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A theory of periodic multilayers consisting of two alternating ferromagnetic materials with

different transition temperatures is presented. The theory is based on an inhomogeneous
Ginzburg-Landau (GL) functional, where the GL coefficients are chosen to model the alternating
layers and interface interactions. The transition temperature of the composite material is derived

by use of the linear stability analysis of the inhomogeneous GL functional. The static magnetization
profiles for different temperatures are calculated analytically. It is shown that the magnetization

penetrating into the low-temperature ferromagnet falls off inversely with distance close to T& and

exponentially far above Tl, where Ti is the 1ower transition temperature. We also consider the
average magnetization of this multilayer system and its characteristic temperature dependence. The
spin dynamics are studied by use of a generalized Bloch equation. Different limiting cases as well as
the general situation with both dipolar and exchange interactions are considered. The magnon
dispersion relation is computed and by symmetry considerations, it is shown that the gaps vanish at
certain values of the wave vector k. The inelastic neutron scattering cross section is calculated.
With appropriate modifications the theory can be applied to other systems undergoing phase transi-

tions, such as ferroelectrics.

I. INTRODUCTION

Great technological progress has been achieved recent-
ly in growing magnetic superlattices, the parameters of
which (e.g., layer thickness and material composition)
can be controlled accurately. ' These magnetic multilay-
ers have potential applications in the construction of rni-

crowave devices and can act as frequency filters or delay
elements. Another application is neutron optics, where
the superlattices serve as monochromators, polarizers,
or mirrors, depending on material composition and layer
thickness.

Furthermore, there has always been great interest in
the study of such artificial structures, whose properties
can differ drastically from the bulk ones. A variety of
cases, depending upon the nature of the constituents,
have been studied: ferromagnetic-nonmagnetic layers, '

ferromagnet-antiferromagnet layers, ' and ferromagnet-
superconductor layers. A study of the excitations in fer-
romagnetic rnultilayers, based on the Heisenberg Hamil-
tonian, has been performed recently. ' " The ferromag-
netic resonance spectrum, taking into account only ex-
change interactions, has been also considered. '

Hence, there is a need for a complete theory of the
static and dynamical behavior in ferromagnetic superlat-
tices, when both dipolar and exchange interactions are
taken into account. In this work we present such a
theory based on a continuum approach. A brief account
of some aspects of this study has been reported recently. '

Our theory is based on a Ginzburg-Landau (GL) free-
energy functional and the advantage of this phenomeno-
logical description is that it is material independent and
can be applied equally well to the other multilayer struc-
tures undergoing a phase transition, e.g. , ferroelectrics.
However, to be specific, in most of the figures we use ma-

terial parameters of EuS and EuO, which are promising
candidates for such ferromagnetic superlattices. In the
study of static properties of superlattices the following
questions are of special interest: (i) what is the transition
temperature of this structure; (ii) what is the magnetiza-
tion profile; (iii) what is the temperature dependence of
the average magnetization, and of course, how all these
quantities depend on the material parameters of the bulk
constituents and superlattice geometry. In our model we
incorporate also interface effects, because the magnetic
properties of the layers near the interfaces may change as
a result of the structural and electronic mismatch of the
constituents. In order to characterize these effects we in-
troduce a phenomenological interface energy term into
the GL functional and examine its infiuence on the tran-
sition temperature.

A major portion of the work is devoted to the spin
wave excitations in these structures. The dynamical part
of our theory is based on the generalized stochastic Bloch
equation, which has been used successfully in the field of
critical dynamics. ' Because the dominant "superlattice
effect" on the magnon spectrum is the appearance of
"miniband structure, " it is particularly important to un-
derstand the following points: (i) what are the contribu-
tions of different interactions to the magnon spectrum; (ii)
what are Damon-Eshbach modes in multilayers, which
were studied previously only in single films (or in the sys-
tem of ferromagnetic films separated by a nonmagnetic
material); ' (iii) how the symmetry of the pure exchange
interaction influences the magnon spectrum and what
predictions about the gaps can be made in this limit; (iv)
what predictions about minibands and minigaps can be
made solely from the knowledge of the bulk magnon
dispersion relations of the layer constituents.

Because neutron scattering experiments are important
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techniques to probe the magnon spectrum, we also calcu-
late the inelastic neutron scattering cross section for our
multilayer system.

The outline of this paper is as follows. In Sec. II we
describe the model, the GL free-energy functional for in-
homogeneous media, and the GL coefficients. In this sec-
tion we also discuss the GL equation and the boundary
conditions obeyed by the static magnetization at the in-
terfaces between the layers. Section III contains the cal-
culation of the transition temperature of the layer system,
the magnetization profiles for difFerent temperatures, as
well as the temperature dependence of the total magneti-
zation. In Sec. IV we consider the dynamics of our sys-
tem. First we discuss the limiting cases of pure dipolar
and pure exchange interactions. In the dipolar case we
discuss the properties of the Damon-Eshbach modes.
The magnon spectrum for the pure exchange case con-
tains gaps, which vanish at certain values of the wave
vector k. We present symmetry considerations leading to
this phenomenon. After these two limiting cases, we turn
our attention to the general case, where both dipolar and
exchange interactions are included. We discuss again the
possibility of the vanishing of gaps and compare the re-
sults with pure dipolar and exchange cases. In Sec. V we
consider the inelastic neutron scattering cross section and
show how the vanishing of gaps in the magnon spectrum
leads to an increase in the cross section. In Sec. VI we
present a summary of the results. In Appendix A we dis-
cuss alternative formulations of the free-energy GL func-
tional of the layer system. Appendix B contains some re-
sults concerning the "5 model, " which can be applied for
ultrathin layers. The details of the numerical procedure
can be found in Appendix C.

II. THK MODEL

Now, we introduce the basic constituents of our model.
We consider a composite material made of two periodi-
cally arranged isotropic ferromagnetic layers. The
geometry is shown in Fig. 1. The layer planes define the
y-z plane and the thicknesses of the layers are denoted by
D

&
and D2. Our treatment will be based on the

Ginzburg-Landau theory, hence we start with a discus-
sion of the form of the GL free-energy functional of the
composite material.

A. Free-energy functional

The composite ferromagnetic material is characterized
by the local magnetization M(x). The probability distri-
bution for M(x) is given by exp( —F[M)/kT) up to nor-
malization, where the GL free-energy functional F[M] of
our inhomogeneous material has the form' '

F[M]= ,' f—d x a(x)M +2b(x)(M )

+c(x) g(VM, ) —MH —2MH

(2.1)

Here H and H are the external and demagnetization
fields. The order parameter M(x) and the GL coefficients
a(x), b(x), and c(x) are defined throughout the whole
sample and are continuous functions of x. Far from the
interfaces these parameters reach their bulk values, but
change rapidly in the transition region between layers. In
Fig. 2 we show the typical forms, which a(x) can have
for periodically arranged multilayer structures. The
forms of a(x) with drastic increase (decrease) near the in-
terfaces, account for the possibility of a reduced
(enhanced) tendency for order in these regions. The bulk
GL parameters of material 1 and 2 we denote by a, b,
and c, with a=1,2. As usual, the temperature depen-
dence is attributed to a ( T) only, namely
a, (T)=a' (T T, ), whe—re T, and T2 are the bulk Curie
temperatures of the two materials. Without loss of gen-
erality we assume T2 & T, . Because we consider isotropic
materials, the free energy (2.1) does not contain anisotro-
py terms. It would pose no principal difficulty to include
these terms or to allow for a more complicated tempera-
ture dependence of the GL parameters. However, the
main qualitatively important features result already from
the difference in the transition temperatures.

For long-wavelength properties the continuous a(x), as
represented in Fig. 2, can be replaced by the following
discontinuous form:

—D)—

~D

2

/

/

~/

D
2

FIG. 1. Geometry of the periodic layer structure.
Thicknesses of layers 1 and 2 are D, and D, .

FIG. 2. Possible shape of the continuously varying GL pa-
rameter a„„,(x). Dashed line corresponds to a, &0 and dash-
dotted line to a, & 0.
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a(x)= g g a 8 —,'D —x — n+ Da —1

n= —oo a=1,2

Di —
I
x n—D

I
(2.2a)

1

b(x)= g g b 8 ,'D ——x— n+ D
n = —(x) a= 1,2

(2.2b}

c(x)= c 8 ,'D —x —— n+
n= —oo a=1 2t

(2.2c)

In some multilayer structures made of isotropic fer-
romagnetic materials, the interface introduces a strong
anisotropic behavior. Such effects can be accounted for
by adding to the free-energy density, Eq. (2.1), an addi-
tional term of the form

+ g a, 5
n = —(x)

5/2
with a, = a„„,(x+D, /2)dx. Here D=D, +D2 is—6 /2
the lattice constant of the superlattice. 8(y) and 5(y) are
usual step and 5 functions, and b, is the width of the tran-
sition region. By a„„,(x) we denoted the continuous
a(x) as represented in Fig. 2. Later we will show that
this approximation is valid when the transition region
is narrow, namely b, «g, where g (T)=Q(c /Ia (T)I)
are the coherence lengths. This discontinuous form of
a(x) together with similar expressions for b(x) and c(x),

t

[a(x)+b(x)M() —(l, c(x)(},]Mp=Hp +H (2.4)

The demagnetization field Ho obeys the quasistatic
Maxwell's equations

rotHO =0

div(H() +4m.Mp) =0 .

(2.5a)

(2.Sb)

(Di /2)+c
=lim g ~ +b ~ Mo Mo ~ d~ (2.6)

The solution of Eqs. (2.4) and (2.5) describes the mag-
netization profile throughout the whole sample. The real
GL coefficients a(x), b(x), and c(x) are continuous, thus
Eq. (2.4) iinplies the continuity of Mp(x) and its deriva-
tives. If, on the other hand, for mathematical conveni-
ence the discontinuous idealizations Eqs. (2.2a) to (2.2c)
are used and the equations are solved within individual
layers, these elements have to be joined by boundary con-
ditions.

Because the GL parameters (2.2) depend only on x, Eq.
(2.4) is an ordinary second-order differential equation and
only the boundary conditions on Mp(x) and (}„Mp are
needed. In the following we put H =0 and assume
Hp =0 and Mp=Mp(x)e„which will be shown below for
the geometry of the interest. Because the most singular
term in the GL coefficients (2.2) is a 5 function, Mp(x)
has to be continuous. Furthermore, integrating Eq. (2.4)
from —e to e(s —tO) around the interface located at
x =D, /2, we get

(Di /2)+ c
»m [c(x)(}.Mp(x ) ] I

(D' ~2),@~0 1

f,„[M(x)]=I(.+ 5
n

Di —Ix nD I (n M—), (2.3)
Inserting Eqs. (2.2) and keeping in mind that Mp(x) is

continuous, Eq. (2.6) reduces to

where n is a unit vector normal to the interface.
To conclude the discussion of the free-energy function-

al of the multilayer structure, we want to point out that
there exists another slightly different approach to define
the free energy of the composite material. We refer the
reader to the Appendix A, where this approach is dis-
cussed.

B. Ginxburg-I andau equation and the boundary conditions

To obtain the gross features of our system we may lim-
it ourselves to the Gaussian approximation, which is va1-

id except in the immediate vicinity of the critical point.
This implies that the magnetization is given by the most
probable configuration, which is determined by
5F/5M=0. Using the free-energy functional (2.1), we
obtain

D)
c (} M()2 ci(} M()i =a M() (2.7)

Here (}„Mp2 ((}„Mpi ) denote the derivatives of the inag-
netization just right (left) of the interface. Equation (2.7)
together with the continuity of Mo, i.e., Mo& =M02, con-
stitute the boundary conditions following from Eq. (2.4)
for the discontinuous GL coefficients (2.2a) and (2.2b).

We are now in a position to discuss precisely the condi-
tion under which it is allowed to replace GL coefficients
which originally were smooth by their discontinuous
counterparts. Also, it is worth noting that at first sight,
the condition (2.7) contradicts the previously discussed
continuity of (}„Mp(x). To elucidate this point, let us
consider GL coefficients to be continuous, e.g. , a (x) to be
as shown in Fig. 2, and integrate Eq. (2.4) from
(Di —b )/2 to (Di + b, )/2. We obtain

D D) g D
c„„, 2

+ 8 Mo
2

+
2

—c„„, 2

D&
a„M

2 " 2
(DI +6)/2= I [a„„,(x)+b„„,(x)Mp2]M()(x)dx

(D
l
—5)/2

(2.8}

We will show later that Mp(x) changes on the scale of g . Hence, near the interface B„Mp Mp(D )2/) g/and
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Mp(x)=Mp(D, /2)[1+(Di/2+x)/g ] .

Substituting this into (2.8},we get

co t 2 2 x 0 2 2 co t
——aM

2 " ' 2 2

D) (DI +5)/2 D ) (D I +5)/2

1 1 0
(2.9)

The first term on the right-hand side is just
Mp(D, /2)a„with the definition of a, given in (2.2a). For
the smooth b„„,(x) and narrow transition region b„ the
second term is of order Mp(D, /2)b„„,(Di/2)b. Hence,
for narrow transition regions [b, /g ~0 and

Mph„„,(D, /2)6~0] the right-hand side of (2.9) reduces
to Mp(D, /2)a„and c„„,[(D, +b )/2] and

c„„,[(D, —6)/2] reduce to c2 and c, , correspondingly.
The comparison of (2.7) and (2.9) explains also the mean-
ing of B„Mp, and B„Mpi which in the case of continuous
GL parameters are just the derivatives at the "borders"
of the transition region. In this sense Eq. (2.7) should be
understood. We also see that the discontinuous approxi-
mation for GL parameters is valid when b, /g «1. We
will assume throughout this paper that this condition is
fulfilled and we will use the boundary condition (2.7).

Finally, the demagnetization field Hp satisfies the usual
electromagnetic boundary conditions, namely that the
component of H0 parallel to the surface and the com-
ponent of B=Hp +41TMp normal to it are continuous.

L = — c (x) +a(x),a
Bx Bx

(3.1a)

the orthonormal eigenfunctions of which are denoted by
Mi (x); i.e.,

LMi(x)=eiMi(x) .

If we expand M (x) in terms of Mi (x); i.e.,

Mp(x)= QBiMi(x),

(3.1b}

with coeScients Bi, the free-energy functional is given in
second order by

However, instead we will use an alternative method
and find T, directly from the stability limit of the free-
energy functional (2.1) against harmonic fiuctuations
around zero magnetization, Mp=O. ' The harmonic
fluctuations following from the free-energy functional
(2.1) are determined in the paramagnetic phase by the
linear operator

III. TRANSITION TEMPERATURE
AND MAGNETIZATION

F= ,' X ei. IBAD
I' -. (3.1c)

Now we suppose that the composite material has the
form of a slab with dimensions L,L, &&L„and set
H=O. To find the equilibrium magnetization Mp(x}, we
have to solve Eqs. (2.4) and (2.5). Keeping in mind that
M0 depends only on x, we note that Maxwell's equations
(2.5) are solved by Hp =(—4nMp„, 0,0). This solution
for Hp is correct in the limit L„/L, and L„/L ~0, and
it obviously satisfies the electromagnetic boundary condi-
tions on the interfaces. '

Therefore, the term —H0 M0 in the free energy
(2.1)—and the free energy itself —are minimal for Mp
parallel to the layers; e.g., Mp(x)=Mp(x)e, . The static
demagnetization field is zero in this geometry. This
justifies the assumptions Hp =0 and Mpllz made above in
the derivation of the boundary conditions.

A. Transition temperature

It is obvious that M0=0 for T & T2. In the tempera-
ture region T, (T & T, the system undergoes a second-
order phase transition at some temperature T„below
which the magnetization is nonzero. We could find T, by
solving Eq. (2.4) and investigating in what temperature
region its nonzero solution rninirnizes the free-energy
functional (2.1).

Di cosh(x /g, ) D,
for x &

Mi (x)= '
0 x —D/2

cos
2

D D2
for x ——

2 2

(3.2a)

This solution has to satisfy the boundary conditions (2.7)
and this gives the implicit equation for T,

If all si &0, then F & 0 and the minimum of F is reached
for M0=0. But if at least one c& (0, the uniform solu-

0
tion is unstable. Then one has to go beyond the harmon-
ic approximation. Immediately below the instability
point one finds for the minimum of the free-energy func-
tional, Mp(x}=Mi (x). Therefore, the transition tem-

0

perature T, is defined by the condition that the lowest ei-
genvalue c& is zero.

0

Noting that for T, & T & T2, az(T) &0 and a, (T) &0
we can easily solve Eq. (3.1b). The solution of this equa-
tion with e.& =0 is

0
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g)(T) 2g T,

g~(T ) g T,

D
tanh

k)(Tz)

2

Equation (3.2b) iE . is valid only for

—'is . (3.2b)

(3.2c)

60
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D2

2
c — 2 (3.3)

z cosh(x/g )D
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1
D
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0
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x D'2
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2 '2
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critical point. If we expand again

Mo(x)= QBqMq(x),

Solving Eq. (3.1b) with the boundary conditions (2.7),
we obtain M& (x)

0

where the functions Mz(x) are defined by Eqs. (3.1a) and
(3.1b), and substitute this expansion into Eq. (2.4}, we ob-
tain

gsqBqMq+b(x) g BqBq B),-MqMg Mg- =0.

Mq (x)= '

0

cos
x D—/2 D2

for x ——
2 2

D2 cosh(x /g, )
cos for /x/ &

2/2 cosh(D, /2g, )

(3.7}

(3.5)

Immediately below T„ the condition ~B& ~

))
~ Bz~z ~

is fulfilled, ' where ez is the lowest (negative) eigenvalue
0

of the operator L. Multiplying Eq. (3.5) with Mz(x), in-

tegrating over x, and keeping only the terms with
A, =A.'=I,"=k"'=A,o, we get

(T) '1/2

(3.6a}
J4

where g =(c I a —sz (T)~)' . The eigenvalue Ez (T)
0 0

is defined by Eq. (3.2b) with the following substitutions:
g ~g~ and a, =0.

If D„D2)&(,(T), then from Eq. (3.2b) follows that
s& (T)= az(T —T, ) and, hence, B& -(T,—T)'~ .

0 0
For the case (ii) the "one-mode" approximation used

above is not valid anymore. However, if we consider the
"thick-layer" case [D )&g (T)], an elementary approxi-
mate solution can be found: In this case, for T, (T(T,
the magnetization profile Mo(x) can be approximated as

where

M& xb xdx
(3.6b)

Di D2—x M~(x)+8Mo(x) =8
2

for D& /2 & x—& D& /2+ D, w—here

—x —— M2(x)
D

(3.8a)

M) (x ) =v'2M
~b

sinh

. +
D) /2+x

+tt sinh

1

D)/2 —x
+vi

(3.8b)

Mz(x) =Mzs tanh

Di
2

+q2 +tanh
2/2

D)
D + —x2 2

v'2g, +V» —l (3.8c)

Here M b =(~a
~
lb ) denotes the bulk magnetization in material a.

It is easy to check that this solution satisfies Eq. (2.4) with the maximal error of the order exp( D2/v'2(2), for-
)x D/2~ &Dz/2, —and of the order exp( —3D& /2g&), for ~x) &D, /2. In order to find the integration constants y, one
uses the boundary conditions (2.7). This gives implicit equations for y:

v2M~ . +
sinhg, D,

sinh +y&

D2
=M2q tanhy~+tanh — +y2 —1

292
(3.9a)

2M2bc
&

coshy,

sinh y,

D,
cosh +gi

M2qcq

DI
sinh +y)

1

cosh qadi

1

D2
cosh — +cp2v'2g,

(3.9b)
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(3.10)
2g,

Assuming that the GL coefficients for both materials
are of the same order of magnitude we readily see from
(3.9) that q -0(1).

For T & T„the magnetization Mo(x) still has the form
(3.8a), but with M, (x) modified

'
D1

2
+x

M, (x)=M, b coth +y,

D,
2+ coth

M tG)

qt(, (0j
25

500 q

I5

&500 —,o
5-
3-
I—

I

1000 g

(

TI 20 &0

M, (x)=Mone
b,

C1

' 1/2
1

M0X, o'2 (3.11a)

where nc( xk) is Jacobian elliptic function. The in-
tegration constant M0 is defined again by the boundary
condition. Using the realistic condition D& »gz(T~ ), we
can show that

The value of the constant g1 can be found again from
the boundary conditions.

(iii) In the immediate vicinity of T, the coherence
length g&( T) diverges and layer 1 cannot be considered to
be "thick." In this temperature region M, (x) has the
form

FIG. 5. Average magnetization M vs temperature for
D /gq(0) = 30 and D, /g, (0) as indicated on the graph.

limit is of interest, because if the layers of material 2 are
thin, there is a characteristic global temperature varia-
tion of the order parameter, which is more pronounced
the farther they are apart. This can be understood from
the fact that just below T„predominately, these layers
are ordered.

In the analytic presentation of the order parameter we
limit ourselves to two significant temperatures. (i) Just
below T, we find, integrating the expressions (3.7), that

2E 1

2

D1

' 1/2
C1

b1
(3.11b)

I

where E(1/v'2)=1. 854 and is the complete elliptic in-
tegral of the first kind.

It is worth noting that expressions (3.8) and (3.10) give
an exponential decay of the magnetization in layer 1 near
to the interface, while the expressions (3.11) predict a 1/x
behavior.

We have also compared the exact solutions, represent-
ed in Fig. 4 with the approximate solutions, as given by
expressions (3.8)—(3.11). The latter reproduce very well
the magnetization profiles in the corresponding tempera-
ture regions. The magnetization profiles could be probed
by neutron scattering and by local experiments.

C. Total magnetization

Now we turn to the total (average) magnetization

M(T)= f dx Mo(x)/D . (3.12a)
0

This is shown in Fig. 5 for various values of D2 and fixed
total lattice constant D. Of course, layers with
D =g' (0) are hardly realizable for magnets and bring us

to the border of validity of our theory. However, this
I

M(T)= g(T, —T) (3.12b)

For "thick" layers (D„Dz »g, )

1/2
4 a2 D2A=

~v'3 b~ D
(3.13a)

For "thin" layers of material 2 (Dz « g„gz and

D, »g, ), the amplitude is
1/2

A=2 3/2 1 1

D
(3.13b)

b,

The result (3.13a) is physically clear: While in the vicini-
ty of T, predominately the layers having the higher tran-
sition temperature are ordered, the magnetization in
these layers is inhomogeneous and decreases near the in-
terfaces. As a result, the total magnetization is reduced
in comparison with its bulk value. For "thin" layers the
amplitude A is very small, since the magnetization comes
from regions of order g, around these layers. Clearly the
power law (3.12b) is replaced by nonclassical critical be-
havior close to the transition.

The second characteristic quantity is the average mag-
netization at T, . Using expressions (3.8a) and (3.11),
after some algebra, we get

' 1/2

M( T, ) =M~b 1+&2
Dz (z c bz

ln
D D2 c2b1

b ) cp(D ) /gg)

2b~c, E 1

v'2

' 1/2

1+
c,b,

(3.14)
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The first term in (3.14) accounts for an almost homo-
geneously magnetized high-temperature layer, while the
logarithmic term results from the 1/x penetration of the
magnetization into the layers of material 1.

In this section we have considered mostly "thick" lay-
ers. Another interesting case is the situation of "ul-
trathin" layers, which is realized when the thickness of
the high-temperature layer is of the order of its coherence
length. In this case, one can use the so-called "5-model"
studied previously in the context of structural phase tran-
sitions. ' ' We refer the reader to Appendix B, where
the statics and dynamics of this mode1 are considered.

IV. DYNAMICS

A. General equations of motion

In this section we consider the spin dynamics in fer-
romagnetic multilayer structures. Our treatment will be
based on the generalized stochastic Bloch equation'

B,M(x, t)=yMXH, —B,.[I (x)B,H, ]

+ H, +sf( xt),1

T X
(4.1a)

with partial temporal and spatial derivatives 8, and 8„.
The effective field H,~= —5F/5M, where F[M] is the
free-energy functional defined in Sec. II, and y is the
gyromagnetic ratio. The second and the third term on

I

the right-hand side of Eq. (4.1a) are generalized diffusion
and relaxation terms with space-dependent coeScients
I (x) and r(x). The random force g(x, t) represents all
other degrees of freedom and its fluctuations are related
to the damping term in standard fashion'

(g, (x, t)g, (x', t') }=2k~T5(t t')— —V I (x')V1

7 x

X5(x—x')5,, (4.1b)

In this paper we consider only the spin wave spectrum in
the ordered low-temperature phase, T ((T„and there-
fore in this section we neglect the damping and stochastic
terms in Eq. (4.la}. In Sec. V, where we consider the in-
elastic neutron scattering, these terms will be taken into
account. Equation (4.1a) together with Maxwell's equa-
tions for the demagnetization field H

rotH =0,
div(H +4mM)=0, (4.2)

determine the spin dynamics in our system.
To analyze the harmonic motion transverse to the or-

der parameter Mo(x), we linearize Eqs. (4.1) and (4.2)
with respect to 5M(x, t)=M(x, t) —Mo(x, t). Taking into
account that Mo(x) points in the z direction and the stat-
ic demagnetization field is zero, and denoting the demag-
netization field produced by the spin wave as 5H (x, t ),
we find for 5M and 5H the equations of motion

5M„(x,t) M, V«(—x}V5M,}+5M,a„(c«)a„M,) M,5H-
5M (x, t ) M V(c(x)V5M„} 5M„B—„(c(x)B„M )+M 58„"

(4.3a)

(4.3b)

rot5H =0,
div(5H +4@5M)=0 .

(4.3c)

(4.3d)

mle
m„

gm —Moh

—gm +Moh„

(4.4a)

(4.4b)

Because of Maxwell's equation (4.3c) one can intro-
duce the magnetic scalar potential y (x, t ) defined-

by 5H (x, t ) = Vy (x, t ). Su—bstitution of the rela-
tions 5M(x, t)=m(x) expi(kiix —cot) and y (x, t)
=y(x) expi(kiix —cot), with kii=(0, k~, k, ), into Eqs. (4.3)
leads to the following system of equations for m(x, t) and
p(x):

throughout the sample. We will use, however, the
discontinuous approximation for c(x), as it has been dis-
cussed in Sec. II. Hence, one has to consider the bound-
ary conditions which should be imposed on m and h on
the interfaces. These conditions we will derive later.

Equations (4.4) cannot be solved analytically and it is
expedient to consider first some limiting cases, which ad-
mit analytical solutions.

(8 kii )p(x)=47Hik m +8 m )

Here the operator g is defined by

gf (x)=MD(x)[c(x)k
ii
f—8 (c (x)B„f )]

+fd (c(x)d„M },

(4.4c)

(4.5)

B. Pure dipolar case

First we neglect all exchange interactions and hence we
put c(x)=0 in (4.4). Then Eqs. (4.4a) and (4.4b) reduce
to

and h(x) = (B„y,ikzq—r, ik, g)
If c(x) as well as Mo(x) are continuous functions,

m(x), h(x), and their derivations are also continuous my

—h

=yMo(x)
X

(4.6a)

(4.6b)



11 626 D. SCH%'ENK, F. FISHMAN, AND F. SCHWABL

+kii ~ k, (a„M, ) q(x)=0. (4.7)

The magnetization profile Mo(x) in the low-

Substituting m from Eqs. (4.6) into Eq. (4.4c), one gets
the equation for the potential tp(x)

temperature region, T((T„ is defined by expressions
(3.8) and (3.10) and is shown in Fig. 4. The magnetiza-
tion Mo(x) assumes its bulk values M, and M2 inside the
layers and changes only in a narrow transition region (of
the order g ) near the interfaces. Integrating Eq. (4.7)
from D, /2 —6/2 to D, /2+ 6/2, with 5))g, we get

Di
~x 0' —8 p +—

2 2

—4my

N 2
k y

D,
Mo —M +—

2 ' 2 2

D,
(4.8)

where we assumed that y(x) is almost constant in the b, interval. For long wave modes (b, k~~ && 1), the last term in (4.8)
can be neglected. Because Mo(D~ /2+5 /2) =M2 and Mo(D, /2 —6/2)=M&, the same boundary condition arises if
one uses the approximated form for Mo(x)

Mo(x)= g gM 8 ,'D —x——n+ D
a n

(4.9)

and the usual electromagnetic boundary condition, namely the continuity of the normal component of b=h+4vrra on
the interfaces. The continuity of g follows from the continuity of the tangential component of h.

Now we turn out attention to the solution of Eq. (4.7), which has the Bloch form, namely

ik~Dg(x+D)=e ' y(x), (4.10)

with the Bloch vector k~. For lxl & D /2 it is given by

A cosh(k~~x)+B sinh(k~~x) for lxl &D]/2,
y(x)= A+ cosh[k~~(x D, /2)]+B—+ sinh[k~~~(x D&/2)] —for D~/2&x &D/2,

A cosh[ktl(x+D, /2)]+B si n[hkll( x+D, 2/)] for D/2&x & D,—/2 . —
(4.11)

Applying the Bloch condition (4.10) and the boundary condition (4.8) at the interfaces located at x =+D, /2, we ob-
tain a system of algebraic equations for the unknown coefficients A, B, A+, and B+. A nonzero solution of this system
exists only if the determinant vanishes. This defines the dispersion relation

22» 4mk~(M2 —M, ) sinh(kllD, sinh(k

2 kll cosh(k~~D ) —cos(k~D )
(4.12)

which is shown in Fig. 6.
The coefficients A, B, A+, and B+ then read

D kyD . kllD2 kllDi kiD
A = —sinh cos +2iPsinh sinh sin

2 2 2 2 2

kllD k~D kllD~ kllD, k~D
B = i cosh —sin +2P sinh cosh cos

2 2 2 2 2

(4.13)

I llD,
cosh

kllD,
+sinh

A

kllD1 . kll 1 . kll 1 kllD,
2P cosh + sinh +2P sinh ' + cosh

2 2

(4.14)
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becomes

0.06-

2 D, D2
ar =[4rr(M2 —M, }y]

k

k2+k2 (4.17}

0.04

0.02

kyo

displaying the characteristic anisotropic k dependence
for k~O. The spin waves propagating in the z-x plane
(k «k ~ +k, ) are linearly polarized along the y axis and
correspond to a uniform rotation of the static magnetiza-
tion in the layer plane. These are just the dipolar Gold-
stone modes of our multilayer system. On the other
hand, the modes propagating along the y axis
(k» »k~+k, ) are elliptically polarized and their spec-
trum saturates at co,

2= 2D)D2
co, = [4m(M2 —M) )y] (4.18)

FIG. 6. Magnon dispersion relation in the pure dipolar limit,
Eq. (4.12). Parameters given in the text, with T= 10 K,

0

DI =D2=20 A, and k, =0.

The modes considered here are Damon-Eshbach (DE)
modes, ' which have been studied previously in other
physical systems, e.g., semi-infinite and one-layer fer-
romagnets' and multilayers consisting of alternating fer-
romagnetic and paramagnetic layers.

where

cosh(klD ) —cos(k~D )

(4.15)

C. Pure exchange case

In the pure exchange case we neglect the dipolar in-
teraction. Then the equations of motion are given by
Eqs. (4.4a} and (4.4b} with h =0. It is convenient to intro-
duce m+(x)=m„+im~, which obeys

for lxl ~D/2.

(4.16)

Because of the dependence on sgn[k (Mz —M, )] in

Eqs. (4.13)—(4.16},the form of the modes depends on the
sign of ky This unidirectional behavior is well known
and shows up in light scattering experiments.

In Fig. 7 we show these modes for two particular direc-
tions of lt: k=(0, +2m/D, O). In the long-wavelength
limit (k~~D «1,k,D «1) the dispersion relation (4.12)

Re[q(x)]
/q

/

/

/

/

/

In the case of "thick" layers (klD »1), expressions
(4. 13)—(4. 15) can be simplified and tp(x) written as

Di
tp(x)= exp —kl x+sgn[k~(Mz —M, )]

Mo(x)c(x)a„m+ + =Mo(x)c(x)a„m+
I IX=

2

—M, (x)a„(c(x)a„m,)+m, a„(c(x)a„M,)

+k2lc(x)Mo(x)m+ =—m+ . (4.19)
y

This equation is similar to—but not identical with —a
Schrodinger equation for a particle with position-
dependent effective mass in a periodic potential.

The boundary conditions for m+ and its derivative on
the interfaces can be derived from the structure of Eq.
(4.19). It is easy to see that for co=k

l
=0 the solution of

Eq. (4.19) is m+(x)=Me(x). Hence m/Mo(x) is a con-
tinuous function across the interfaces, even if one uses
the discontinuous form (4.9) for Mo(x). This condition
holds also for the low-lying modes with wave lengths
larger than go. This can be proved by integrating Eq.
(4.19) twice around the interfaces, similarly as in the
derivation of condition (4.8). Integrating Eq. (4.19)
around the interface once, we obtain the boundary condi-
tion on the derivatives,

-D
2

~D
2

0 ~0
2

0
2

FIG. 7. Real part of the magnetic potential y(x}. Parame-
ters as in Fig. 6, but with k, =0 and lk~tl =lk~l =2rr/D. The
solid line corresponds to sgn(k~[M2 —M, ])&0; the dashed line
to sgn(k~[M2 —M, ])(0.

expressing the continuity of Mo(x)c(x)a„m+. This con-
dition implies the conservation of the spin current across
the boundary.

Having exposed the boundary conditions, we turn our
attention to the magnon spectrum. The solutions of Eq.
(4.19) have the usual Bloch form

m+(x)=e ' p(x},
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g(k~~ )m+ =—m+, (4.19a)

where ki is the Bloch wave number and p(x+D)=p(x).
This spectrum is shown in Fig. 8 and, as expected, has

gaps at wave numbers k~ which are multiples of ~/D. A
closer look at Fig. 8 reveals additional peculiarities of this
spectrum, namely (i) the gaps vanish at certain points, (ii)
for

k ~~
&0 the bands are narrow in the low-energy region

and wide in the high-energy one. The discussion below is
organized as follows. First, we explain the vanishing of
gaps and show that this is a generic property of the mag-
non spectrum in the pure exchange limit. Second, we in-

dicate how the dispersion relation is computed and
present some simple physical arguments explaining how
the bandwidths can be understood solely from the disper-
sion relations of the bulk constituents. Third, using the
analytical form of the dispersion relation we identify the
points in (k, co) space where the gaps vanish and for

k~~
=0 discuss the k~ dependence of the gaps.
The vanishing of gaps can be understood in the follow-

ing way. Because Eq. (4.19) is similar to a Schrodinger
equation, the last term on the left-hand side can be con-
sidered as a "potential energy" which depends on the pa-
rameter k~~. On the other hand, because k~~ appears in
Eq. (4.19) only in quadratic form, this equation is invari-
ant with respect to a C2 symmetry operation around the z
axis. From this symmetry it follows that at the band
edges the solutions have definite parity. One can also
show that for adjacent band edges these parities are
different. ' It is worth noting at this point, that in the
pure dipolar case the spin dynamics equation (4.4c) is not
invariant with respect to the symmetry operation dis-
cussed above and the solutions do not have definite pari-
ty.

It is well known that in diatomic molecules terms, the
wave functions of which have different parity, can
cross. Because Eq. (4.19) is not identical with the usual
Schrodinger equation, it is necessary to show how the ar-
guments leading to the term crossing in diatomic mole-
cules can be applied in the present situation. Equation
(4.19) can be written in the form

the operator g is Hermitian and its matrix elements have
the form

L/2 d~
(m+, ~gm+, &

= lim- m+;(x)gm+ (x) .
I.-~ L —L. iz Mo x

(4.19c)

Suppose we solved Eq. (4.19a) for soine value k
~~0

and ob-
tained a gap 5co=coi —

co2 between the upper and lower
frequencies co& and co2. The eigensolutions corresponding
to these frequencies are m+, (x) and m+z(x). For a
slight change of the parameter k~~ to the new value

k~~ =k)0+5k~~, the operator g(k~~ ) reads up to the first
order in 5k~~

g(k'„) =g(k i„)+5g (4.19d)

The solution of Eq. (4.19a) is represented in the form
m+(x)=c, m+, (x)+c2m+2(x), which after substitution
into Eq. (4.19a) and projection onto m+, and m+2 leads
to the usual secular equation. From this we obtain the
new band edges

n
N) 2 =

—,'(~i+ co2+56i i +5G22 )

+[—,'(co, —co2+56» —5622) +i56iz~ ]'

(4.19e)

where

(m, ~5g~m
G j ~ y2

with i,j= 1,2
((m+, m+, &(m+, ~m+, &)'"

(4.19f)

where the operator g contains the parameter k~~. If one
defines the scalar product of two functions m+, (x) and

m+2(x) by

L/2 dx
(m+; ~m+1 &

= lim —f m+;(x)m+1(x),
E ao L r. /—2 Mo x

(4.19b)

4,

Hence, a gap vanishes if both

6) i Ci)2+ 56 i i 56p2 0

and

56)q=0 .

(4.19g)

(4.19h)

FIG. 8. Magnon dispersion relation in the pure exchange
limit. Parameters given in Fig. 6. The points A„G, are defined
in the text. cosk D =1+2u(co,D/2)B„g(co, D/2)c /W, (4.20a)

As mentioned before, the eigensolutions for adjacent
band edges have opposite parity and therefore the matrix
element 56,z vanishes and the condition (4.19h) is always
satisfied. Condition (4.19g) can be satisfied for special
values of k

~~

and hence gaps can vanish.
Now we indicate how the dispersion relation and its

gaps are computed. Generalizing the usual treatment
to x-dependent stiffness c (x), we determine even and odd
one cell solutions g(co, x) and u(co, x) of Eq. (4.19). In
terms of these the dispersion relation follows from
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with the Wronskian 8'=c,g(co, O)B„u(co,O). Equation
(4.20a) can be written also in the form

cosk D = —1+2g(co,D/2)B, u(co, D/2)c /W . (4.20b)

One sees from Eqs. (4.20) that the zeros of u(co, D/2),
B„g(co,D/2), g(co, D/2), and B„u(co,D!2), viewed as
functions of co, define the band edges. The adjacent band

edges correspond to the zeros of u (co,D/2) and
B„g(co,D/2) or g(co, D/2) and B„u(co,D/2). Thus gaps
disappear if u(co, D/2) and B„g(co,D/2) or g(co, D/2)
and B„u(co,D/2) vanish simultaneously for the same
value of ~. To elucidate this phenomenon we consider
again "thick" layers and use the discontinuous form for
Mo(x) (4.9). Now the solution of Eq. (4.19) is elementary.
Using the boundary conditions discussed above, one finds

cos(p, x ) for 0 & x & D, /2,

g(~, x )™2P iD D)
' COS COS P2 X

1

Mcp, pD,2

s1n sin p 2 x
M2c2p2

Di
2

for D, /2&x &D/2,
(4.12a)

and

'
sin(p, x) for 0&x &D, /2

u(co, x )= Mi piDi
' sin cos p2 x

D,
2

Mic&p& piD2

+ cos sin p2 x-
M2c2p2 2

Di
2

for D, /2&x &D!2,
(4.21b)

p]D& =n~ and p2D2 =me (4.22a)

where p =[(~/c M y ) —k
i
]' . These expressions are

valid also for purely imaginary p with corresponding
change of cos(p x ) into cosh( ~p, Ix ), etc.

In order to understand the bandwidths let us first con-
sider the dispersion relations in the homogeneous materi-
als 1 and 2, namely co,=yc M (ki+ki ). These are
shown in Fig. 9 for a fixed value kI~ under the assump-
tion c2M2 & c

& M, . In the frequency region
yc1Mlk

II
(N & rc2M2k

II
the spin waves propagate freely

in layer 1, but penetrate only exponentially into layer 2.
This situation is similar to the tight-binding model of
electron theory. The spin waves in layers 1 with ex-
ponentially decaying tail into layers 2 play the role of the
atomic wave functions. The bandwidth depends on the
overlap of these "atomic" functions and goes as
exp( —~p2~Dz) in this frequency region. For "wide" lay-

ers 2, the bands are narrow and the gaps are wide and do
not vanish. It is worth mentioning that these "tight-
binding" gaps exist only for ki &0.

In the frequency region ~&yc2M2kII the spin waves

propagate freely in both layers and, as a result, the bands
are wide. In this frequency region gaps disappear at cer-
tain values of ~ and kII, as has been discussed above.

Now we can identify the points in (k, co) space where
the gaps vanish. Using expressions (4.21a) and (4.21b)
and the condition that u(co, D/2) and B„g(co,D/2) or
g(co, D/2) and B„u(co,D/2) should vanish simultaneous-

ly, we find that the gaps vanish whenever p& and p2 obey
either the condition

or

hu(msV)

Q. /

, 0.2-I
'f czM2ks

yc, M, k, ~c2

0
0 4 8 12 )6

ki D/ii

FIG. 9. Magnon dispersion relation in the exchange limit for
the multilayer structure (solid) compared with the homogeneous
dispersion relations (dashed). Parameters are as in Fig. 6, but

0
with D) =D2 =80 A and (kIID/m) =8.

Mc —Mc1 1 2 2
p, Di+p2D2=nn. and co=yki

& &, (422b)
M &c&

—M2c2

with positive integers n and m. In Fig. 8 at the points A,
to A „condition (4.22b), with n =1—5, is satisfied, while
at the points Gi and Gz condition (4.22a) holds, with
n =3,m = 1 and n =4, m = 1, respectively.

Using expressions (4.21a) and (4.21b) we can also calcu-
late the gap widths. It is easy to show that for kII =0 and
small Dz and k~ the gaps are proportional to ki, which is
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in accordance with the results of the hydrodynamical
theory.

To conclude this section, we want to point out that the
gap vanishing phenomenon is a generic property of Eq.
(4.19), which is not restricted to the "step form" for
Mo(x). It follows solely from the structure of Eq. (4.19)
and does not depend on the particular form of Mo(x). In
Appendix B we show that the gaps may vanish also in the
"6 model, " where the static magnetization Mo(x) is a
continuous function. We also refer the reader to Ref. 21,
where the gradual change of the magnetization in the
transition region between the layers is taken into account.

D. Exchange and dipolar interaction

Having considered the two limiting cases, we turn our
attention now to the general case, with both exchange

I

and dipolar interactions included. The spin wave dynam-
ics is described by Eqs. (4.4) and the boundary conditions
for m following therefrom require that m/Mo(x) and
Mo(x)c(x)B„m are continuous across the interfaces.
Equation (4.4c) can be solved analtyically with the re-

lt18, 29

y(x) =27r I dx'e

ik
X m~(x') —sgn(x' —x )m„(x')

II

(4.23)

Substituting (4.23) into Eqs. (4.4a) and (4.4b), we obtain
an integro-differential equation for m

—m=8(m) =CO

y

~A0 lg —I IIlx' —xl
m+2niklfMo(x) dx

00

isgn(x —x') sina

1

sin a
—i sgn(x —x') sina

m(x'), (4.24)

where sina=k~/k~~ and the operator g is defined in (4.5).
We will not discuss here the properties of the linear
operator 8, but refer the reader to the standard text-
books.

We solved Eq. (4.24) numerically for different direc-
tions of k~f with Mo(x) given by expression (4.9). In Ap-
pendix C the reader can find the details of the numerical
calculations.

For k=(kj, p, k~~ ) the dispersion relation (solid lines) is
shown in Fig. 10. For comparison, in the same figure we
have also drawn the dispersion relation for the pure ex-
change case (broken lines). We see that they are qualita-
tively similar and in particular there are also points
where the gaps vanish. This similarity is intuitively clear:
For these particular wave vectors k the Hamiltonian is
invariant with respect to the C2 symmetry operation

around the z axis as is the case in pure exchange limit.
Had we picked materials with higher transition tempera-
tures, the quantitative difference would have been even
smaller. Roughly speaking, the pure exchange theory ap-
plies for wave vectors such that the spin wave energy is
large compared to the demagnetization energy, i.e.,
c k ))4m.

For k=(k~, k), 0) the dispersion relation is shown in

Fig. 11 (solid lines). The comparison with the pure ex-
change case (dashed lines) shows that previously degen-
erate levels now split (point A). This level splitting can
be understood because the C2 symmetry is broken for
k ~0.

Another characteristic feature of the dispersion rela-
tions are the strong peaks at kj =2m n /D and the singular
directional dependence on k for k~0, in contrast to the

hv tmeV)
0.9q

0.6)

/
/ / J-09

f

I

f

0.6

~&(meVj

I-0.3
0)

4
kj D/m

2

4
0 v-

ky 0/II

0

FIG. 10. Spin wave frequency at the zone boundaries includ-
ing the demagnetization energy (solid) compared with the pure
exchange case (dashed) for the special wave vector section
(k~ 0 k ). DI =D~ =20 A.

FIG. 11. Spin wave frequencies as in Fig. 10, but now for the
wave vector section (k„k~,0). Level splitting is clearly seen in
point A.
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he (meV}

Qa-

part (co)4m'yMo) of this spectrum is studied, in the
derivation of the cross section it is suScient to consider
the pure exchange limit only. It is well known ' that the
dift'erential cross section for inelastic magnon scattering
of nonpolarized neutrons is given by

0.2 )

O' K

dndE a, P

where

X mz x, compx, co

Xe 'q'" "'dxdx' (5.1)

0
0 1 2

ki D/m
m (x, co)= fm (x, t)e' 'dt,

FIQ. 12. Magnon dispersion vs kiDlrr for k~Dim=0. 01,
k, =0, and D& =D2 =20 A. The pure dipolar limit is represent-

ed by the dashed, the pure exchange limit by the dash-dotted,
and the general case by the solid lines.

pure exchange spectrum. In Fig. 12 we show the magnon
dispersion relation in the particular direction
k=(k&, 0.01m /D, O), (a) for pure dipolar interaction
(dashed lines), (b) for pure exchange interaction (dash-
dotted lines) as well as (c) the general case (solid lines).
From comparison of the general case with the dipolar
dispersion relation we see that the peaks can be explained
as arising from the dipolar interactions.

In Appendix C the reader finds some details concern-
ing the computation of the dispersion relation.

V. INELASTIC NEUTRON SCATTERING
CROSS SECTION

The magnon dispersion relation calculated in this pa-
per can be probed by inelastic neutron scattering experi-
ments. Because in these experiments the "high" energy

A is constant, ~ and x' are the wave vectors of incident
and scattered neutrons, q=K K and q =q, lq.

The energies of the incident and scattered neutrons are
E and E' and co=E' —E. Because of the continuum ap-
proach used through this paper the magnetic form factor
and the Debye-Wailer factor do not appear in the expres-
sion (5.1). From the symmetry of our problem, it is obvi-
ous that

( m„(x, ro)m„(x, —co)) = ( m (x,co)m (x', —co)),

(5.2a)

( m„(x,co)m~(x', —ro) ) = —( m, (x,~)m„(x', —~) )

(5.2b)

In linear spin wave theory, which is considered in this pa-
per, the correlation functions (m (x,co)m, (x', —co))
= ( m, (x, co)m, (x', —co) ) =0, with a =x,y, z. Because
our system is translational invariant in the plane parallel
to the layers, the correlation functions can be written as

1
(m (x, )mp(x', —~))=, &m (x qll' mp x ' qll' m))e dqll '

(2n.L )'

with x=(x, xi') and q=(qi, qadi). Substituting (5.2) and (5.3) into (5.1) we obtain

2 I

, =~—(1+q,')f f (m, (x,q„,~)m„(x', —
q~~~~,

—co))e ' dxdx .
K

(5.3)

(5.4)

The classical fluctuation dissipation theorem' relates the
correlation function (m (x, qadi,

co)m~(x', —
qadi,

—~) )
the linear response function G„„(x,x', qIi, co)

2k~ T
ImG„„(x,x', qII, co) . (5.5)

The linear response functions G &(x,x',
qadi,

co) describe
the response of the magnetization m(x, qadi,

m) to a weak
external magnetic field h(x, qadi, co)

(m ( qxii, cu)) =f G &(x,x',
qadi,

ro)h&(x',
qadi,

co)dx',

(5.6)

where (5.7a)

(5.7b)

and can be calculated from the equation of motion (4.1a).
First we will neglect the diffusion term in Eq. (4.1),

whose influence on the final results will be discussed later.
Then is is easy to show that the response functions G &

obey the following matrix equation:

M~&(x)G& (x,x',
qadi,

co) =5~ 5(x —x'), a, P, v=x,y,
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m «(x, k)mn(x ~k)dx
~~

m (k)) = lim
L, L—n

il 632

l

yap

(5.7c)(„)=—Q „(x)= —2(x)+(yMp(x})

(S.15)

as defined previous» E . (4.5). lfThe operator g(x q~~

we define

6)6 ( x' q co)— yxG (x x qll'co) xx

(S.8)

E s. (5.7) that 6+ obey thethen it is e't '
easy to see from Eqs.

equations

. (s.12)For every given r(x) an pd M (x) one can solve Eq.
nd calculate the di eren tial cross sectionumerically and ca c"

(5 14}32
ing Eqs (54' (5 (5 11), and

~ fIn Fig l3 we disP ay e cross sec iontion as a function 0
p Here Tx is chosen to have a~ and qi or fix. qll

"step form"
1 %pi

l
+y j(x,q~~) 6+(X,X',

q~~, N)
Q+1

7a 2 ae —'D — — +
2n= —oo a=1,2

=5(x —x') . (5.9) (5.16)

Hence

(5.10)

Let us introduce
with k=(ki, k1),
equations:

+6+(X,X',
q~~,

—co ] .

x k) and m„(x,k)the functions m„(x,
which obey the following eigenva ue

(5.11)

—e„(k)+ 1— yg(x, kt, } m„(x,k =0,
yr(x}Mp(x)

(5.12a)

(
'

q co)=6+ (x,x, q~~,
i

)x'x '~ll'

(5.8) and (5.10) we obtainand from Eqs. . a

„„( '
q co)=—'[6+(x,x,q), coG„„&x,x, q

nd structure is clear y seen in thisThe spin-wave band s
e also lot the cross sesection as a func-

q
— /D We see that ther fixed q~=2~

enhanced at the point 2.
f 'h' v'lues 'f

h
s that this is one o

a in the spin wave spe
d tf b '"'1"t"n'"t

h f d d

II

ssibility to identi y y
'

nts the vanis ing oscattering experiments

o
' '

a e of the cross section and to un-h p
rease of the cross section aderstand the increase o

note first that or ~ x ~va
'

(4.19) d hs in wave equationp

e so
'

e and we obtain in
n with real E'n

~ ~

be solved perturbative y an
first-order perturbation theory t a

—s„'(k)+ 1+ y j(x'kl~l) m„(x,k =0,
y 7 (x )Mp(x }

(5.12b}

s (k„) s=(k„) iy—s(k),

where

(5.17a)

~ ~

and the boundary conditions

ik~D
m„(x +D k)=e ' m„(x,k),

m„(x +D k)=e ' m„(x,k) .

(5.13a)

(5.13b}

2 do
dOdE

(

I

I

t

and n=0, 1. . .first Brillouin zone andHere k~ lies in the rs r
nu mbers the energy bands.

ons we can wn e't the response func-Using these functions
tion 6+ in the following form:

G „(x,x', ki, co)= limxx

m „(x',k)m„(x, k)

k —co] ( m„(k) ~
m„(k ) )k, , n En k ~ mn

~& Angry) O. g

where the scalar product isis defined as

(5.14)
terin cross section (times the square~ ~

o ef the energy transfer co in ar
'

fer along the stap e axi . ~1 xis. .The relaxationd momentum trans q,
hosen ~ =10/{yM ), a=, , atimes ~ arec o
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2
2 d G

dAdE —e„(k)+ 1 — yg(x, k~~ )
y~M0

+i[3„I(x)B„—q f I (x)] g(x, k„) m„(x,k) =0 .
0

(5.21)

(5.20)
The last term in this equation contributes to the imagi-
nary part of E„(k) and we get

e„(k)=e„(k)—i[y „(k)+y „(k)] .

o.22

h& [meV]

18
In the first order of perturbation theory

e„(k) 1 n mo(x, k)y„(k)= —J I (x) k2((

m„(x,k)+ 8„
0

FIG. 14. Neutron scattering cross section (times the square
of energy transfer co) in arbitrary units as a function of co and

mentum transfer qII within the layer planes with q, =2m/D.mome
The gap vanishing effect is seen in point A2 (compare w&t &g.

8).

D/2"(k)=e„(k) dx .—»2 M (x)r(x)
(5.17b)

m„(x,k)=e ' gp„(v, k)e' "~, v=O, +1,+2, . . . ,

The eigenfunctions m„(x,k) are assumed to be normal-
ized to unity according to definition (4.19b).

If we expand m„(x,k) in the form

(5.22)
2For k~O we know that mo(x, k)-MO(x) and Eo(k)-k .

Hence we see from (5.22) that for k~O y o(k)-0(k )

and in this limit the result (5.19) is valid. The range of
wave vectors for which k or k behavior can be ob-
served, depends on the material parameters such as the
diffusion constant I and the relaxation time ~. In the
Heisenberg ferromagnets, a good example of'which are
EuO and EuS, the relaxation time r is very large and
hence the linewidth is proportional k . That we keep4 20

only the relaxation term is motivated mainly by computa-
tional convenience and is sufficient to exhibit the peak
structure of the neutron scattering cross section in Fig.
14.

(5.18)

then, after some algebra, we obtain for frequencies co

close to s„(k)
2 I= A' —(1+q )

dQ dE'

(p„(no, k) ('e„(k)y "„(k)

~2 Eo(k)2)2+(2eo(k)y R(k))2

(5.19)

where all constants have been subsumed in
Here k=(kz, q~~), k~=qzmod(2m/D), and no
=D(q —k )/2n. . From the expression (5.19) it is easy to
see how the vanishing of gaps influences the cross section.
If we are far from the point in (q, co) space, where the gap
in the spin wave spectrum vanishes, then for y' "„~0only
one term in expression (5.19) effectively contributes to the
cross section. However, at the points where the gap van-
ishes, two terms, coming from two adjacent bands, have
the same order of magnitude and both contribute to the
cross section. This leads to the increase seen in Fig.Fi . 14.

At this point we want to discuss the influence of the
diffusion term, which has been neglected so far. If we
keep the diffusion term in the spin dynamic equation
(4.1), we obtain the following equation for m„(x,k):

VI. SUMMARY AND DISCUSSION

The results of the preceding sections describe the stat-
ics and dynamics in ferromagnetic superlattices. The
theory is based on an inhomogeneous Ginzburg-Landau
(GL) free-energy functional with position-dependent GL
coefficients. The form of these coefficients models period-
ically alternating layers with different transition tempera-
tures T and T and can incorporate different interface1 2

interactions.
The transition temperature T, of a ferromagnetic su-

perlattice depends on the layer thicknesses D& and D2 as
well as on the strength of the interface interactions. If
these interactions depress the magnetization in the inter-
face region, the transition temperature always lies below
T2. The transition temperature almost coincides with T2
for thick high-temperature layers (D2/$2(0)))1), but
substantially deviates from it for thin layers whose
thicknesses are of order of several coherence lengths
[D2 =$2(0)]. On the other hand, if the interface interac-
tions support the ferromagnetic order at higher tempera-
tures than T2, the phase transition in the superlattice can
appear at T & T . The temperature shift depends on thec 2

~ ~ 0

Istrength of interface interactions and its experimenta
verification can give important information about inter-
face properties. Because the derivation of the equation
for T, is material independent, this equation is also appl-



11 634 D. SCHWENK, F. FISHMAN, AND F. SCHWABL 38

icable to other systems undergoing phase transitions as
ferroelectrics, etc.

The magnetization profile can be found from the GL
equation and is generally given by a combination of ellip-
tic functions. In some physically relevant cases elementa-

ry analytical expressions can be obtained, namely (l) in
the vicinity of the transition temperature T„where the
magnetization profile can be found by means of "one-
mode" approximation and where the mean field result for
the temperature dependence of the spontaneous magneti-
zation has been recovered; (2) the temperature region

T, «T & T„where the magnetization has its bulk value

deep inside of the high temperature layer, but decays ex-
ponentially near the interface, penetrating into the lower
temperature one; (3) the temperature region T«T, ,
where the magnetization reaches its bulk values in every
layer far from the interface and changes rapidly in the
transition region (of order of bulk coherence lengths) near
to it; (4) the immediate vicinity of T, , where the bulk

coherence length g, diverges and the low-temperature
layer is effectively "thin" (D, « g, ). In this temperature
region the magnetization penetration into the low tem-
perature layer is described by a I /x law. These different
magnetization profiles could be probed by means of local
experiments.

The temperature dependence of the average magnetiza-
tion in superlattices has a characteristic form depending
on the thicknesses of layers. The thinner the high-
temperature layers and the farther apart, the more pro-
nounced is the temperature variation of the average mag-
netization. This temperature dependence also can be in-

vestigated experimentally and used for a verification of
our theory.

The spin dynamics are based on the generalized Bloch
equation. Two different interactions contribute to the
effective field H, ff, appearing therein: (i) The long-range
dipolar interaction which is dominant in the low energy
region of the magnon spectrum; (ii) the short-range ex-
change interaction which is important in the high energy
part of the spectrum. In the pure dipolar limit we
recovered the Damon-Eshbach modes, which have been
studied previously only in single films or in superlattices
consisting of alternating ferromagnetic and nonmagnetic
materials. These modes are localized at the interfaces be-
tween the layers and their spectrum is strongly anisotrop-
ic for k~0. This low energy part of the spectrum can be
studied in light scattering experiments.

In the pure exchange limit the spin dynamics equation
for a circular component m+ reduces to an equation
similar to the Schrodinger equation in a periodic poten-
tial with position dependent mass. The spectrum has the
expected band structure, but the gaps disappear for cer-
tain values of wave vectors. This vanishing of gaps fol-
lows from the structure of the equation of motion, where
the component of magnon wave number parallel to the
layers k~~ appears as a parameter which "tunes" the po-
tential energy. In this sense this effect is similar to the
term crossing in diatomic molecules. In two cases we
also calculated the points in (k, co) space where gaps van-
ish, namely (i) when Mo(x) can be approximated by a
step function. This approximation is relevant for thick

layers in the low temperature region; (ii) for the "5 mod-
el," which describes the case of thin high-temperature
layers submerged into low-temperature material.

If k
~~

&0, two kinds of energy bands in the magnon
spectrum are clearly seen: narrow bands in the low-

energy region and wide bands in the high energy one.
This band structure can be understood solely from the
knowledge of the bulk magnon dispersion relations of the
layer constituents as follows. The "potential energy" in
the equation describing propagation of magnons is ap-
proximately k ~~Ms(x). Hence, the low-energy magnons
can freely propagate only in the layers with lower magne-
tization. The spectrum of these magnons can be calculat-
ed in some kind of tight-binding model, well known from
the electron theory. This leads to the narrow band struc-
ture. On the other hand, the magnons with higher ener-
gies can freely propagate in both layers. This accounts
for the wide bands.

The spectrum in the general case, where both dipolar
and exchange interactions are included, has been studied
numerically. The comparison of this spectrum with the
dispersion relations in the two limiting cases of pure di-
polar and pure exchange interactions shows the follow-
ing: (i) if the parallel component of k is along the static
magnetization Mo(x), the spectrum is qualitatively simi-
lar to the pure exchange case; (ii) for arbitrary directions
of k, in general, the previously degenerate levels split.

The calculated inelastic neutron scattering cross sec-
tion shows that the vanishing of gaps leads to peaks in
the intensity of scattered neutrons at special wave vectors
and energies. We think that from an experimental point
of view two predictions of our theory are of special in-
terest: the above-mentioned increase of the cross section
for k and co in the vicinity of their gap-vanishing values,
and the appearance of narrow magnon bands, because in
this (k, co) region the cross section shows clear band
structure.

To conclude, we want to mention some further points
of interest, which can be studied within the framework of
our theory: the influence of different interface interac-
tions on the statics and dynamics in such systems; critical
phenomena, e.g., the crossover from layer dominated to
three-dimensional critical behavior; the extension of our
theory to other systems, such as antiferromagnets or
structural phase transitions; the study of random or
quasiperiodic multilayers.
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APPENDIX A: SEPARATE LAYERS CONNECTED
BY BOUNDARY CONDITIONS

In our description the Ginzburg-Landau parameters
and the order parameter are defined throughout the
whole sample. Boundary conditions between the magne-
tization of these layers result only if for mathematical
convenience discontinuous GL parameters are used in
model calculations. An alternative approach is to consid-
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Here F is the free energy of ith layer of the usual form

aM, aM,F [M;(x))=—,
' f d x a;M;+ —,'b;(M ) +c;

l Bxk xp

—H; M; —2HM; (A2)

where a, , b, , and c, are GL parameters and H, is the
demagnetization field in ith layer. The GL coefficients
are assumed to be constant or very smooth functions of
xeV; in every layer.

The interface energy between layers i and i+1 is de-
scribed by F,' and has the form

F,'( M, , M, +, }=f ds, f'( M, ,M, +, } . (A3)

The form of the surface free-energy density depends on
the interactions on the interface and in general can be
written as

f'(M;, M;+, }=A, M~M +K, (nM&)(nM ), (A4)

with l, m =i,i +1 and n the normal to the interface. The
first term describes the exchange and the second the an-
isotropic interactions at the interface. The form of the
tensors A& and K& can be deduced either from micro-
scopic calculations or from comparison of the experimen-
tal results with the predictions of theoretical models with
different forms of these tensors.

Minimizing (Al) with respect to M;(x) one obtains
from the first term the GL equations

SF,'

5M;(x)
(A5)

which together with Maxwell's equations for H; defines
the "equations of motion" in ith layer. The minimization
of the second term together with the electromagnetic
boundary conditions provides the boundary conditions
for this system of equations. It is worth noting that no
assumptions about the continuity of M(x) (or its deriva-
tives) at the interfaces are made. The order parameter
can be continuous or discontinuous at the interfaces, de-
pending on the form off'(M;, M;+ &

). -

APPENDIX B: ULTRATHIN LAYERS

er the magnetization density M;(x) in each layer i and to
decompose the total free energy into a sum of individual
independent layer terms F (M; ) and interface terms F,',

F= g F [M;]+ QF [M;,M;+, ] .

(B2)

Hence the magnetization Mo(x) is continuous. Integrat-
ing Eq. (B2) around x = (n + ,' }D, w—e obtain the condition
on 5„Mo

c(B„Mo[(n +,')D+]——B„M o[(n +,')D ]—)

=uoMo[(n + ,' )D ]—(B3)

Here B„Mo[(n+ ,')D+] —and B„Mo[(n+ ,')D ]—denote
the derivatives of Mo just right and left to the "defect" lo-
calized at x =(n + ,' )D. —

The transition temperature in this model can be ob-
tained from expression (3.2), where the following substi-
tutions have to be made: D& =D, D2=0, c& =c, and
a, =uo/2. Then we get for the transition temperature T,
the following implicit equation:

D
2((T, )

Vo

2
(B4)

where g=&c/~a(T)~ and Vo=uo(c~a(T)~)
If the "defects" are far apart, i.e., D ))g(T, ), then Eq.

(B4) can be solved readily and

u
T, =T,'+ 4a'c (B5)

This result has been previously obtained by Schmidt
and Schwabl, ' and we refer the reader to this reference
for an extensive discussion of order parameter profiles in
the "5 model. "

Now we consider the spin dynamics in this model,
defined by Eq. (4.19). Again we will be interested in the
temperature region T «T, and consider only the low-

lying spin wave modes with small wave vectors k ((g
In this temperature region the magnetization profile is

shown in Fig. 15. It is worth noting that the static mag-
netization Mo(x) is strongly inhomogeneous and cannot
be approximated by a step function, as has been done in
Sec. IV.

To proceed further we introduce a new function

coefficients b and c are usually taken to be constant. In
our context this model represents very thin layers of ma-
terial 2 with a very high transition temperature sub-
merged into material l.

Substituting (Bl) into Eq. (2.4), with H=H =0, one
gets

a ( T)+ u o g 5[(n + ,' )D ——x]+b Mo c6—Mo(x ) =0 .

We consider here the so-called "5 model" used previ-
ously in the study of structural phase transitions with de-
fects. ' In this model one uses the GL functional (2.1)
with GL coefficient a(x) of the form

f(x)=m+ (x )/Mo(x),

which obeys the equation

a(x)=a(T)+uo +5[x (n + —,')D], —(Bl) B„[M B„f( )]+ k M ( ) ——M ( ) f( )=0.

where uo describes the strength of "defects. " One also
assumes that a(T)=a'(T T, ), where T, is —the bare
transition temperature of the medium. The GL

(B6)

Equation (B6) also implies that f (x) and B„f(x) are
continuous. Because of the symmetry of the "Hamiltoni-
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an, " the two linear independent one-cell solutions of Eq.
(86) can be chosen to be real functions with definite pari-
ty. Hence, we look for f (x) in the form

li m, Mp
1.0-

MP(xi

f(x)=b(x)e' '"', (87a)

M b(x)r}„S(x)+2r}„S(x)d„(Mb(x))=0 .

The first integral of this equation reads

(87b)

where the real functions b (x) and S (x) are even and odd,
respectively. The real (imaginary) part of f (x) defines
the one-cell solutions u(co, x ) (g(0i, x )) considered in Sec.
IV.

Substituting expression (87a) into Eq. (86) and separat-
ing real and imaginary parts in this equation, we see that
S(x) obeys the equation

-1.0- ra (X1)

FIG. 15. The magnetization Mp(x) and the real part of the
magnon wave function rn(x) = Rem+(x) for ultrathin layers at
low temperatures: g, If,= 10, D /g, = 30, k

~~

=0.32/g, ;
k~ =3m/D.

a„S(x)=
cM0(x)b (x)

(87c) of order g around the "defects. " Substituting into (89)
the approximate form for M0(x)

where A is a constant of integration. Of course, the
dispersion relation and all other physical quantities are
independent of the choice of this constant. Substituting
Eq. (87c) into the real part of Eq. (86}, we obtain the
equation for b (x)

A
cB„(M02(x)r}„b(x))=

cM0(x)b (x)

+ k2lcM'0(x) ——M, (x) b(x) .

Mos for x &(D/2 —g),
M0(x) for D/2 g&x &—D/2,

D
a

2

2A +k2 CO

M ob peMob4

D2
+0(k g )

2

and integrating this expression, one sees that

(810)

(811)

(87d)

In order to solve this nonlinear equation it is worth not-
ing that for co=kl =0 the solution of Eq. (86) is trivial,
namely f(x)=const. Hence, for small co and kl, it is
plausible to look for b (x) in the form

b(x) =1+a(x), (87e)

Aci} (M (x)i} a(x))= +k cM (x)——M (x),x 0 x M2( )
(~

0 0

where a(x) «1. Now, Eqs. (87c) and (87d) can be
solved perturbatively with respect to a (x). Keeping only
the leading terms in these equations, we obtain

We now use the freedom in the choice of the constant
of integration A. To justify the previously made assump-
tion a &(1, we choose

=cM ——eM k2 2
ob ob (812)

Then the expression in the brackets of Eq. (811) vanishes
and a (x) is of order (k g ) « 1, no matter how large the
period D is. Now integrating Eq. (88b), we can find
S(x).

Having defined a (x) and S(x), we can now calculate
the band structure as well as the gap vanishing conditions
in this model. The odd and even one-cell solutions
u (ro, x ) and g(ru, x ) of Eq. (86) (see also Sec. IV) are

S'(x) = A

cM0(x }

Integrating Eq. (88a), we obtain

(88a)

(88b)
u(ro, x ) =(1+a(x)}sin[S(x)] for x & D

2

g(0i, x ) =(1+a(x))cos[S(x)] for x & D
2

(813)

x d~ x'
a(x) = dx"

o cM,'(x')
A +k cM02(x")

M2( )

——M0(x")
y

(89)

Substituting a (x) and S(x}defined by (88) and (812) into
the conditions for a vanishing gap, namely that
u (r0, d/2) =r}„g(ro,D/2) =0 or g(ro, D/2) =d„u (r0, D/2)
=0, we obtain that the gaps vanish for the fo11owing
values of k~~

..

In order to estimate the value of a(D/2), we consider
now the realistic case D »g. Then, as can be seen from
Fig. 15, the magnetization M0(x) reaches its bulk value
Mob foi' x « ( D /2 g}, but changes —rapidly in a region

1/2

(k )„=
(D —b) B, —B~

Here n is a positive integer and 6, B,, and B2 are

(814)
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2

1—II ~
0
2

D/2 MOb

M,'(x) (815a)

Mo(x)8—f1 —D/2 Mob
2

Mo(x)
82=

Mob

4
MOb

1 — dx,
Mt(x)

3
Mob

1
3

dx
Mo(x)

(815b)

(815c)

ycMobB, +n
CO~

=
(B(—Bg)(D —&)'

(816)

The frequencies co„where the gaps vanish can be also cal-
culated

and a new effective thickness D
&

=D —h.
In Fig. 15 we also plot the real part of the magnon

wave function m(x) =Rem+(x). It is seen that the wave
function is enhanced in proportion to the magnetization.

APPENDIX C: COMPUTATION
OF THE DISPERSION RELATION

The system of Eqs. (4.4), considered as a system of
first-order differential equations for m„, m~, y(x), and
their derivatives, has six independent solutions, which we
denote by VJ(x), with j=+1,+2, +3. If one takes for the
static magnetization Mo(x) the "step-form" [Eq. (4.9)],
Eqs. (4.4) can be solved readily in each layer and V'(x)
has the form

It is worth mentioning that if we define

po =k1(B
~ /B2 —1)', then expression (814) can be writ-

ten as
vj=a (C 1)

po(D h)=—mn . (817)

This is very similar to condition (4.22b) with D2=0
with a=1,2 referring to layers 1 and 2. The vectors
l(,'(x) read

klq x
A =e

+4mMb q ky+
' (k~(+q')
y

2

4m Mb ky
r CaMba

+x x

+4m)Mb~a~ky — (a~ —
k~( )

y
CO —4&M& k

r'C.Mb.

V kllx
a

—4~i + q +k c~Mb~(k~, +q',
y

+E

kll

1 CO+
rMb

4@i +— a+k~c—~M»(k~~
—a. )

y

(C2)

Here Mb is the bulk magnetization in layer a and q, ~ are given by

2 2'
q =.—k — +

II Ca

2'
a

2K

Ca

2
2m

Ca

'2
4 k2 1/2 ' 1/2

+

CaMbay Ca

CO

c.Mb.r Ca

'2
4 k2 1/2 ' 1/2

+
(C3)

The general one-cell solutions of Eqs. (4.4) can now be written as

f(x)= g 8 ,'D —x——
a=1,2 2

D Q AJ V~(x),

where A~ are 12 unknown coeScients.
At the interfaces these solutions must satisfy the boundary conditions for I and 8 m, as discussed in Sec. IV, as well

as the conditions on y(x) following from Maxwell s equations, namely the continuity of g(x) and r)„y 4am (x) To-— .
gether with the Bloch condition f(x+D ) = f(x) exp(ikD ), this gives rise to 12 linear algebraic equations for the un-
known coeScients A . For nonzero solutions of this algebraic system, the determinant must vanish, which defines the
dispersion relation.
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For the numerical calculation it is easier to use instead of Eq.
(5.14) the equivalent form for the response function

6 (x,x',
q~~, co) =(e(x —x')m](x)m2(x')

+e(x' —x )m ] (x')m 2(x) ) /W(m ],m 2 ),
where m, and m2 are two linear independent solutions of Eq.
(5.12a) [with substitution e„(k)~to], and W(m„m2) is the
Wronskinian (See Ref. 30).


