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Numerical study of spinodal decomposition for Langevin equations
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We study the time-dependent Ginzburg-Landau model for spinodal decomposition by numerical
solution of the associated Langevin equation. The evolution of the system after deep temperature
quenches to many different points in the ordered region of the phase diagram has been followed for
time scales that are estimated to be equivalent to at least 10 and up to more than 10' Monte Carlo
steps. Analysis of results obtained for block-correlation functions show that the system exhibits

scaling behavior and that the average domain size L(t) grows as L(t)-t' in the time region
covered by the calculations. We have also studied the quasistatic structure factor C (q, t). The re-

sults obtained for this quantity are consistent with those obtained for the block correlations, al-

though, in agreement with other authors, we find that results for C (q, t) alone are not conclusive.

I. INTRODUCTION

One path towards an understanding of growth-kinetics
phenomena in systems subjected to temperature quenches
to unstable regions of their phase diagram has been made
through the study of Langevin equations associated with
time-dependent Ginzburg-Landau (TDGL) models. ' Nu-
merical solution of these equations is now possible for
time and size scales quite competitive with those that can
be achieved with Monte Carlo (MC) simulations. This
has the advantage of being able to obtain results for sys-
tems with a continuous, rather than a discrete (e.g., Ising
or Potts) order parameter. It is expected that reversible
model-coupling nonlinearities will play an important role
in the growth kinetics of many systems and one can
reasonably expect to be able to treat such "hydrodynam-
ic" effects in simple models of nonequilibrium fiuids in
the near future. In this treatment we restrict ourselves to
strictly dissipative models.

We have recently shown that direct numerical solu-
tion of the Langevin equations for a TDGL model con-
taining a single, scalar variable with a nonconserved or-
der parameter (this is model A in the taxonomy of Halpe-
rin and Hohenberg ) quenched from a high to a low tem-
perature leads to a confirmation of the Lifshitz-Cahn-
Allen law for the growth of the average domain size I.
with time t[L(t)-t' ]. Similar results have been ob-
tained for the same model by the use of Monte Carlo
simulations. Basic questions of numerical methodology
and efficiency were also discussed in Ref. 2. In the
present work we wish to consider the more important
and considerably more complicated case where the order
parameter is a conserved quantity (model 8 in Ref. 3).
Although some preliminary results obtained by direct nu-
merical solution of the equations for this system exist in
the literature, these results are not sufficiently accurate
to give any information on questions such as the long-
time growth law. Results obtained for this model

through direct MC simulation are also ambiguous in this
respect.

In this paper we report results obtained by numerical
integration of the model 8 Langevin equation subjected
to a sudden, deep temperature quench. The results are of
sufficient quality to determine the growth law for the re-
gime investigated. The results for an "average" domain
size L (t), which extend to times which are quite consid-
erable when measured in a MC time scale, are determined
in two different ways. The first consists of studying a set
of block-correlation functions and analyzing their behav-
ior as a function of time and block size. In addition to its
theoretical advantages, we shall see that this method is
very efficient from a computational point of view. We
have also used the more conventional method of studying
the moments or maxima of the quasistatic-structure fac-
tor, C(q, t). Scaling behavior is established by using the
first method, which leads to the result L(t)-t'i. This
power law is confirmed by the second method.

The model considered here can also be treated analyti-
cally at very low temperatures. The methods developed
in this approach are very involved and will be reported in
a separate paper, but they lead also to a —,

' power at long
times.

The result of —,
' for the exponent does not agree with

the widely expected value of —,
' which one obtains through

the use of the Lifshitz-Slyozov' theory. Of course, in
any numerical calculation such as this one, it is not possi-
ble to completely rule out the possibility that the ob-
served behavior is only a persistent transient and that
there is a later crossover to the —,

' value (which is not very
different from —,'). Such a crossover has been reported"
for a different model in the soft-wall case. Within the
ranges studied here, we see no signs of such a crossover in
either the hard- or soft-wall case. In the analytic treat-
ment of Ref. 9, an exponent of —,

' could result, e.g., from
corrections to the —,

' result of higher order in the tempera-
ture. There is some evidence for a —„' exponent from simu-

38 11 650



38 NUMERICAL STUDY OF SPINODAL DECOMPOSITION FOR. . . 11 651

II. MODEL AND METHODS

A. Model

The model discussed here consists of a set of scalar
fields, f(R, t), which for computational purposes are
defined on the sites of a lattice. They can take values
from —~ to + 00. The equilibrium properties of the sys-
tem are given by a Ginzburg-Landau free energy. We
choose to parametrize this free energy as in Refs. 2 and
14, in which case it takes the form

+—,'(1+8)lt (R, t)), (2.1)

where E represents the overall strength of the coupling,
which we measure in units of temperature. The positive
parameter 0 measures the degree to which the static
properties of the system are "Ising-like" or "displacive. "
In general, setting the gradient coefficient inside the sum
in (2.1) equal to unity sets the unit of length.

The dynamics of this system, with a conserved order
parameter, is given by a Langevin equation

(2.2)

where I is a kinetic coefficient and our definition of the
discrete Laplacian is given below by (2.5). We will usual-
ly set I equal to one, which establishes our unit of time.
rt(R, t) is a Gaussian noise field which satisfies the rela-
tion

(il(R, t)i)(R', t') ) = 2I 7 5 5(t——t'), (2.3)

which is consistent with the conservation law for the or-
der parameter; i.e., the sum of g(R, t) over all space is a
conserved quantity.

The physical quantities of interest in the context of the
present work are various correlation functions. All of the
correlation functions considered here are simply related
to the basic two-point correlation function defined by

C(R, R', t)=(g(R, t)g(R', t)) . (2.4)

The angular brackets mean an average over the noise. In

lations of a Lennard-Jones system (see Ref. 12).
After this Introduction, this work is organized as fol-

lows: in Sec. II we discuss the model studied, its parame-
trization, and the methods of solution. Attention is paid
to the questions of time scales, units, and the influence of
initial conditions. In Sec. III results are presented for
both the block-correlation functions and for the structure
factor C(q, t). The former are analyzed to show that
there is scaling, and the growth laws are extracted from
both the scaling analysis and by direct examination of the
moments of C (q, t), but the analysis of the latter is shown
to be more difficult and less conclusive. The influence of
the initial conditions and the zero-temperature limit are
briefly discussed. The conclusions are recapitulated in
Sec. IV. A preliminary analysis of the results reported
here has been given in Ref. 13.

practice, this average is carried out by solving the system
of equations (2.2) as many times as necessary, with the
noise terms being independently generated each time.
One then averages over all the solutions found. Note that
averaging over the initial probability distribution is also
automatically carried out in the above procedure. We
refer to each individual solution as a run.

B. Methods

V'1((R, t) =g [g(R+5„t)—g(R, t)], (2.5)

where 5, is a set of vectors connecting a site to its nearest
neighbors.

The generation of the noise field satisfying the correla-
tion expression (2.3) was handled with the help of a
method discussed in Ref. 7. The method, which makes
use of the expression (2.5) for the Laplacian, involves the
generation of two (in two dimensions) independent
Gaussian fields, each with strength proportional to a 5
function in space and time, which are combined to satisfy
(2.5). This pair of fields was generated, as in Ref. 2, by
using a numerical inversion of the probability function.
The whole procedure was made into a single-vector loop.
This greatly enhanced the overall numerical efficiency of
the calculation.

The choice of initial conditions is not completely trivial
in this case. For the most part, and following most previ-
ous work, we have made the simplest choice and set
P(R, t =0)=0. Although this does not correspond to any
specific equilibrium point in the (K, 8) phase diagram, it
is very simple to use, and it does roughly represent some
kind of disordered, high-temperature state. We have
checked that the growth law is not unduly sensitive to the
initial conditions by performing, in a few cases, a number
of runs with random Ising initial conditions (~g(R, O)~

=1) corresponding to initial equilibrium at the point
E =0, 0= Oo in the phase diagram, and also with initial
values of the fields uniformly distributed in the interval
( —v 3, v 3). This corresponds to displacive, high-
temperature initial conditions with a cutoff. For
quenches to T =0, the case f(R, t =0)=0 is trivial since
one is led to the unstable solution f(R, t)=0, and one
must use other initial conditions.

A question of interest is the connection between the
time scale of the calculation discussed here (with I =1)
and other perhaps more familiar units of time used in

The general procedure we have used here to solve the
equations of the motion is the same as in Ref. 2. Here,
we will only recapitulate briefly and emphasize the small
differences imposed by the conservation law.

The numerical calculations were performed on a Cray
2 machine. In choosing algorithms and methods, a high
priority was given to achieving a maximum degree of vec-
toring. It turns out that numerically simple routines
which can be vectored are preferable to those more so-
phisticated but difficult to vector. The main integration
procedure chosen was a simple Euler method. Some of
the advantages of this procedure over other methods
were discussed in Ref. 2. For the Laplacians involved,
the standard symmetric expression was used,
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computational physics, such as Monte Carlo steps
(MCS's). Given the free-energy model (2.1} under con-
sideration here, one can perform Monte Carlo simula-
tions in the usual way: one considers a trial change in

one of the fields [g(R, t)] and then accepts or rejects this
change with a probability proportional to exp( —5F),
where 5F is the change induced in F by the trial change.
It was shown in Ref. 15 that the results obtained for this
model through the use of MC dynamics agree well with
those obtained from solving Lagevin equations provided
that the magnitude of the trial change in the fields is tak-
en to be sufficiently small. The question of the
equivalence of the time scales was then explored in Ref.
15. The set of values for the free-energy parameters con-
sidered turns out to correspond to E =7, 8=2. 5 in the
parametrization of Eq. (2.1). The computations out to
2200 MCS's were found to correspond to a "Langevin"
time, t =0.4. Thus, a Langevin unit of time corresponds
to 5500 MCS's at K =7, 8=2.5. For other values of K
and 8, one can form at least a fairly good idea of the
correspondence in the following way: it turns out from
our results that the time scale in which the system
evolves is determined as one changes K mainly by the
product ~=Kt, with the 8 dependence being less impor-
tant. This could, in fact, be surmised from the form of
the equations of the motion (2.2). Thus, one can roughly
say that 2200 MCS's corresponds to ~=2.8 and use this
as an estimate of the corresponding MC scale.

A more difficult question would be the comparison of
Langevin time scales for this model with MCS's for an Is-
ing model with Kawasaki dynamics. The difficulty here
is that although the static properties of the Ising model
correspond to the model discussed as 8~ Do, the dynam-
ics is quite different. One can only form a rough estimate
by comparing the degree of order reached by the system
at a certain time with corresponding Ising results. The
results estimated in this way vary according to which
quantity is chosen as the measure of order, but they are
quite consistent with the numbers quoted in the preced-
ing paragraph.

It should be emphasized that a large factor connects t
and t~c. An apparently small number in the Langevin
scale corresponds to a large number of MCS's. It is im-

portant not to be misled by this when considering the
time scales studied in this and similar work. A MCS is
actually a very small unit, comparable to the integration
step in a numerical method.

III. RESULTS

We consider here results obtained with the initial con-
ditions discussed above after quenches to the ordered re-
gion of the phase diagram. This region is given in Refs. 2
and 14. The only parameters that one needs to choose
are the values of K and 8 corresponding to the final state,
since the transport coefficient I merely establishes the
units of time, as discussed in Sec. II. One must study a
sufftcient number of (E,9} pairs to establish the ordered
regime of the equilibrium phase diagram. The extent to
which this can be done is limited by practical considera-
tions.

The Langevin equations (2.2) are solved numerically on
a square lattice (lattice structure is not expected to have
any significant effect on the long time properties) typical-
ly containing 32 X 32 sites. We have verified, by checking
larger and smaller sizes, that the results reported here are
independent of the size of the system studied, as ex-
plained below. We have found that one must average
over a substantial number of "runs" ( —100) in order to
obtain results of sufficiently good statistical quality for
the correlation functions, so that one can reliably extract
growth laws and static properties. It is therefore neces-
sary to devise efficient ways to collect and analyze the in-
formation obtained about the correlations in the system
as a function of time. For this reason we have performed
most of our data collection and analysis in terms of
block-correlation functions (the definition is given below).
As shown in Refs. 16 and 17, the analysis of block-
correlation functions offers a particularly efficient pro-
cedure to perform a scaling analysis of the results ob-
tained by some numerical procedure in growth kinetics
problems. An additional advantage in the present con-
text is that the collection of block correlations is vectored
easily. Therefore, we present in Sec. III A our numerical
results for the block correlations and their analysis.
However, we will subsequently give, in Sec. IIIB, a
briefer account of a less complete but more standard type
of analysis in terms of the structure factor C(q, t). The
tradition-minded reader may prefer to read these subsec-
tions in reverse order.

A. Block-correlation results

To define the block-correlation functions, we begin by
considering blocks of size M XM embedded in the system
of size XXX and M & N. We then define the block mag-
netization

ms'= g g(R t),1

M
(3.1)

and the block-correlation function

Rsr(t) = (m~ ) IS(t), (3.2)

(3.3)

where the meaning of the brackets has been specified
below (2.4). The factor of S(t), which appears as a nor-
malization factor, is the local-order parameter. Note that
S(t)—:1 for Ising variables. In the case of continuous
variables, S (t) is obviously not a constant for early times.
In the present problem we find that S(t) approaches its
saturation value very rapidly when 8)K or 8=/ and
does not infiuence the longer time results for R~(t).
However, when 8 &(K, which means that the wall or gra-
dient energy is dominant (thick-wall regime), the local-
order parameter takes a relatively long time in reaching
saturation. One then naturally wishes to separate the
growth of the correlation functions due to the increase in
domain size (which is the question of interest) from that
merely due to the increase in the average value of f
Normalizing by the factor given by (3.3) is a neat way of



38 NUMERICAL STUDY OF SPINQDAL DECOMPOSITION FOR . -- 11 653

achieving this separation.
From the definition (3.2) it follows that the R~(t) are

essentially moments of the two-point correlation function
(2.4), which is in turn the Fourier transform of C(q, t}. It
follows that the study of the block-correlation functions
over an extended range of block sites is mathematically
equivalent to a study of C(R—R', t) or C(q, t).

We now turn to the question of how to extract scaling
and growth law information from results for RM(t).
First, in the scaling regime (if there is one) it is possible to
write R in the form

120.0

80.0

00

RM(t) =f(L (t) /M ), (3.4a)

where L (t} is soine characteristic length and f a scaling
function. L (t) may contain E and 8 dependence. If one
can establish (3.4a) by an analysis of Rst(t), then one ob-
tains L (t) and f (x). We note that the form (3.4a) cannot
be expected to hold at very early times. It should also
break down for suSciently small values of M and also,
because of the conservation law, when M becomes com-
parable with the overall size N.

We have obtained results for more than 12 pairs of
values (E,8) with K ranging from 0.8 to 14 and 8 from
1.5 to 12. All of these points are well within the ordered
region of the phase diagram. ' ' The results have been
obtained for a system of size N =32 and for times 7.=Kt
ranging between 10 and 20. We emphasize once more
that these are not short times: they are the equivalent of
between about 10000—20000 MCS's per site. By per-
ferming additional runs at sizes N =20, 25 and (in some
cases) N =40, we have verified that the results obtained
arp independent of N in the time ranges discussed here.
Finite-size effects become apparent at the smaller values
of N when one continues the integration to somewhat
longer times. The first appearance of these effects in
Rst(t) has a characteristic signature discussed below. In
all cases we have averaged our results over at least 100
runs. For any given M, run, and time bin, all possible
bLcks of size M in the system are collected, which pro-
duces a considerable additional averaging. Some of our
raw data, chosen at random, are shown in Figs. 1 and 2.
The scatter of the points with respect to a smooth curve
is a measure of the quality of the data.

In all our data we find that starting at about v =1, and
up to the longest times considered, the quantity
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In Fig. 5 we exhibit this property for a wide range of E,8
and time values, covering a large portion of our results.
The M independence of F(M, t) can clearly be seen there.

The width of the M plateau increases with N. When
working with smaller values of N at larger values of v

(which is then computationally easier), one observes that
a signature or symptom of the first appearance of finite-
size effects is the appearance of a sinusoidal waviness in

120.0

FIG. 1. An example of the raw data for the quantity EM(t)
de6ned by (3.2). This quantity is plotted here for odd values of
M ranging from M =7 (squares, top plot) to M =17 (diamonds,
bottom plot) as a function of ~=Et. The values of the quench-
ing parameters are E =1.75, 0=2.5. The smoothness of the
plots (which correspond to 100 "run" averages) is an indication
of the statistical quality of the data.

F(M, t)=R~(t)M (3.4b)
80.0

is independent of M for 7 & M & 18 (this range is for
N =32). An example of this can be seen in Figs. 3 and 4
where the same data as in Figs. 1 and 2 are replotted after
multiplying the quantities plotted by M . It can be seen
that F(M, t) is within statistical error independent of M
for M )7, while for the (K, 8) pairs exhibited in these
figures, the M =7 values are still slightly different. Note
that the results for even M, which were also obtained, are
riot plotted for clarity, so that by seeing the individual
symbols, the reader can verify the lack of systematic M
dependence. This property of F(M, t) is also found for
the kinetic Ising model with spin exchange' and it can be
seen (Appendix A) to follow from the conservation law.
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FIG. 2. Same as Fig. 1, but with K =2.5, 8= 1.5.
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FIG. 5. The quantity F(M, r) defined in (3.4) (~=Kt) plotted
as a function of M for the following values (from top to bottom)
of (O, E,~): (2.5, 1.75, 14), (1.5, 2.5, 13.75), (2.5, 1.75, 10.5), (1.5,
2.5, 10.0), (2.5, 2.5, 7.5), (5.0, 1.75, 5.25), (12, 0.8, 3.4), (12, 1.6,
3.2), (12, 0.8, 1.2), and (12.0, 3.2, 0.6). Note the monotonicity in

r which shows the weak (K, 8) dependence of A(K, 8} [see
(3.8}].

FIG. 3. The data shown in Fig. 1 replotted after multiplica-
tion by M' (see text). Note that all data with M & 7 fall on the
same curve except for unsystematic statistical fluctuations. The
symbols correspond to the same M values as in Fig. 1.

f (x)=x

It is now convenient to introduce the quantity

(8 lnRst(t)/8 lnM },
(8 lnRM(t)/8 lnt )st

(3.5}

(3.6)

45.0 g

a
a
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FIG. 4. Same as Fig. 3, for the data shown in Fig. 2.

plots such as those in Fig. 5, which disappears (or, to be
precise, shifts to longer times) when N is increased. This
turns out to be quite useful as a warning signal.

Comparing Eqs. (3.4a) and (3.4b), we conclude that in
the scaling regime one has

(3.7b)

This analysis can be recast in a rnathernatically elegant
way in terms of a Callan-Symanzik partial differential
equation. ' '

We find from our data that for all pairs of parameter
values of (E,8) we studied, D is a constant in time for
r ~ 3 (in most cases, earlier). A representative sample of
the data is plotted in Fig. 6. Two different vertical scales
are used for clarity and emphasis. The average value of
D over all the data shown in this figure is D =4. 14+0.16.
This includes averaging over the different time bins in the
time range where D is time independent. We conclude,
therefore, that we have reached the scaling regime, that
L (t) varies with time according to a power law with ex-
ponent n =

—,'. In fact, we find that we can write our re-
sults in the form

RM (t)= [ A (K, 8)r"/M] (3.8)

with n =1/D, and where the amplitude A is a very slow-
ly varying function of the parameters K, O. ' This is why
the plots in Fig. 5 are in order of increasing g, even
though K and 0 differ.

Although the main results obtained are independent of
where we quench to in the phase diagram, some of the
details are different. In particular, when 0&(K, the
local-order parameter grows more slowly and the S(t}
normalization is important: without it the time region
over which D is a constant is much reduced, and it would
be diScult to reach definite conclusions. It can be seen
from Eq. (3.3) that omitting the S (t) normalization in the
time region where S(t) is still growing would obviously
make no difference where S(t} is constant but would de-
crease the value of D, which would then be somewhat

and we see from (3.3)—(3.5) that if D is independent of
time, then we are in the scaling regime and the charac-
teristic length L(t) varies with time according to a
power-law result:

(3.7a)



38 NUMERICAL STUDY OF SPINODAL DECOMPOSITION FOR. . . 11 655

time dependent, that is, it would increase the value of the
exponent n. The amount of this change depends on the
logarithmic derivative

0.7

d 1nS(t)
d 1nt

(3.9) 0.5

6.0
(a)

s ~1 t 8 ) )a ()a~ I Q ~
0 0
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FIG. 6. The quantity D defined by (3.6) as a function of ~ for
the following values of (O, K): open squares (2.5, 14); circles (5,
1.75); triangles (2.5, 2.5); plus signs (2.5, 1.75); multiplication tri-

angles (2.5, 3.5); and solid squares (1 ~ 5, 2.5). The two panels
differ only on the vertical scale, which has been expanded in the
second panel so that individual symbols can be distinguished.

which we have plotted in Fig. 7 for the contrasting pairs
of (E,O) values. The difference would be even more strik-
ing if ~ rather than t had been used for the horizontal
scale.

If one erroneously omits the S(t) normalization in the
definition of R~(t) and the subsequent computations, the
results for the regime K ))6 (thick walls) change, but not
in any other case. One then finds an appreciably long
transient where D &4 and, in fact, n =1!Dseems compa-
tible with —,. This is exactly the opposite of the result

found in a similar thick-wall regime in Ref. 11 for a
different model, and therefore not the reason for the
difference in the results.

All of the above results are obtained with zero initial

conditions. In addition we have studied two pairs of
(IC, 8) values [(0.8, 12) and (1.75, 2.5)] with the other two

types of boundary conditions discussed previously. The
results in each case are in agreement with those obtained
with standard initial conditions. However, the length of
the initial time transients (before the scaling regime is

03

0.1 — o
0 C}

Q.O 1.0 2.0 3.0 4.0

FIG. 7. The logarithmic derivative of the local order parame-
ter as defined in (3.9) and (3.3), as a function of time. The circles
correspond to K &&8 (K =10, —=1.5) and the squares to the
opposite limit (K =0.8, 0= 12).

B. The structure factor

We now turn to a more traditional type of analysis in
terms of the quasistatic structure factor, C(q, t), defined
as the Fourier transform of (2.4). We have obtained data
for C(q, t) for five pairs of (E,O) values with K ranging
from 0.8 to 6.4 and 0 from 2.5 to 12. The data extend to
time ranges comparable to those used for the block-
correlation functions. In addition, results for. E =10,
0=1.5 were obtained up to a time ~=180. This would
correspond, according to the estimates presented earlier,
to more than 140000 MCS's. The results obtained are
averages over 30 runs which, however, are at least as
costly in terms of computer time as 100 runs for the
block-correlation functions. The reason for this is that

reached) is increased. Furthermore, because one is now
in effect averaging over different initial conditions, as well
as noise, the statistical quality of the results suffers. We
conclude that If(R,O)=OI initial conditions are the
most useful.

Finally, we also attempted to study the case of
quenches to zero temperature, with both Ising and ran-
dom initial conditions. To do this one must set E =J/T
(where J is a coupling constant) and I =I"r, and mea-
sure the time in units of I". As was the case for a non-
conserved order parameter, the results are unsatisfactory.
We found that it is difficult to obtain RM(t) results
reasonably free of finite-size effects, and that there is no
extended region where L(t) varies according to a well-
defined power law. Apparently, the presence of the noise
term (which of course disappears at T =0) has a very
profound effect on the properties of the model. Note that
without the noise term one is simply averaging the solu-
tions of a very nonlinear system of partial differential
equations over a particular set of initial conditions, and
this averaging becomes less efBcient for longer times. It
is possible that use of an extremely large number of runs
would make the averaging over initial conditions
equivalent to the noise averaging.
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reflects statistical problems; we find that data for a partic-
ular (K, 8) yielding a better quality fit to (3.12) {as mea-
sured by the coefficient of determination r ) as compared
to data for other choices of (E,8), also yield a better
quality fit to the forms (3.13) and (3.14). This proves that
the r coefficient is measuring the quality of the data,
rather than the quality of the fit.

We therefore regard these direct power-law fits as
merely confirmatory, and agree with the authors of Ref. 8
in that it is not possible to obtain good exponent values
from this type of analysis alone.

In the scaling regime, C(q, t) can be written in the
form

C(q, r) =CM(r)F(q/qM(r)) . (3.15)

As opposed to the situation with the block correlations,
we have not been able to extract the scaling function
F(x) with sufficient accuracy to display it here. It ap-
pears that F(x) has appreciable dependence on the pa-
rameters K and i9.

We have also obtained results (for E =1.75, 8=2.5

only) with Ising and random boundary conditions. The
comments made in this context in Sec. III A still apply.
A similar situation holds concerning zero-temperature
data.

We have seen in this subsection then, that a direct
analysis of the structure factor is not practical or com-
petitive in terms of computer resources used with the
block-correlation analysis, although it is a useful check
on the results.

IV. CONCLUSIONS

We have studied here the Langevin equation model for
spinodal decomposition by direct numerical solution. We
have found that, for a given expenditure of computer
time, the block-correlation method is a much more
efficient way of extracting scaling behavior and growth
laws than the more standard analysis in terms of the
structure factor.

We have seen that over the time scales considered here
the system exhibits scaling behavior. The sealing func-
tion f (x} for the block-correlation functions [see (3.4b}]
is proportional to x for small x, as motivated in the Ap-
pendix for a system with a conserved order parameter.
Over this time scale, which must be considered at least as
moderately long, the domains grow in time with an ap-
parently time-independent exponent approximately equal
to —,. This behavior is in contrast with that of the kinetic
Ising model with spin exchange where, over a comparable
time range, the exponent n (or equivalently D) is strongly
time dependent, increasing with time as 1/L ( t) de-
creases. Such a dependence would appear as a decrease
in D as a function of time [see (3.4a) and (3.6)], which we
do not observe. It is obviously not possible to conclusive-
ly rule out a later change to a di6'erent value for the ex-
ponent, in which case the results reported here would
correspond to a very long-lasting transient, the reason for
which would have to be elucidated.

Since this work was submitted for publication there
have been several brute-force simulations for the same

problem as studied here. In each case the authors strong-
ly conclude that the growth law is t' . While it might
well turn out that the t' behavior is asymptotically
correct, and the t ' a transient, it is our opinion based
on an analysis of their data and conversations with these
authors, that the t' behavior has not yet been con-
clusively demonstrated. In any event, it appears that
there is some regime where di8'usion along an interface"
and the associated t ' behavior is present.
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APPENDIX: BEHAVIOR OF R~ FOR LARGE M
FOR A CONSERVED ORDER PARAMETER

Assuming one can work in the continuum limit, (3.2)
can be written as

—C(x—x', 0)],
where the integrals are over a square of side M. Elim-
inating C(x —x', t) in terms of its Fourier transform and
performing the x and x' integrations one obtains

d2q C(q r) 4 sin (q, M/2)sin (q~M/2)
RM(t)=

(2n. } S(r) M q„q~

Assuming that the dominant contribution to C(q, t) is
isotropic, we obtain

R (r) = J
' I(qM/2),

(2n. )~ M q S(t)

where

J«4d8 sin (xcos8}sin (xsin8)
cos 8sin 8

We are interested here in the case of a conserved order
parameter where C(q, t) has a dominant peak at a
nonzero value qM(t). We consider, then, the regime
qM(t)M =M/L (t) ))1, where we can take x large in the
integral above. In this limit the main contribution comes
from small 0 and

I(x) m.
lim

x —+oo X 2

Thus, to leading order in L (t)/M( « 1),

() 1 m J d q C(qr) J d2q

M 4 (2'�) q (2m )
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