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Higher-order corrections for the quadratic Ising lattice susceptibility
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Four terms in the expansion for the zero-field susceptibility of the quadratic Ising lattice at criti-
cality are known exactly. We have computed three additional terms in this expansion by analyzing
Nickel s high-temperature series for this lattice with second-order homogeIIeous differential approx-
imants and Pade techniques. These three terms are found to vary as
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t =1—T, /T, and their respective coefficients are obtained to within 0.01% accuracy. It is shown
that, if terms of the form
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were present, their amplitudes would be
less than 10 ' of the amplitudes of the
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'~ and
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'~ terms, respectively. The results are in ac-
cord with the predictions of the renormalization group if irrelevant variables are neglected and indi-
cate that, if singularities due to irrelevant variables are present, their associated exponents must
exceed 2. The results are also used to predict the coefficients of the low-temperature series for this
system. Agreement to as much as one part in 10' with the known first eleven coefficients of this
series is obtained.

I. INTRODUCTION
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where t =1—T, /T with T the absolute temperature and
T, the critical temperature and the + ( —) sign refers to
the region T y T, (T & T, ). The dots between the third
and fourth terms serve to indicate that terms of the form
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may also be present, but their
coefficients have as yet not been computed from the
correlation functions'.

To 10 decimal places, the two constants Co+ have the
values4'

Co+ 0.9625817322.

Co ——0.0255369719. . . .
(2)

Consider the two-dimensional Ising model on a quad-
ratic lattice with ferromagnetic nearest-neighbor interac-
tions. Thanks to the work of Onsager' and Yang, and
subsequently of other workers, we have available today
explicit formulas for the zero-field free energy and the
spontaneous magnetization for this and various other
two-dimensional Ising lattices. Unfortunately, there are
no corresponding formulas for the zero-field susceptibili-
ty Xo—nor of any higher field derivatives of the free
energy —for any of these lattices.

More recently, Wu et al. have developed an exact ex-
pression for the spin-spin correlation functions for the
quadratic lattice in zero-field. Combining this with the
Auctuation-dissipation theorem one can derive an
exact—albeit somewhat formidable —formula for the
zero-field susceptibility. Various authors have ana-
lyzed this result to obtain an expansion for Xo about the
critical point. Their results to date may be expressed by
the formula

Txp= c„I
t

I

-'"+c,+

For C&+, Barouch et al. obtain the surprisingly simple
formula

C)+ /Cpg =+&2K, /8

with E, =(1/2)ln(1+ &2)=0.441. The constants Dp~ in

Eq. (1) were first estimated by use of Pade methods by
Guttmann who concluded the equality Do+ ——Do —=Do.
More recently, this constant Do has been evaluated exact-
ly and found to be

Do =' —0. 104133245 1 1. (4)

With regard to the constants Eo+, they have also been
found to satisfy the relation Eo+ ——Eo =ED with Eo
calculated to have the value

Eo ='0.0403255003.

A previous evaluation of the constant Eo by Pade tech-
niques led to Eo ——0.0402+0.0004 in complete agree-
ment with Eq. (5).

Besides the four terms displayed in Eq. (1), the nature
of the higher order terms has not been clearly ascer-
tained. Studies based on the spin-spin correlation func-
tions indicate that terms proportional to
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and t may also be present. However, the
coefficients of such terms have, as yet, not been deter-
mined.

The purpose of this work is to describe an analysis of
Nickel's high-temperature series' —which has been re-
cently extended to 55 terms" —with Pade' and second
order homogeneous differential approximant tech-
niques. ' In outline, the method used to obtain, say, the
leading correction term to Eq. (1), involves first reex-
pressing the four known terms there in terms of the ap-
propriate high-temperature variable v [—= tanh(J/T)] and
subtracting the result from Nickel's corresponding series
for T+o. The results, as then analyzed by means of
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second order differential approximant techniques, yield
the leading correction to Eq. (1). With five terms in the
expansion for Tgp thus available, the process is repeated
to obtain the sixth and so on. It is in this way that three
additional terms for TXo in Eq. (1) have been obtained.

As discussed in a preliminary report in general terms
our results indicate that, at least to the order considered
here, the formula for the susceptibility of the quadratic
Ising lattice is precisely that predicted by the renormal-
ization group' ' (RG) if irrelevant variables are neglect-
ed. ' This theory, consistent with our results, predicts
that the leading missing term in Eq. (1) varies as
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and gives correctly its coefficient. It also predicts that
there is no term varying as
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sults are found for the terms
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Indeed, we find that our computed formula for Tgp is ful-

ly in accord with that given by the RG in the absence of
irrelevant variables through terms of order t In

~

t
~

and
2

In Section II we summarize the predictions of the RG
when irrelevant variables are neglected for TXp. Also in-
cluded in this section is a brief description of second or-
der differential approximants and how they can be used
to test for the existence of logarithmic and other singular-
ities. Some rnathernatical details of the latter are relegat-
ed to Appendix A. Section III is then devoted to details
of the calculations carried out and a presentation of our
main results. In Section IV we consider some limitations
of the present work due to systematic errors. In turn,
these considerations suggest that we reverse the process
and use our expansion for TXo to compute values for the
coefficients of the high-temperature series. The results
are compared with Nickel's coefficients of U" for n values
in the full range 1(n (54. As a further test of our un-

derlying hypothesis, we use our results to compute a
low-temperature series for TXp and compare these pre-
dictions with the known first eleven terms of this series.
Section V contains a summary and some concluding re-
marks.

and magnetic symmetry requires that they be even and
odd in h respectively. Note that Eq. (6) reduces to the
asymptotic scaling formula' in this limit in Eq. (7).

A direct consequence of the presumed analyticity of
the nonlinear scaling fields and the structure of F( t, h ) in
Eq. (6} is the imposition of certain constraints on the ana-
lytic structure of various thermodynamic functions. For
the zero-field free energy Fp, the spontaneous magnetiza-
tion Mo, and Xo one finds'

Fo
T ~FR I

~
I fo(~)+ ~o(~)

Mo ——Bo
~

t
~

~mo(t), (8)

TXo ——Cog i
r

i
rpo(t)+Eo

i
r

i

' eo(t)+Dodo(t),

where P and y are critical exponents, '
AF~, Bo, Co+,

Do, and Eo are constants, Ao(t) is an analytic back-
ground term, and fo(t), mo(t), po(t), eo(t), and do(t) are
analytic functions each normalized to unity at t =0. For
the case a=0, corresponding to the logarithmic specific
heat singularity of two-dimensional Ising systems, the
terms

~
t

~
in the first and third of Eqs. (8) are to be re-

placed by' ln
~

t
~

.
Besides its prediction of the structure of Fp, Mp, and

Xo in Eqs. (8), the relation in Eq. (6) also predicts that the
three analytic functions fo(t), mo(t), and po(t) there are
not independent, but are related by the important rela-
tion'

universal functions of the indicated variable, and A (t,h)
is an analytic "background" term. The quantities g, and

gI, are nonlinear scaling fields, which in the absence of ir-
relevant variables are presumed to be' ' analytic func-
tions of t and h. In the asymptotic region about the criti-
cal point g, and gI, vary as

gt —t
, 't, h~O.

II. PRELIMINARIES

mo(t)
Po( ) f ( )

(9)

In this section we present (1) a summary of the results
of the RG when irrelevant variables are neglected, and (2)
a brief description of second order partial differential ap-
proximants and how they can be used to analyze the
high-temperature series for the susceptibility of the quad-
ratic, ferromagnetic Ising lattice.

A. Summary of the RG without irrelevant variables

F(r, h)= ~g, ~' P~(g„/~g,
~

)+A(r, h) (6)

where a and 6 are the usual critical exponents' and
h =H/T with H the magnetic field. The Y+ are two

Consider a ferromagnetic system from the point of
view of the renormalization group' ' (RG). According
to RG studies, if we neglect the effects of irrelevant vari-
ables, then near the critical point the free energy F may
be expressed in the form

Thus for systems, such as two-dimensional Ising models,
for which fo(t) and mo(t) are both known, the analytic
corrections to scaling given by po(t) are fully determined.
If we define a set of constants aF, bz, cF, aM, . . . ,
a &, . . . by the formulas

fo(&)=1+aF&+bFt +c~t +
mo(t) = I+aMt + bMt +c~t +. . . ,

po(t}=1+a»t+b»t +c»t +
then Eq. (9) gives the relations

Qg =20~ —QF,

b» 2bM bF +(aF———aM ), —2

cg ZCM CF +2Q~&~ &FQ+&ggF

The first two of these were first obtained by Aharony and
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151K,
192

615' 2K,
512

with K, = ( I /2)ln(1+ &2).

(12)

B.Second order difFerential apyroximants
and logarithmic singularities

As for related extrapolation schemes, the method of
second order homogeneous differential approximants'
makes it possible to study the singular behavior of a func-
tion F(U) which can be expressed in the form

F(v)= g a„u"
n=0

(13)

at a point v =v, given a knowledge of the first N+1
terms of its power series about the point U =0. [For the
high-temperature series of the quadratic Ising lattice sus-
ceptibility, U=tanh(J/T), U, =/2 —1.] That is, given
the N + 1 numbers ao, a &, . . . , az, and thereby the poly-
nomial approximation f~( v) to F ( u )

N

f~(U)= X o.U" (14)

this method enables us to study the singular behavior of
F(U) at a point v =u, . Of particular interest is the case
where F(U)-

)
U —v, [~in( v —U, )

and
(

U —U, )~ for
values of v near v, .

The basic tool of the method is the second order,
homogeneous differential equation

d fN df
R»(v) z +PL(u) +QM(U)f~=O (15)

dv dv

with fz(U) the known partial series in Eq. (14}. The three
quantities R», PL, and QM, which are to be determined,
are polynomials in v of order I(, L, and M, respectively,
with the relation K+L+M+3&N a necessary condi-
tion for fixing the coefficients of these polynomials. The

Fisher. ' For systems for which we may neglect irrelevant
variables, the analytic corrections to scaling for the lead-

ing singular behavior of the susceptibility are thereby
fixed by those for the free energy and the spontaneous
magnetization.

Let us now specialize to the case of the two-
dimensional Ising model, for which a=O (logarithmic),
P= 1/8, and y =7/4. The fact that the analytic structure
of the first two of Eqs. (8} (with

~

t
~

replaced by
ln

~

r
~

) are precisely correct for this model is well known
from the exact Onsager and Yang solutions for the quad-
ratic lattice. Furthermore, the first of Eqs. (11) has been
shown' to give correctly the known first-order correc-
tion, C, + /Co+ to po(t) as given by Eq. (3). Making use
of the exact solutions' for Fo and Mo, we find from Eqs.
(9)—(11) the results

&ZK,
ax ——

8

approximants f»LM(v) for the function F(v) are then
defined as appropriate solutions of this equation valid in a
neighborhood about U, with R», PL, and QM now given.
The zeros of R»(U) are the singular points of the equation
and hence of F(u). Generally, we impose the constraints
that near U =v„R»(v) —(v —u, ), and Pl (U)-(U —U, ),
or equivalently that R»(U, )=R»(v, )=PI (v, )=0 while

R»(v, )&0, where the primes denote the derivative. As
described in Appendix A, under these circumstances the
point U =U, is a "regular singular point" of Eq. (15) and
explicit solutions for the equation about this point are
known. Specifically, the exponents characterizing the
singular behavior of F(v) are given by the two roots of
the indicial equation' '

p +(po 1)p+Co=O (16)

where

po 2PL (u,——)/R»(U, ),

90=2QM(U, )/R»(o, »
(17)

and where the constant po here is not to be confused with
the function po(t) in Eqs. (8)—(10). Similarly, we can ex-
trapolate values for the ratios of the correction terms to
the leading singular term of f»Lsr(U) by use of the poly-
nomials R»(U}, PL(u) and Qsr(u). Complete details can
be found in the literature. '

Of particular interest is the possibility of detecting
confluent logarithmic singularities, such as the terms
varying as

~

t
~

' and
~

t
~

' ln
~

t
~

that correlation
function studies indicate might appear in the formula for
Xo in Eq. (1). The signature for a singularity of this type
is that the roots of the indicial equation differ by an in-
teger. ' ' For the pair of singularities

~
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' and

~

t
~

' ln
~

t
~

for example, each root would have the
value 1/4 and the difference of the roots would be zero.

As noted above, in this work we invariably "bias" the
approximants by forcing the point v =v, to be a regular
singular point of Eq. (15). This reduces by three the
number of terms of f~(v) required to determine the
E+L +M+2 unknown coeScients of the polynomials
R», PI, and QM for a given choice of [K,L,M]. In prac-
tice then, in place of Eq. (15) we really use the equation

N
(v —v, ) R» ~(U)

Gv

+(U —v, )PL, (U) + QM(v) fN =0 (18)

where usually R» 2(U), PL, (u), and QM(U) do not van-
ish at v, . At times we bias the approximants further by
requiring that one root of the indicial Eq. (16) assume a
particular value. This reduces further the number of
terms in f~(U) required.

Finally, we note that as is usual in this kind of
analysis, ' ' ' ' not a11 approximants obtained in this way
are reliable. Some may be "defective", in the sense that a
root of R»(v} falls between v =0 and U =v, on the real
axis. Others should be discounted because a root of
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Rx(v) is close to u„say within 7% of v„even though
v & v, . Approximants with these properties are duly not-
ed and are not included in the final analysis.

III. RESULTS

151
C2+ /Co+ br —— ——K„

192

615&2
512

(20)

The basic result of this work can be summarized by the
following statement: the zero-field susceptibility +0 of the
ferromagnetic, quadratic Ising lattice can, near criticality
and for T y T„be expressed in the form

»o=Co+ I
t

I
'"+Ci+

I

t '"+Do+C2+
I
t

I

'"
+Eo tin I

t
I
+D

&
t+ C3+ I

t +O(t ln
I

t I, t )

(19)

Here Co+, C, +, Do, and Eo are exactly known constants
given respectively to ten decimal places by Eqs. (2), (3),
(4) and (5), and the constants Cz+ and C3+ are found nu-

merically to be equal —to one part in 10 —to formulas
analogous to that for C, + in Eq. (3):

[K,L,M]
Unbiased exponents

P2 p]

Biased exponents

p2 ~p[-=1~ pi ~p2=0 25~

[10,9, 1 1]
[10,10,10]
[10,11,9]

0.2509
0.2471
0.2488

0.9547
1.1488
1.0505

0.2487
0.2374*
0.2410*

0.9719
1.2052*
1.0589*

[10,10,11] 0.2494
[10,11,10] 0.2493
[11,10,10] 0.2475

[10,11,11] 0.2498
[11,10,11] 0.2476
[11,11,10] 0.2476

1.0218
1.0275
1.1247

0.9993
1.1158
1.1179

0.2498
0.2498
0.2494

0.2498
0.2498
0.2498

0.9921
0.9922
0.9697

0.9916
0.9930
0.9933

[11,10,12]
[11,11,11]
[11,12,10]

0.2496
0.2504
0.2479*

1.0121
0.9751
1.1026*

0.2498
0.2498
0.2500

0.9923
0.9919
1.0015'

[11,11,12] 0.2495
[11,12,11] 0.2495
[12,11,11] 0.2496

1.0133
1.0167
1.0112

0.2498
0.2498
0.2498

0.9921
0.9921
0.9919

TABLE I. Exponents p] and p2 (p2(p]) obtained from un-

biased and biased second order homogeneous differential ap-
proximants to the series represented by the quantity TX&
defined in Eq. (22). An asterisk ( ) denotes an approximant with
an intervening spurious singularity and a dagger (t) an approxi-
mant for which the polynomials Rx, PL, and QM possess an in-
tervening common root.

That is, C2+ and C3+ are indistinguishable from the
values predicted by the RG in the absence of irrelevant
variables as given in Eq. (12). Finally, the constant D, is

found to have the value

[11,12,12] 0.2498
[12,11,12] 0.2494
[12,12,11] 0.2485

0.9997
1.0188
1.0717

0.2498
0.2498
0.2498

0.9919
0.9876
0.9902

D
&
= 0. 14869+0.00001 ~ (21)

To order (t ln
I
t I, t ) then, the result in Eq. (19) is in ac-

cord in all respects with the predictions of the RG when
irrelevant variables are neglected. In particular, there are
no terms of the form

I
t

I

' ln
I

t
I

nor
I

t
I

~ ln
I

t
I

as
had been suggested earlier. An analysis to detect the
presence of any such terms was specifically carried out
and led to the conclusion that if they did exist, their
coefficients would be less than 10 that of C2+ and C3+
in these two cases, respectively.

Let us consider in some detail the arguments that have
led to these conclusions.

Do Eotln
I

(22)

Making use of Nickel's high temperature series' '" for
TXO we express TX~ as a series in the high-temperature
variable v = tanh( J/T) (see Appendix B for details). Sub-
stituting this series for the function fthm in Eq. (15) and us-

ing u, =V2 —1=0.41421. . . , we make use of second or-
der differential approximants as described above, to
determine the analyticity behavior of TX~. The results
for the two exponents p& and p2—the roots of Eq.
(16)—are displayed in Table I for 18 choices of (K,L,M)

A. The
I
t

I

'~ term

Consider the function TX~ defined as the difference be-
tween TXo and its four exactly known terms in Eq. (1):

T&~ —= T&o—Co+ I
t

I

'"—Ci+ I
t

I

&p, ) = I.o4+o.o6,

(p2) =0.249+0.001,

while for the biased ones

(23)

(p, ) =0.990+0.008 (p&
——0.25)

(p2) =0.2497+0.0003 (p&
——1).

(24)

with E+L+M in the range 30-35. The second and
third columns are the results for the unbiased calcula-
tions in which p& and p2 are unconstrained [although we
still force v, to be a regular singular point of Eq. (15)].
The fourth column gives the results obtained if one ex-
ponent is forced to be 1 and the fifth if one exponent is
forced to be 1/4. An asterisk (') denotes that the approx-
imant displays a spurious singularity and a dagger (f)
that Rt~(v), PL(v), and QM(v) have a common root u„
with 0 g v, & v, . For reasons to be discussed in the next
section, we retain no more than five places of decimals in
all values for the exponents.

Reference to the table shows that with very few excep-
tions the exponents p& and p2 are very close to 1.0 and
0.25, respectively. This is particularly so for the biased
exponents in the last two columns where in almost all
cases the deviations from these values are significantly
less than 1%. Averaging over all the nonasterisked en-
tries, but including the daggered values in these four
columns, we obtain for approximants with free exponents
the values
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The conclusion that the leading behavior of TX„ is

I
t

I

'~ and t is inescapable. Note especially that p, is

significantly different from p2 ——1/4; had this not been the
case, it might have indicated the existence of a confluent
logarithmic singularity of the form

I
t

I

' ln
I
t

I
. It is,

of course, possible that Tg„has additional singular be-

havior characterized by an exponent less than unity; if so,
we conclude that its coefficient must be very small.

Having thus made the case that the leading term in

TX„ is
I
t

I

' let us consider the problem of obtaining
its coefficient. To this end consider the difference TX'„
defined by

[K,L,M] Unbiased exponents
Biased exponent

P

[10,9,1 1]
[10,10,10]
[10,11,9]

0.9449+0.0982i
1.2449 0.9227
1.1239 0.9413

1.0011
1.0013
1.0013

TABLE II. Exponents obtained by use of second order homo-

geneous differential approximants for the quantity TX'& defined

in Eq. (25) with AC2 —=0. The exponents listed in the last
column under p are obtained from approximants for which one

exponent is forced to be 1 exactly. An asterisk (*) denotes an

approximant with an intervening spurious singularity.

TX'q ——TXo Co+ —
I
t

I

"—C, + I
t

I

Dp —(C2+ —EC2) I
&

I

'"—C3+ (25)

where C2+ and C&+ are defined in Eq. (20) and b, C2 is a
parameter which will be allowed to vary. Note that this
time we have not subtracted the tin

I

t
I

term.
First with AC2 ——0, we carry out an analysis, as above,

to determine the leading singular behavior of TX'„. The
resulting exponents are now given in Table II. As above,
the second and third columns display the exponents ob-
tained from unbiased approximants and the fourth
column shows the exponents obtained with one exponent
forced to be unity. Note that now the results for the un-
biased calculations are not as consistent as in Table I, but
strongly suggest that both exponents are unity. This is
clearly manifest in the results for the biased calculation
as given in the fourth column where all values are unity
to within 0.1%. The fact that some of the exponents in
the second and third columns have small imaginary parts
is no problem; indeed it is surprising that complex ex-
ponents do not appear more frequently in this case where

p& -p2. The average value of p from the fourth column is
found to be

[10,10,11]
[10,11,10]
[11,10,10]
[10,11,11]
[11,10,11]
[11,11,10]
[11,10,12]
[11, 1 l, l 1]
[11,12,10]
[11,11,12]
[11,12,11]
[12,11,11]

[11,12,12]
[12,11,12]
[12,12,11]

4.0

1.0687 0.9579
1.0932 0.9495
1.0919 0.9497

0.9979+0.0246i
1.0494 0.9665
1.0953 0.9491

0.9999+0.0120i
1.0279 0.9786
1.0523 0.9655

0.9935+0.0386i
1.3534 0.9180

0.9814+0.0621i

1.1147 0.9452
0.9880+0.0510i
0.8736+0. 1068i*

1.0012
1.0013
1.0009
1.0011
1.0016
0.9838*
1.0010
1.0012
1.0020
1.0010
1.0009
1.0011

1.0012
1.0008
1.0019

(p) = 1.0013+0.0003. (26)

As discussed in the preceding section and in Appendix A,
this degeneracy with both roots unity implies that with
b, C2 —=0 the leading terms in TX'„vary as t and tin

I

t
I
.

But more importantly from the viewpoint of Eq.(19) it
also implies that the coefficient Cz+ of the

I
t

I

'~ term
there must be close to, if not equal to the value in Eq.
(20). And finally, this also confirms that no term with an
exponent less than 1 is present in TX'„.

To obtain a measure of the accuracy with which we
can confirm this value for C2+, let us reanalyze the series
for TX'„ in Eq. (2S) but now for a range of values of b, C2
about bC2 ——0. For each value for AC2, we force one of
the roots of Eq. (16) to be unity and compute a value for
the second one. The calculations were carried out for all
approximants with orders I( =L =M and L =I( +1,
M=K+1 which require for their determination 30—35
terms in the series. This is the same as for the values in
Tables I and II. Disregarding the approximants with
spurious singularities the resulting values for p associated
with the given ECz were used to obtain an average value

(p) and an associated standard deviation. The results
are plotted in Fig. 1 which shows a graph of

3.0—

V
2.0—

Ol
O

I.O—

00 1 l 1 l 0 l

5.0 4.0 3.0 2.0 I.O 0 I.O

(O~ (kca/Cai)

2.0 3.0 4.0 5.0

FIG. 1. Plot of 10
I

1 —(p)
I

as a function of
10 (EC2/C2+ ). Each value for (p) was calculated by averag-

ing the exponents obtained from a biased second order homo-
geneous differential approximant analysis of Eq. (25) with one
exponent forced to be unity for various choices of the parameter
hC, with Cz+ as given in Eq. {20). The vertical bars indicate
the standard deviation associated with the spread in the calcu-
lated values of (p) for each value of ECz.
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I
1 —(p)

I
X 10 as a function of(AC&/Cz+ ))&10 . Each

division along the vertical scale corresponds to a devia-
tion of 1% in the value of the exponent from unity and
each horizontal division a deviation of one part in 10 of
C2+. There is an unambiguous minimum near bC2 ——0,
corresponding to the value for C2+ in Eq. (20) as the
coefficient of the

I
t

I

' term. As shown by the vertical
bars, which represent one standard deviation, the Auctua-
tions in the value for (p) increase as b, C2 deviates more
from zero. Since the minimum in the curve occurs for a
value of b, C2/C2+ within 10 of zero, we take this to be
the uncertainty inherent in this method for determining
the coefficient of

I

t
I

' . That this is a reliable measure
of the uncertainty has been confirmed by carrying out a
similar analysis for the exactly known constant Do.

[K,L,M]
Unbiased exponents

pz p]

Biased exponents

p2 (p] =1.25) p] (pq=1)

[10,9,11]
[10,10,10]
[10,11,9]

[10,10,11]
[10,11,10]
[11,10,10]

1.0053
0.9951
0.9992

1.0144
1.0071
1.0061

1.2199
1.2595
1.2423

1.1918
1.2140
1.2163

0.9974
0.9973
0.9973

0.9973
0.9973
0.9973

1.2396
1.2390
1.2392

1.2393
1.2393
1.2388

TABLE III. Exponents p, and p2 (p2(p~) obtained from un-

biased and biased second order homogeneous differential ap-
proximants to the quantity T+s defined in Eq. (27). An asterisk
(*) denotes an approximant with an intervening spurious singu-
larity and a dagger (t) an approximant for which the polynomi-
als Rx, PL, and Q~ possess an intervening common root.

B. The
I
t

I

'~ term

With the C2
I
t

I

' tertn established let us now con-
sider the

I

t
I

~ term. To this end, we modify the
difference in Eq. (22) by also subtracting out the

I
t

I

'~

term and define a quantity TXz by the formula

[10,1 1,1 1]
[11,10,11]
[11,11,10]

[11,10,12]
[11,11,11]
[11,12,10]

1.0146
1.0145
1.0078

1.0174
1.0168
1.0167

1.1911
1.1915
1.2123

1.1833
1.1849
1.1855

0.9973
0.9967
0.9933

0.9978*
0.9978*
0.9977*

1.2391
1.2373
1.2316

1.2408*
1.2408*
1.2404

»s =»o Co+ I

—t
I

'"—Ci+ I
t

I

D, —C,+ t
I

'"—E,tin t
I

=—T&~ —C2+ It
I

'. (27)

(p, ) =1.20+0.03,

(p2) = 1.012+0.009.
(28)

Thus, consistent with the earlier calculations ( p2 ) = 1 but
within 2% here. On the other hand the (p, ) value is
somewhat smaller than 1.25 by —4%. However, on
computing biased approximants with p&=1.25 and with
p2=—1, we obtain from the values in the biased columns
the averages (disregarding defective approximants)

Repeating the same procedure as used above to deduce
the

I
t

I

' behavior of TX„, we compute by use of
second order differential approximants the values for the
exponents characterizing the leading behavior of TXz.
The results for the same choices of (K, L, M) as above are
shown in Table III. The second and third columns
display the exponents obtained from unbiased approxi-
mants, the fourth column exponents obtained from ap-
proximants with p&

——1.25 fixed, and the fifth column ex-
ponents with p2

——1 fixed. Although the consistency of
the values here is not nearly as good as those in Tables I
and II—possibly due to the fact that p& and p2 here are so
close to each other —the conclusion that the leading
terms of TX~ are associated with exponent values 1 and
1.25 seems plausible Evidentally we cannot, on this basis
alone, rule out additional singularities with exponents
within a few percent of 1 or 5/4, particularly if such
terms have small coefficients. Averaging over the 18
nonasterisked values for p& and pz we obtain from the
values listed in the unbiased columns the averages

[11,11,12]
[11,12,11]
[12,11,11]

[11,12,12]
[12,11,12]
[12,12,11]

1.0062
1.0164
1.0302

1.0152
1.0246
1.0049

1.2174
1.1868
1.1518

1.1901
1.1644
1.2255

0.9977
1.0050*
0.9985

0.9975
0.9979
0.9991

1.2405$

1.2910*
1.2434

1.2398'
1.2411
1.2458

These strongly suggest the exponents 1 and 1.25 although
it should be noted that an exponent close to, but not ex-
actly 5/4 is not clearly ruled out by these calculations.
The argument below relating to the coefficient of the

I
t

I

s~4 term, however, strengthens the conclusion that pi
is indeed 5/4.

The determination of the coefficient of the
I

t
I

term
proceeds in a spirit similar to that used to determine the
coefficient C2+, but with some differences. We now ana-
lyze the quantity

»c=»o Co+ It I

'"——Ci+ It I

'"—Do

—C,+ I

t
I

'"—E,tin
I

t
I

—C,+ I
t I'" (30)

with Cz+ and C3+ given in Eq. (20). Computing values
for the exponents by use of second order homogeneous
differential approximants we find that the leading singu-
lar behavior of Tgc has the structure t ln

I
t

I
and t.

This is shown in Table IV. The unbiased columns give
the exponents p& and pz obtained from unbiased approxi-
rnants, and the biased columns the values obtained from
approximants biased to force p, =2 and pz=—1. The
values obtained clearly suggest that p2 ——1 and p, =2, al-
though the latter is confirmed only to within 2%.
Averaging over the nondefective approximants in each
column, we obtain from the unbiased values the averages

(pi) =1.240+0.003 (p2—= 1.0)

(p2) =0.997+0.001 (p, = 1.25).
(29)

(p, ) =2.04+o.os,

(pz) = 1.0001+0.0002,
(31)
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[K,L,M]
Unbiased exponents

p]

Biased exponents

p2 (p]—=2) pl (p2=1)

[10,9,11]
[10,10,10]
[10,11,9]

[10,10,11]
[10,11,10]
[11,10,10]

0.9997
0.9999
1.0000

1.0000
1.0000
1.0000

1.9969
2.0153
2.0238

2.0247
2.0280
2.0124

0.9997*
0.9996*
0.9996

0.9997
0.9998
1.0002

1.8044*
2.0194
2.0245

2.0227
2.0253
2.0098

TABLE IV. Exponents pI and p& (pz( pI) obtained from un-

biased and biased second order homogeneous differential ap-
proximants to the quantity TXc defined in Eq. (30). An asterisk
(*) denotes an approximant with an intervening spurious singu-

larity and a dagger (t) an approximant for which the polynomi-
als Rx, PL and QM possess an intervening common root.

and for the biased values the averages

(p, ) =2.01+0.01 (p2
——l.0),

(p~) =0.9999+0.0001 (p, —=2.0).
(32)

Thus we conclude that the leading "singular" behavior
of TXc is t ln

I
t

I
and t A.s anticipated above, this also

implies that the coefficient of C3+ of the
I

t
I

term in

TXo is close to, if not equal to the value given in Eq. (20).
No further singularity characterized by an exponent close
to 5/4 shows up in this analysis.

With the value for C3+ tentatively established, let us
now obtain a measure for its accuracy by analyzing the
quantity

[10,11,11]
[11,10,11]
[11,11,10]

[11,10,12]
[11,11,11]
[11,12,10]

1.0000
1.0001
1.0001

1.0000
1.0001
1.0002

[11,11,12] 0.9688
[11,12,11] 1.0004
[12,11,11] 1.0004

[11,12,12] 1.0003
[12,11,12] 1.0005
[12,12,11] 1.0004

1.9858
2.0368
2.0463

1.9979
2.0263
2.0572

1.0953
2.1400
2.1536

2.1045
2.2019*
2.1461

1.0000
0.9999
0.9999

1.0000
1.0000
0.9997

1.0000
1.0000
1.0000

1.0000
1.0000*
1.0008*

2.2177*
2.0202
2.0224

2.0032
1.9616*
2.0332

2.0023
2.0043
1.9994

1.9934
2.0143*
2.3337*

TXD=TXo Co+ I I Ci+ I
t

I
Do—

C2+ I
t

I

' —Eot»
I

t
I

—Dit

—(C —bC3)
I

t
I

(33)

where EC3 is a variable parameter and with C3+ as given

by Eq. (20). Note the appearance of the D, t term with
D „as determined in the next section, to have the value
D

&

= —0. 14869+0.00001 ~

Let us first analyze TXD with EC3 ——0. Table V shows
the exponents obtained by use of a second order
differential approximant analysis of this quantity. The
unbiased values in the second and third columns show
considerable scatter about the value 2.0. However,
averaging over the biased (one exponent forced to be 2)
values of p in the last column we find

TABLE V. Exponents obtained from second order homo-
geneous differential approximants for the quantity TXD as
defined in Eq. (33) with EC3 —=0. The exponents p are obtained
from approximants for which one exponent is forced to be 2 ex-
actly. An asterisk (*) denotes an approximant with an interven-

ing spurious singularity.

(p ) = 1.9984+0.0004 (34)

[K,L,M]
Unbiased exponents Biased exponent

p
3.0

[10,9,11]
[10,10,10]
[10,11,9]

[10,10,11]
[10,11,10]
[11,10,10]

[10,1 1,1 1]
[11,10,11]
[11,11,10]

1.8646
1.9219
1.9161

1.9080
1.9064
1.8873

1.8742*
1.9168
1.9138

3.0399*
2.1547
2.1797

2.2224
2.2328
2.4069

2.6653
2.1764
2.1911

1.9985
1.9975
1.9983

1.9989
1.9989
1.9988

1.9982
1.9986
1.9987

V
I

OJ

C4
O

2.0—

I.O—

OO I I I I ~ ~ I I I I I

—5.0 -4.0 -3.0 -2.0 - ].0 0 ].0 2.0 3.0 4.0 5.0

[11,10,12]
[11,11,11]
[11,12,10]
[11,11,12]
[11,12,11]
[12,11,11]

[11,12,12]
[12,11,12]
[12,12,11]

1.9127 2.1942*
1.9982+0.01700i
1.9783+0.07757i

1.9028 2.2527*
1.8578 3.6504*
1.8847* 2.4496*

1.5852* 1.7532*
1.7622+0. 1234i*

1.4552* 1.7813*

2.0057*
1.9983
1.9985
1.9983
1.9983
1.9983

1.9974*
1.9946
2.0014*

io4 ( h, C3 /C3+)

FIG. 2. Plot of 10'
I
2—(p)

I
as a function of

10 (AC, /C, + ). Each value for (p) was calculated by averag-
ing the exponents obtained from a biased second order homo-
geneous differential approximant analysis of Eq. (33) with one
exponent forced to be 2 for various choices of the parameter
AC3 with C3+ as given in Eq. (20). The vertical bars indicate
the standard deviation associated with the spread in the calcu-
lated values of (p ) for each value of hC, .
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thus indicating that the leading terms for TXD are
t ln

~

t
~

and t . This incidentally also confirms that the
coefficient C3+ of the

~

t
~

term in TXo is given
correctly by Eq. (20).

We now set a numerical bound on possible deviations
of C&+ from the value in Eq. (20) by analyzing TXD for
various choices of AC3 near AC3 ——0. For each value of
AC3 we bias the approximants so that one of the roots of
Eq. (16) is 2 exactly and obtain in this way a value for the
second root. For the same choices of E, I. and M used
previously we obtain an average value (p) and a stan-
dard deviation as a function of EC3. The results are
shown in Fig. 2 where we plot

~

2 —(p)
~

&&10 versus
b,Cs/C3+ X10 . As for Fig. 1, the result here leads to
the conclusion that the coefficient of the

~

t
~

'~ term is
given to within one part in 10 by the value called for by
the RG in the absence of irrelevant variables; that is, by
the value in Eq. (20). As noted above, this was the value
of C3+ used in obtaining the coefficient Cz+ of the

~

t
~

'~ term from TX'„ in Eq. (25).

C. The t term

Besides their usage in obtaining the
~

t
~

'~ and the

~

t
~

~ terms, the arguments above, and particularly the
values for p, and p2 listed in Tables I—IV, make it evident
that the linear t-term from the analytic background term
A (t, h) in Eq. (6) is present in the susceptibility. Indeed,
we have been using the existence of the t and tin

~

t
~

terms as a probe for some of the other terms. Let us now
consider the problem of obtaining the value for its
coefficient D, in Eq. (19).

Unlike the
~

t
~

' and the [
t

~

terms, whose
respective coeScients Cz+ and C3+ can be "guessed"
from the predictions of the RG in the absence of ir-
relevant variables, there is no corresponding guidance re-
garding the analytic background term Dodo(t) in the
third of Eqs. (8). Thus we cannot use the same procedure
as above of "guessing" D, as in Eq. (20) and considering
small variations about these values.

To determine D,

[=Dodo�(0)]

let us consider the quan-
tity

'rXF. ='rXo Co+ I

t
I

'"——Ci+ l
t

I

TABLE VI. Values of the coefficient D] of t obtained by the
Pade technique. An asterisk ( ) denotes a defective approxi-
mant. The notation [N,M] for the Fade approximants denotes
the order of the numerator and denominator polynomials, re-

spectively.

15
16
17
18
19
20
21
22
23
24

[N —l,N]

—0.14935
—0.14915
—0.14902
—0.14906
—0.14908*
—0.14898
—0.14893
—0.14894
—0.14887
—0.14888

[N,N]

—0.14918
—0.14965*
—0.14910
—0.14904
—0.14898
—0.14898
—0.14895
—0.14890
—0.14888
—0.14810

[N,N —1]

—0.14921
—0.14911
—0.14895
—0.14904
—0.14904
—0.14898
—0.14889
—0.14893
—0.14886
—0.14887

ly from the Fade analysis and appears to be fairly accu-
rate, it fails the more sensitive test of our differential ap-
proxirnant analysis in a sense described immediately
below.

To see this and to obtain an improved value for D&

consider the quantity

TXF TXE ——D i t— (37)

with D, a variable parameter which has the approximate
value D i above. [This is essentially the same as the quan-

[K,L,M] —0.1490 —0.14870 —0.14869 —0.14868

[10,9,11]
[10,10,10]
[10,11,9]

2.7742*
2.6263*
2.6783*

2.0191
2.0191
2.0197

2.0026
2.0018
2.0025

1.9849
1.9833*
1.9846

TABLE VII. Exponents obtained from second order homo-
geneous differential approximants, biased to force one exponent
to be 2, for the quantity TXF defined in Eq. (37). Each column
represents a different choice for the parameter D

&
given in the

top row. An asterisk ( ) denotes an approximant with an inter-
vening spurious singularity and a dagger (f) an approximant for
which the polynomials Rx, PL and QM possess an intervening
common root.

—C, [t /' '—C, /t /'' — Etlo/nt
/

(35)

(36)

Unfortunately, although this value follows unambiguous-

and carry out a Fade analysis' of the quantity TPE/t
evaluated at t =0. Using up to 48 terms in Nickel's
high-temperature series for TXo, the exactly known
values Co+, C, +, Do, and Eo, and the values given in

Eq.(20) for Cz+ and C3+, we find on expanding TXF It in
terms of the high-temperature variable v, the results
given in Table VI. The notation [N, M] for the Pade ap-
proximants is the usual one' with N (M) the order of the
numerator (denominator) polynomial of the approximant.
Averaging over all values listed in the table (except the
defective ones that are indicated by an asterisk) we con-
clude for D

&
a value D

&
given by

D', = —0. 1490+0.0001 (Pade).

[10,10,11]
[10,11,10]
[11,10,10]

[10,11,11]
[11,10,11]
[11,11,10]

[11,10,12]
[11,1 1,1 1]
[11,12,10]

[11,11,12]
[11,12,11]
[12,11,11]

[11,12,12]
[12,11,12]
[12,12,11]

2.7376*
2.6802*
2.8271*

1.9438
3.2513*
4.0165*

1.1534*
1.9055
1.8062

1.4772
1.6048
1.7094

1.5849
1.9594
1.6322

2.0193
2.0197
2.0197

2.0196
2.0197
2.0130

2.0197*
2.0196*
2.0166*

2.0195*
2.0180*
2.0165*

2.0195
2.0161*
2.0220*

2.0031
2.0030
2.0029

2.0025
2.0028
2.0028

2.0084*
2.0026
2.0028

2.0022
2.0024
2.0027

2.0014*
1.9990*
2.0057

1.9853
1.9852
1.9852

1.9834
1.9850
1.9852

1.9920
1.9837
1.9838

1.9843
1.9840
1.9833

1.9834
1.9799*
1.9865
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tity TXD defined in Eq. (33), but with EC3 =0 and D, re-

placed by the variable D&.] Table VII shows, for various
choices of D„the exponents obtained from approximants
to TXF which are biased to force one exponent to be 2.
Note that almost half of the exponents obtained with the
Pade value D&

———0. 1490 in the first column are associat-
ed with defective approximants and are inconsistent,
ranging from a high of 4.0 to a low of 1.2; clearly a very
unsatisfactory situation. The remaining columns for
various choices of the parameter D& near the Fade value
D', serve to clarify this situation. From the last three
columns in Table VII we see that the "best" value for
D&—in the sense of giving consistent values for the ex-
ponents and with a small number of defects and with a
minimum value for the quantity 2 —(p) ~—
corresponds to the value D, = —0. 14869.

The last three columns in Table VII suggest that we es-
timate the accuracy of the value for D, quoted in Eq. (21)
by carrying our computations for choices of D, in the
range —0. 14870(D

&
& —0. 14868. Unexpectedly, we

find the results of such an analysis to be extremely sensi-
tive to the sixth decimal place of D&. For reasons to be
discussed in Section IV, accuracy to better than 5 de-
cimal places is unwarranted here. Thus D, in Eq. (21) is
given to five decimal places and making use of the entries
in the last three columns in Table VII we estimate the un-
certainty in D, to be 1 part in 10, or 0.01%.

D. /t /' In/t
/

and /t
/

In/t I
terms

Finally, let us test for the possibility that TXo also has
terms of the form

~

t
~

'~
1 n~t

~

and/or
~

t
~

~ ln t ~.
To this end consider the quantity

TXG ——TXo Co+ t
i

——C, + i
t

i
Do—

4.0—

3.0—
I

A

V II

eu 2.0—
|2

I.O—

pp 1 I I I ~4 I I

- 5.0 -4.0 -3.0 -2.0 -I.O 0 I.O 2.0 3.0 4.0

ip5 )

I

5.0

with the terms t and tin
~

t
~

now included in the subtrac-
tion. Carrying out a biased second order differential ap-
proximant analysis of TX'G for various choices of p and
with one exponent now forced to be 2, we conclude (see
Fig. 4) that if the term

~

t
~

ln
~

t
~

were present, its
coefficient would be less than 10 ' that of C3+.

40—

FIG. 3. Plot of 10'
~

I —(p)
~

as a function of 10'I, showing
that the coefficient of a hypothesized

~

t
~

'~ ln
~

t
~

term in TXo
must be very small or zero. Each value for (p) was calculated
by averaging the exponents obtained from a biased second order
homogeneous differential approximant analysis of Eq. (38) with
one exponent forced to be 2 for various choices of the parameter

The vertical bars indicate the standard deviation associated
with the spread in the calculated values of (p) for each value of

—C,
/

t
[
'"+AC,

/

t
/

'"1n
/

t
/

—C,
/

t
/

'"
(38)

TX'G=TXo Co+ I

t
I

'"—Ci+—I
t

I

'"—Do

—C,+ /
t

/

'~' E,tin
/

t
f

D,t——

—C, + /t /''+pC, + /t [''In/t /, (39)

with A, a variable parameter and where the t and tin
~

t
~

terms have not been subtracted. Carrying out a biased
second order differential approximant analysis of TXG for
various choices of k and with one exponent forced to be
unity, we obtain Fig. 3 with A. along the abscissa. Refer-
ence to the graph shows that the minimum occurs for
values of the parameter

~

A,
~

5 10 . This means that if a
term

~

t
~

' ln
~

t
~

were present its coefficient could be at
most 10 that of the value C2+.

Similarly to test for the possiblity of a
~

t
~

ln
~

t
~

term we consider the quantity Tl''G given by

3.0—
A

V
I

N
2.0 $

CV

O

IO—

O.p I

-5.0 -4.0 -3.0 -2.0 - I.O 0 l.p 2.0 3.0 4.0 5.0

l05 p
FIG. 4. Plot of 10

~

2 —(p)
~

as a function of 10 p showing
that the coefficient of a hypothesized

~

t
~

' ln
~

t
~

term in TXO

must be very small or zero. Each value for (p) was calculated
by averaging the exponents obtained from a biased second order
homogeneous differential approximant analysis of Eq. (39) with
one exponent forced to be 2 for various choices of the parameter
p. The vertical bars indicate the standard deviation associated
with the spread in the calculated values of (p) for each value of
p.
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IV. FURTHER CONSIDERATIONS IO

In this section we turn to the question of the accuracy
of our calculations. As will be discussed below, the prin-
ciple limitation to the accuracy attainable in the present
work is that the constant Co+ (and to a lesser extent Du
and Eo) is known at the present time to "only" 10 de-
cimal places. Although there is an exact expression for
Co+, its evaluation to more than 10 places remains a for-
midable task and has not yet been carried out. This limit-
ed precision for Co+ leads to a systematic degradation in
the accuracy of the series coefficients when the subtrac-
tions in Eqs. (22), (27), . . . for TX„, TXIi, . . . are car-
ried out. This is particularly important for us since
throughout this work we have had to subtract numerical
coefficients, some of which have limited precision, and
frequently, common digits. It must be kept in mind that
ten digit agreement between two such coefficients would
leave a residue devoid of any numerical significance. In
addition, as we shall see, this naturally leads us to con-
siderations which reinforce the validity of our underlying
hypothesis that irrelevant variables can be neglected for
two-dimensional Ising systems.

To introduce the idea let us see to what accuracy the
coefficients of v" in the high-temperature expansion of
the quantity TXu Cu+ ~

t
~

—~ can be determined. The
coefficients of the TXO expansion are integers, and as such
may be regarded as "infinitely" precise real numbers. On
the other hand, the coefficients of the high-temperature
expansion of the term Cii+ ~

t
~

are limited to 10
place significance by the value of Co+ as given in Eq. (2).
Thus the coefficients of the series for TXu Cu+ ~

t ~—
can be at most accurate to 10 decimal places. On com-
paring Nickel's exact series for TXO with the series for
Cii+ ~

t
~

~, we find that the respective coefficients of
the two series are of the same order of magnitude and for
the higher orders agree with each other up to two de-
cimal places. For example, the coefficients of v for T+p
and Cu+ ~t

~

~ are 36212402548 and 3.574241397
&10', respectively, and these agree to two places. Thus
the coefficient of v

' for the expansion of
TXu Cu+ ~

t
~

~ —is accurate only to eight decimal
places rather than ten. Similarly the corresponding
coefficients of v are 3254615979848876064244 and
3.234271265 )& 10', respectively; on subtraction these
yield a number accurate again only to eight places. A
comparison for all the coefficients in the expansion of
TXO Cc+

~

r
~

sh—ows that the degradation in accu-
racy is worst for the higher orders, with no case more
severe than the examples just given.

This loss of accuracy is more serious for the series
representing the difference TXu Co+ ~

t ~—
—Ci+ ~

t
~

. This time, if we construct the high-
temperature expansion for the sum Cu+ ~

r
~

+Ci+
~

t ~, we find that the resulting coefficients
agree much more closely with the exact coefficients of the
series for Tgo. For the same orders 25 and 53 as above
we now find for the coefficients of v and v the respec-
tive values 3.621174159&10' and 3.254616722~ 10 '.
Comparing these with the exact coefficients for the Tgo

IO

a
I

IO

-5
IO

~t0
~ ~

~ ~
~ ~

~ o
~y~g~~~g ~y

-6
IO

IO
I

IO

I I I
I

I

20 30 40 50 60

FIG. 5. Plot of the quantity
~

1 —a„lb„~ as a function of the
order n, with a„ the coe5cient of v" in the high-temperature ex-

pansion of the quantity Co+
~

t
~

+C,+ ~

t
~

' and b„
Nickel's exact coeScient of v" in the high-temperature expan-
sion for Tgp. For an explanation of the anomalous point on the
lower curve, corresponding to n =53 see Ref. 25.

expansion given above, we see that the agreement is now
to five and six places, respectively. Hence the differences
now yield values accurate at best to only five or four
places.

Figure 5 shows as a function of n the quantity

~

1 —a„lb„~, where a„ is the coefficient of v" for
the high-temperature expansion of Cu+

~

t
~

+C, + ~

t
~

and b„ is the exact coefficient of v" for
Nickel's high-temperature series of TXO. There are two
"curves, " the upper one corresponding to even values of
n and the lower one to odd values. For small values of n
the quantity

~

1 —a„/b„~ is relatively large so that the
low-order coefficients for the expansion of
Co+

~

t
~

+C, + ~

t
~

are not too close to the ex-
act coefficients of Tgo. However, as n increases, the
quantity

~

1 —a„lb„~ becomes steadily smaller. With in-
creasing order the coefficients (b„—o„) of the series for
TXu (Co+ ~

i
~

+C—, + ~

t
~

~
) become much less

accurate and for the highest orders are reliable at best to
four decimal places. Therefore, quite apart from any un-
certainties inherent in the method used to analyze the
series itself, results obtained by the use of all 54 terms in
such series cannot be treated as being more reliable than
four decimal places.

With the difference TXO (Co+
~

t ~—
+C,+ ~

t
~

) reducing us from 10 to 5 or 4 significant
figures, it is crucial to see what is the effect of subtracting
additional terms such as C2+

~

t
~

', Ci+ ~

t ~, and
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Eotln
~

t
~

from TXo. Fortunately, we find that these ad-

ditional terms modify the difference (a„b—„)only slight-

ly. Table VIII shows the results of these computations
for 1 & n & 54. The exact values of the coefficients of U"

for the expansion of TX as communicated to us by Nick-
el" are given in the column labeled "exact." The neigh-
boring columns labeled "partial" list the coefficients of U"

obtained by expanding the right-hand side of Eq.(19) in a
high-temperature series. Reference to the table shows
that except for the very lowest values of n the computed
values in the "partial" column are in substantial agree-
ment with the exact coefficients. The differences between
the coefficients in the two columns are given as a percent
in the third column labeled "%." These percent
differences alternate in sign —being positive for odd n and
negative for even n—and are generally very small, corre-
sponding to 0.01% for n = 17, 0.001% for n =39, and go-
ing down to 0.00044% for n =54. This means that for all
terms with n g 17, the computed coefficients agree with
the exact ones to from 4 to as many as 6 decimal places.
In turn, this implies that the difference in the coefficients
of the high-temperature expansion for TXp and the seven
terms on the right-hand side of Eq. (19) can be deter-
mined only to -4-5 places.

This remarkable agreement between these latter two
sets of coefficients can also be viewed from an alternate
perspective. In obtaining the three new terms on the
right-hand side of Eq.(19) we made use only of the first 35
of Nickel's high-temperature coefficients. In effect there-
fore, we "predicted, " to 5-6 place accuracy, the last 19
terms b„ for 36&n &54, of Nickel's high-temperature
series. It is reasonable to suppose that corresponding
predictions for the higher order coefficients would agree
as well. In any event, this agreement reinforces the credi-
bility of the underlying hypothesis that for two-
dimensional Ising systems, irrelevant variables can be
neglected to the order considered here.

Before turning to another implication of this rather
surprising agreement between the two sets of coefficients
in Table VIII, let us consider why it is that we have cal-
culated approximants using only the first 35 terms in
Nickel's series rather than the full 55 terms that are
available. Generally, we would expect for approximation
schemes of the kind used here that the approximants
would converge better with increasing order. ' ' ' In fact
we found that the quality of the approximants —in the
sense of consistency among the calculated exponent
values and the encountering of fewer defective
approximants —improves, as expected, with increasing
order, but only up to a point; thereafter the quality di-
minishes for higher orders. We believe that this is due to
the limited accuracy to which Cp+ is known. In carrying
out computations of the type described in the preceding
section we have found that results from approximants
constructed with 30 to 35 term series are the most con-
sistent. Values obtained from approxirnants that make
use of fewer than 30 coefficients are overall less consistent
in the sense that they do not appear to converge as well.
Similarly, approximants that require more than 35
coefficients generally yield more defective approximants,
especially when p, =pz. It appears that the expected in-

&p =0.0255369719,

Ci —/Co —= —ar ———2

8 c&

151
Cz /Co br —— ——K„ (41)

615/2
Cq /Co ———cr —= — K„

and where we have used the fact that Ep Dp and D, are
the same on the high- and low-temperature sides. It is to
be emphasized that Eqs. (40) and (41) are valid for T & T,
only if the underlying assumption that irrelevant vari-
ables can be neglected is correct.

Let us now take this formula for TXo in Eq. (40) and
expand the right hand side in a power series in the low-
temperature variable u =e . With all coefficients
in Eq. (40) known we can compute for T & T, the
coefficients of the power series for T+p in u analogous to
those in the "partial" column in Table VIII for T& T,
(Appendix B). The resulting low-temperature coefficients
are shown in Table IX in the column labeled "partial. "
Also displayed are the 11 exactly known low-temperature
series coefficients for this system in the column labeled
"exact." As in Table VIII we have computed coefficients
through n =54 even though the "exact" column now has
only 11 values, as does the "%%uo" column. Again, there is
significant agreement between the "predicted" and the 11
known exact values. The coefficients listed in the partial
column are here consistently above the exact values, with
the difference, as one might expect, decreasing rapidly
with increasing values of n. For the highest-order exactly
known coefficient, n = 11, the difference is —4. 8)& 10
whereas the corresponding difference at n =11 for T ~ T,
was larger by a factor of nearly 100 at 2.9X 10 %%uo. The
predicted values for the coefficients for T & T, increase
much more rapidly with order n than do the high-
temperature coefficients. Thus for n =54, the low-

crease in accuracy with increased order is offset by the
decreasing accuracy of the series coefficients in the ex-
pansions of the differences TXz, TXz, etc. , used in the
analysis.

Let us finally consider an implication of the above
unexpected agreement displayed in Table VIII between
the high-temperature series coefficients obtained from the
right hand side of Eq. (19) and the exact Nickel
coefficients but now for the low-temperature range
T & T, . Reference to Eqs. (19) and (20)—the direct
consequences of the hypothesis that irrelevant variables
may be neglected —shows that since the quantities fo(t),
Ao(t), mo(t), po(t), eo(t), and do(t) are analytic functions
of t, if we know these functions for T g T, we also know
them for T&T, . Wecan thus writefor T&T,

TX,=C, t
~

-'"+C,
~

t
~

'"+D,
+C~ It )'"+&otlnl t ~+Dit

+C, t ('"+O(t'ln [t [,t'), T& T, (40)

where
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TABLE IX. Exact and partial low-temperature series coefficients for the quadratic Ising lattice susceptibility. The partial series

coefficients are calculated from Eq. {41). The column labeled "%"indicates the percent difference between the values in the "exact"
and "partial" columns.

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Exact

0

32
240

1664
11164
73184

472064
3008032

18985364
118909888

Partial

0.3296233
3.800798

32.63967
240.1660

166.5551 X 10'
1116.561 X 10'
7318.944 X 10'
4720. 767 X 10
30080.75 X 10'
18985.51 X 10
1189.105X 10'
7.400687x 10'
4.581670X 10'
2.823711X 1o'
1.733538X 10"
1.060676 X 10'
6.470628 X 10'
3.937068 X 10'
2.389932X 10'
1.447735 X 10"
8.753313X 10'
5.283387 X 10'
3.184015X 10'
1.916102X 10'
1.151579X 10"
6.912652X 10"
4. 144877X 10

+ 5.0
—2.0

—6.9 X 10-'
—9.3X10-'
—1.4X10-'
—7.4X 10
—2.7X10-'
—1.4X 10-'
—7.8X 10-'
—4.8 X 10-4

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Partial

2.482731 X 10 '

1.485698X 10
8.882647X 10
5.306289X 10"
3. 167373X 10
1.889245X 10"
1.126100X 10
6.707850X 10"
3.993215X10"
2.375801 X 10
1.412728X 10
8.396168X 10
4.987568X 10
2.961368X10"
1.757525X 10"
1.042619X 10
6. 182629X 10
3.664815X 10
2. 171549X10 '
1.286273X 10
7.616380X 10
4.508401 X 10"
2.667844X 10"
1.578221 X 10"
9.333610X10
5.518370X 10
3.261789X 10 '

temperature coefficient is predicted to be =3/ 10 ' while
the corresponding high-temperature one is 20 orders of
magnitude smaller than this at =8/10 '. This may be
the reason why it is so much more difficult to compute
exact values for the low-temperature series coefficients
than for the high-temperature ones. We stress that the
values listed in Table IX are a projection based on Eqs.
(40) and (41) and should be interpreted in that light. It
would be of considerable interest to have available addi-
tional exact values with which to compare our T & T,
predictions.

V. SUMMARY AND CONCLUSIONS

The main result of this paper for the zero-field quadra-
tic Ising lattice susceptibility can be summarized by the
statement that through terms of order t and t ln

~

t ~,
we have confirmed the predictions of the renormalization
group when irrelevant variables are neglected.
Specifically, we have shown the existence of the

~

t
~

'~

and
~

t
~

~ terms for TXO and that the respective
coefficients C2+ and C3+ are very close to and possibly
equal to the values given by Eqs. (20). Also, we have es-
tablished that the coefficients of terms varying as
~t ~' ln~t

~

and ~t
~

ln~t
~

areverysmallandpossi-
bly zero by showing that if the latter terms are present,
their coefficients would be less than 10 of the values of

C2+ and C3+ respectively. By making use of Kong's re-
cently calculated value of the coefficient Ep of the
tin

~

t
~

term, we were able to obtain an improved value
for the coefficient D

&
of the t term and were able to con-

clude that if there is a confluent singularity in the two-
dimensional Ising susceptibility due to an irrelevant vari-
able, it must have an associated exponent greater than 2.

A second important conclusion derives from the high-
temperature series expansion of Eq. (19) in terms of the
variable U and its low teinperature analogue in Eq. (40) in
terms of the variable u. These derived coefficients are in
remarkable agreement with the exact series coefficients
(Tables VIII and IX, respectively) and thereby lend addi-
tional confirmation to the underlying hypothesis that ir-
relevant variables can be neglected for two-dimensional
Ising systems. Besides its intrinsic interest, this compar-
ison of the exact and partial series coefficients also indi-
cates that the numerical precision to which Cp+ is known
is the principle limitation to the accuracy which can be
achieved by analyzing series which are obtained by sub-
tracting from Tgp expansions of various singularities in
Eq.(19).

Finally, we have introduced a new method for verify-
ing and analyzing logarithmic singularities by means of
second-order homogeneous differentia1 approximants.
The method relies on the signature of an integer
difference in the roots of the indicial equation for loga-
rithmic solutions of homogeneous, second order, ordi-
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TABLE X. Comparison of additional exact low-temperature series coefficients [R.J. Baxter and I.G.
Enting, J. Stat. Phys. 21, 103 (1979)]for the quadratic Ising lattice susceptibility with their partial coun-

terparts from Table IX. The column labeled "go" indicates the percent difference between the values in

the "exact" and "partial" columns.

12
13
14
15
16
17
18
19
20
21
22
23

exact

740066448
4581660832

28237063308
173353630848

1060674765568
6470624695296

39370663086596
238993166711328

1447734754083760
8753312020985216

52833859249062184
318401517346021368

partial

74006.87372 )& 10
45816.70416& 10
28237.10454 X 10'
173353.8119)& 10
106067.5572 X 10
647062.8323 x 10
393706.7948 )& 10
238993.2408)& 10
144773.5087 y 10'
875331.3496y 10'
528338.6564 X 10"
3184015.440' 10"

—3.1x 10-4
—2.1X 10
—1.5 X 10-'
—1.0y10-4
—7.6X 10
—5.6y10-'
—4.2X 10
—3.1y 10-'
—2.3 y 10-'
—1.7X 10-'
—1.2)( 10
—8.4X10-'

nary differential equations. This technique has hitherto
been unexploited in this type of analysis. ' ' '

The results of this work raise several questions.
Among these is whether the neglect of irrelevant vari-
ables is justified for other planar Ising lattices, for exam-
ple the triangular and honeycomb lattices. If so, can the
present method be extended to the zero-field susceptibili-
ties of these lattices? This problem is currently under in-
vestigation for the triangular and hexagonal lattices.
Also, the analysis of the quadratic Ising lattice suscepti-
bility by means of the pair correlation function is an ac-
tive area of interest ' and our results, while posing per-
plexing mathematical questions, may help point the way
to further exact results. Finally, in a more speculative
vein, we note that the above results for the ferromagnetic
susceptibility may apply to the quadratic Ising antiferro
magnetic susceptibility, with po(t) in Eqs. (8) and (9)
now predicted to be zero.

Note added. After submitting this paper, I.G. Enting
brought to our attention a calculation of the low-
temperature series for the quadratic Ising lattice suscepti-
bility through terms of order u [R.J. Baxter and I.G.
Enting, J. Stat. Phys. 21, 103 (1979)]. On comparing the
"partial" coefficients in Table IX with these additional
exact coefficients, we find that they agree to as many as 7
decimal places. These new coefficients and their "par-
tial" counterparts from Table IX are shown in Table X.

APPENDIX A

The purpose of this appendix is to provide some
mathematical details concerning the solutions of second-
order homogeneous ordinary differential equations
relevant to the use of homogeneous differential approxi-
mants to determine confluent logarithmic and other
singularities.

Consider the second order equation

(z —zo ) + (z zo )P (z) +Q (z)y =02d p
dz2 dz

(Al)

where P and Q are analytic about the point z =zo and
thus can be expressed

P(z)=Po+Pi(z —zo)+P2(z —zo) + ' ' '

Q(z) =qo+q, (z —zo)+q2(z —zii) +

(A2)

(A3)

with po&0 and qo&0. The assumption that a solution of
(Al) has the form

y = (z —zo )i' 1+ g a„(z —zo )"
n=1

(A4)

yields, '9'~o when substituted into (Al), relations for the
unknowns p, a, , a&, a 3, . . . as follows:
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a„=— 1
[(p+n —m)p +q ]F p+n m=i

+ppn +qn (A6)

where a„=0for n (0 and the quantity I is defined by

F(x)=x +x(po —1)+qo. (A7)

The relation in (A5), which can also be written as
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F(p)=0, is known as the indicial equation and deter-
mines two values for P', call them p, and p2. For cases of
interest to us, these will in general be real, and we will

take p, to be the larger of the two. Provided that p1 —P2
is not a positive integer or zero the denominator F(p+n)
in (A6) does not vanish and (A4) —(A6) yield two linearly
independent solutions' ' to (A I).

The case when this latter condition is violated is of par-
ticular interest to us since for this case a confluent loga-
rithmic singularity can arise. To see this, suppose

P1 —P2 np (A8)

y~(z) = Ay, +8 py, (z)ln(z —zp }

with no a non-negative integer. Then (A4) —(A6) will still
yield one solution of (Al) associated with the larger root,
p1, of the indicial equation. But now, since
F(pz+no)=F(p&)=0, (A4) —(A6) do not yield a second
solution. However, it can be shown for this case, that if
y&

——y&(z) is the solution of (Al) for p=p„ then a second
solution yz of (Al), when nv& 0, has the form

in terms of the variable (v, —v). The result can be ex-

pressed as

Co+(v, —v) +C', +(v, v—) +Do+

+ Cz+ (v, v)—' +Eo+ (v, —v)ln(1 —v/v, )

+D', + (v, —v)+C3+ (v, —v) (82}

where v, =&2—1 and with Cv+, C&+, etc. , as appropri-
ate coefficients. Since v g v, for T & T, we drop the abso-
lute value signs in (82). It is the formula in (82) which is
expanded about v =0 and then subtracted term-by-term
from the series for TX0 to obtain series for the various
quantities TX„, TXtt, in Eqs. (22), (27), . . . .

Let us now determine the constants Cp+ C1+ Dp+
Cz+, Eo+, DI+ and C3+ in (82) in terms of the values of
Co+, C, +, Dv and Ev given in Eqs. (2)-(5), the values of
Cz+ and C3+ given in Eqs. (20), and the value of D,
given in Eq. (21). We expand t in powers of (v, —v)
through terms of order (v, —v) to obtain

np n=1
+(z —zo) + g h„(z —zv}"p, —1

(A9)

t= (v, —v) ——(v, —v) + (v, —v)
1 1 p (3+&2)

2vc+c

where A and B are constants of integration and p, h1 h 2,
. . . are fixed constants. For the case np ——0, correspond-
ing to p1 ——p2, the structure of y2 is

yz(z) = Ay, +8 y, (z)ln(z —zv)

(2+ &2)
v, —v + (83)

and substitute this expansion into (81). Keeping only
terms through order (v, —v) ~ and (v, —v)ln(1 —v/v, ),
we obtain with E, =(1/2)ln(1+V2),

+(z —zo) ' Q h„(z —zo)" . (A10)
n=1 Co+ ——Cv+(2v, E, ) =0.1650479829. . . ,

In general, unless the constant p happens to vanish, the
second solution of (A 1) involves a logarithmic singularity
of the form (z —zv ) 'In(z —zo ). It is precisely this
feature of (Al) that makes it so useful for our purposes.

C)+ /Co+ —— = 1.088388348. . . ,
16+V'2

16

D 0+ =Dp = —0. 104133245 1 1 ~

APPENDIX B

The purpose of this appendix is to provide some of the
details involved in obtaining the high- and low-
temperature expansions for the terms Co+ I

t
I

Ci+ It I

'"
C~+ It I'" C3+ It I'" »dEo It l»lt I

which are used to obtain the series represented by
the various quantities TP„, TXs, . . . in Eqs. (22),
(27}, . . . .

Consider first the high-temperature case. The variable
for the high-temperature series of T+p for the quadratic
Ising lattice is v =tanh(J/T) rather than the variable
t =1—T, /T. In order to carry out a term by term sub-
traction of series for the singular terms Co+ I

t
I

C&+ I
t I, etc. , from the series for TXO, we must ex-

press the quantity

c+ It I-'"+c+ It I-'"+D,+c+
I

+E tin
I

t I+D, t+C3+
I

t I'" (Bl)

Cq+ /Co+ —— =0.5400579453. . . , (84)
256

Ep+ = =0. 1 10457553~'+ 2v, SC,

D, —Eoln(2K, )
D 1+ = = 0.39333+0.00003

2v, K,

C' /C' = =2.861272725. . . .
4096

It is by use of these formulas that the various series
represented by the quantities TX„, T7~, etc. , were ob-
tained.

The situation for the low-temperature series
coefficients in Table IX is similar with the low-
temperature variable u =e, . We expand t in powers
of (u, —u ) to obtain
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1

4E,u,
(u —u)+ (u —u) + (u —u)

1 1 3
C

2Q
C

C Q = —5.357456256. . . ,

Co ——Co (4u, K, ) =0.00314982951. . . ,

—(88+59m'2)

32
1

3(u, —u) +
4u,

(B5)

with u, =3—2&2. Substituting into Eq. (40) we obtain

Co (u, —u) +C', (u, —u) +Do

D o—=Do = —0. 10413324511

C' /C' = =2.852019918. . . ,
1461+1032&2

E
Eo = = 0. 133334061~

4u, K,

(B7)

+Ct (u, —u)' +Eo (u, —u)ln(1 —u /u, )

+DI (u, —u)+C3 (u, —u)'~ (B6)

D',
—[D

&

—Eo1n( 4K, ) ] =0.56722+0.00003. . . ,
4K, u,

where now
C' /C'

—(90808+64213 2) 5.542568832. . . .3— 0—
32768
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