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Algorithm for the simulation of many-electron systems at low temperatures
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We present a new algorithm for the numerical simulation of many-electron systems, which is par-
ticularly effective for the study of two-dimensional models at low temperatures. We present results
for the two-dimensional Hubbard model on lattices as large as 8 X8 and inverse temperatures as
large as B=10. As the temperature is lowered, we find a continuous rise in the d-wave pairing sus-
ceptibility, indicating the possibility of a phase transition to a superconducting state.

Numerical simulations potentially provide a powerful
tool for the study of strongly interacting electronic sys-
tems; however, it has proven difficult to carry out such
simulations at low temperatures. This has made it
difficult to study a number of systems, such as two-
dimensional models of high-temperature superconduc-
tors, for temperatures of physical interest. In this paper
we present a new algorithm which we believe has great
promise for the study of such systems.

Two major problems arise in the simulation of many-
electron systems at low temperatures. Both are related to
the fact that the integrands of the path integral being
evaluated are proportional to the determinants of fermion
matrices. First, in the course of the simulation it is
necessary to repeatedly calculate the inverses of the fer-
mion matrices, which become progressively more ill con-
ditioned as the temperature is lowered."? Second, at low
temperatures the fermion determinants can change sign.’
On the surfaces where they vanish the probability func-
tion used in the simulation also vanishes. It is essential
that the algorithm allow for efficient tunneling across
such surfaces, or else regions of configuration space with
opposite signs of the determinants will not come to equi-
librium with each other.2”* The algorithm we introduce
here incorporates advances in dealing with both of these
problems.

Our starting point is the partition function

Z =tre BH | (1)

where f3 is the inverse temperature and H is the Hamil-
tonian. We shall illustrate our approach by studying the
two-dimensional Hubbard model, although our algorithm
can be straightforwardly applied to a wide variety of elec-
tron and electron-phonon systems in two-dimensions.
The Hamiltonian for the Hubbard model is
H=—t3(checjotccip)
Cij)
o
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Here c,-t, and c;, are the creation and annihilation opera-

tors for an electron on the ith lattice site with z com-
ponent of spin o, n,-0=c,-‘:,c,»a, and (ij ) specifies a pair of
nearest-neighbor lattice sites. The first term in the Ham-
iltonian represents the kinetic energy of the electrons, the
second term the on-site Coulomb interaction, and the
third the chemical potential.

In order to carry out a numerical calculation, we must
integrate out the electron degrees of freedom in Eq. (1),
and express the partition function as a path integral over
a set of bosonic coordinates. To this end we divide the
interval O to B into L imaginary-time slices of width A,
and separate the kinetic energy and interaction terms us-
ing the Trotter approximation. At this point we deviate
from standard practice by introducing at each lattice
point i and time slice / a complex Hubbard-Stratanovitch
transformation:

exp[ —ATU (n; , —1)(n,_ —1)]=exp{ —LATU[n; ((e¥O—1)+n;, _(e *—1)+1]}
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f+wdx,<,,exp{~AT[x,%,+(2U)l/2x,<’,(ni+ei9-ni,e7"9)]} . (3)

Equation (3) with 8=0 has been used extensively in studies of the Hubbard model.> As we shall see, the use of small,
nonzero values of 8 can be extremely useful for promoting efficient tunneling in configuration space.
Making use of Eq. (3), the partition function can be written in the form
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Here h“([) is a matrix with dimension equal to the num-
ber of spatial lattice sites. It is the Hamiltonian for a sin-
gle electron with z component of spin o propagating
through an external field associated with the x field on
the Ith time slice.

In Monte Carlo simulation of the Hubbard and related
models, it has been standard practice to use 6=0, and to
write the fermion matrix in the form'

M,=I+BfBf_ - BY, (5)

where B =exp[ —A7h?(l)] and I is the unit matrix. The
matrix elements of M, increase exponentially with 3, so
as the temperature is decreased it becomes increasingly
difficult to calculate the determinant and inverse of M.
This problem can be alleviated significantly by replacing
the right-hand side of Eq. (5) with a matrix having the
same determinant but twice the dimension. We write

by 0

Here

[ Y o ... Ro
ba_BaL/4BaL/4—l B(a—l)L/4+l .

Note that M, =1 +bib5b5b{. Although the two forms
of the fermion matrices have the same physical content,
the matrix elements of b are roughly the same size as
those of M, at four times the temperature. Furthermore,
the determinant of the first matrix in (6) is trivially evalu-
ated. Hence, it is possible to calculate the determinant
and inverse of M, by Gaussian elimination at
significantly lower temperatures without encountering
problems associated with roundoff errors. With standard
algorithms M, can be used for the two-dimensional Hub-
bard model with U =4 and ¢t =1 only up to B=4,% while
with M and the present algorithm one can go to B=10.
It appears that one can go to even lower temperatures by
further enlarging the dimension of the fermion matrix in
analogy with Eq. (6).”

We now address the question of tunneling between re-
gions where the sign of the determinants changes. For
6=0 the individual fermion determinants are real, but
not positive definite.’ The product of the spin up and
spin down determinants is non-negative for zero chemical
potential, but not otherwise. For 040 the determinants
are complex, and configuration space is no longer divided
into disjoint regions by surfaces along which they vanish.
In order to develop a probability distribution function for
the simulation we define a real effective action S, through

exp[ —Sy(x)]=exp

— AT x} ] |detM’, detM"_| . (7)
il

Because we shall use molecular dynamics, that is,
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Hamilton’s equations, as part of our updating scheme, we
introduce the effective Hamiltonian

ﬂg(p,x)=2pf,+39 . (8)

il
The p;, are to be interpreted as momenta conjugate to
x; ;. If we generate a sequence of field configurations dis-
tributed as exp[ — #£,(p,x)], then the expectation value of

a physical observable A can be obtained by averaging
within this distribution,

(APg)y,
(Poly, '

where P is the product of the phases of the spin-up and
spin-down determinants.

We are now in a position to describe the algorithm.
The presence of the fermion determinants makes it quite
time consuming to compute the effective action or
changes in it. To minimize this calculation we suggest
changes in all components of the x and p fields simultane-
ously, and then accept or reject the entire change accord-
ing to the Metropolis algorithm.® If we were to suggest
the changes randomly, the acceptance probability would
be prohibitively small. Instead, we suggest changes in the
fields by integrating Hamilton’s equations for #, with
640.° We do not use =0 in this integration because
surfaces in configuration space along which either of the
fermion determinants vanished would give rise to infinite
potential barriers which could not be crossed.>* Thus
the system would not be able to tunnel between regions
with different signs of the determinants. For 640 the
fermion determinants become complex. The imaginary
parts of the determinants make the barriers finite, and the
system can move smoothly between such regions.

Tunneling across the barriers is facilitated by making 0
large. On the other hand, we have found that the expec-
tation value of P, is a maximum, and statistical fluctua-
tions in measured quantities a minimum, for 6=0. In or-
der to maximize the performance of the algorithm we
carry out the simulation, in particular the acceptance (re-
jection) steps and the measurements, at 6=0. However,
we suggest new values of the x and p fields for the
Metropolis steps by integrating Hamilton’s equations for
Ft g with 65£0. It should be emphasized that in suggest-
ing changes in x and p one need only ensure that all re-
gions of phase space are accessible and that detailed bal-
ance is satisfied. The latter is achieved by using the leap
from method to perform the integration of Hamilton’s
equations.>® The parameter 6 is at our disposal. By in-
creasing it one tends to increase the tunneling rate be-
tween regions of different sign, while by decreasing it one
tends to increase the acceptance probability and thereby
move through configuration space more rapidly. In our
calculations we have found that 6=~0.2 gives both good

(4)= 9)
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TABLE 1. Average value of the sign of the spin-up deter-
minant (S, )7{0, and the product of the signs of the spin-up and

-down determinants, (S .S _ )7,0= (Py) #, as a function of the

inverse temperature B3, lattice size, and band filling (n ). In all
cases t =1 and U =4. The numbers in parentheses are statisti-
cal errors in the last digit shown. In the last four entries, the
chemical potential was set to u=—1.0. The resulting band
fillings, which varied slowly with temperature are shown. The
filling in the last entry is estimated, as the small value of
(S,:S_ >'”o made calculation of (7 ) or any other observable in-

feasible. Otherwise, when no errors are given, the result is ex-
act, or the error is in a decimal place not shown.

B Lattice (n) (S, )Wo (S,S_ )wo
2 4X4 1.00 1.00 1.00

4 4X4 1.00 0.94 1.00

4 8 X8 1.00 0.96(2) 1.00

6 2X2 1.00 0.85 1.00

6 4X4 1.00 0.69(5) 1.00

6 8X8 1.00 0.11(9) 1.00

8 4X4 1.00 0.36(5) 1.00
10 4X4 1.00 0.42(4) 1.00

4 4X4 0.85(1) 0.93(1) 0.90(2)
6 4X4 0.83(3) 0.56(2) 0.34(2)
6 6X6 0.82(7) 0.39(3) 0.19(4)
8 4X4 0.83 0.3(1) 0.07(6)

acceptance rates (typically about 50%) and rapid tunnel-
ing. In order to allow for large changes in %, we precede
each updating step which we have just discussed with a
heat bath updating of the p field. That is, we replace each
element of p with random numbers distributed as
exp(—pl)).

The Metropolis acceptance (rejection) step removes the
errors normally associated with integrating Hamilton’s
equations with a finite step size Az.° The only effect of a
large At is a reduced acceptance rate. We have found
that one can use quite large step sizes (Ar=0.3-0.7 in
the results presented) and still obtain satisfactory accep-
tance rates.

In Table I we present data for the average value of the
sign of an individual determinant, (S ), and the average
of the product of the signs of the two determinants,
(S45_)y,=(Pq)y, with U=4 and 1 <B=10 for both

pu=0 and p=—1. The tunneling rate is rapid enough to
provide excellent equilibrium of Py. When (S, S_ ), is

close to zero, even modest statistical errors in the
numerator and denominator of Eq. (9) give rise to large
errors in { A4 ). It is clear from the u= —1 results that at
sufficiently low temperatures, there will be values of the
chemical potential for which simulations will be difficult.
However, it is also clear that the present algorithm will
allow us to explore a very interesting region of tempera-
tures.

In Fig. 1 we show results for the antiferromagnetic
correlation function S (7, 7), as a function of temperature
for U =4 and u=0. In order to check our algorithm we
have diagonalized the Hamiltonian for the two-
dimensional Hubbard model on a 2 X2 lattice. The exact
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FIG. 1. Antiferromagnetic correlation function, S(, ), as a
function of temperature for the half-filled Hubbard model. The
dashed line is the result of an exact diagonalization of the Ham-
iltonian for the 2X2 lattice. The statistical error is smaller than
the plotting symbols where not shown.

results are shown by the dashed line in Fig. 1, and the
corresponding Monte Carlo data by open squares. On
the same figure we show results for 4X4 and 8 X8 lat-
tices. Figure 2 shows data for the d-wave superconduct-
ing susceptibility, #;, for U =4 and u=—1. We again
show both exact and Monte Carlo results for 2X2 lat-
tices, as well as Monte Carlo results for 4 X4, 6 X6, and
8 X 8 lattices. Note that in all cases 7, increases mono-
tonically as the temperature is lowered, indicating the
possibility of a phase transition to a superconducting
phase at sufficiently low temperature.
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FIG. 2. The d-wave pairing susceptibility 7;, as a function of
temperature. The chemical potential was set to u=—1.0,
which resulted in a band filling, {n ) that varied slowly with
temperature, with (n ) ~0.84 for the 4X4, 6 X6, and 8 X 8 sys-
tems. The dashed line is as in Fig. 1; all results for the 2 X2 sys-
tem have been rescaled by a factor of 0.2 to fit on the figure.
The 6 X6 and 8 X 8 points coincide for T'=0.5,1.0.
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Our results for 7; on the 4X4 lattice are larger than
those obtained by Hirsch and Lin® for $>4.0. They find
a dip in P, for this temperature range, while we find that
P, continues to rise. We have compared our results for
2, with those of Hirsch and Lin for a variety of tempera-
tures and lattice sizes. In all cases that we have checked,
we find agreement with their results obtained with the
older Monte Carlo algorithm.! Our only disagreement is
with the two lowest temperature points obtained with
their new “impurity algorithm.”®1°

These preliminary results shown that this algorithm
will allow us to simulate the two-dimensional Hubbard
model on significantly larger spatial and temporal lattices
than has previously been possible. The computer time
needed for the present algorithm grows roughly as
aN3+bN2L, where N is the number of spatial lattice
points, L is the number of time slices, and a and b are
constants. The first term arises from the computation of
the inverse and determinant of the 2N X2N fermion ma-
trices by Gaussian elimination, and the second term from
the multiplication of L sparse N X N matrices to form the
elements of M ,,.

We believe that the algorithm that we have just de-
scribed has great potential for the study of two-
dimensional models of interest in connection with high-
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temperature superconductivity. We are presently apply-
ing it to the two-dimensional Hubbard model, and
copper-oxygen lattices. In its present form the algorithm
does not appear to be applicable to three-dimensional sys-
tems, since the computer time grows so rapidly with the
spatial volume. However, by combining the complex
Hubbard-Stratanovitch transformation with the hybrid-
molecular dynamics approach? it may be possible to work
on large spatial lattices at low temperatures. The form of
the fermion matrix given in Eq. (6) may also extend the
range of applicability of the standard Monte Carlo ap-
proach.!3 We plan to investigate both of these possibili-
ties.
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