A and A,3
—0.2

e /A. The values of N„c alcul ated from the traditional
theory and from the molecular-dynamics run are com-
pared in Fig. 9. One sees that the values of N, predicted
by the traditional model are too low. The values of the
rate predicted by the traditional theory at comparable
overpotentials (Fig. 7) are also too low. Thus there are
two sources of discrepancy between the traditional theory
and our simulation. On one hand, the effects of phase
coherence enhance the effective probability of reaction at
a crossing in the simulation. On the other hand, the
effective number of crossings is higher in the simulation,
possibly because some events are occurring in which M
is near zero even though the state is of higher energy
than the one associated with the lowest saddle point on a
path through the phase space which carries one from one
energy minimum to the other. We are exploring this pos-
sibility further in our current work.
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