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We present a new Monte Carlo simulation of the correlation function C(r) between two spins

separated by a distance r in the ground state of the spin- —, Heisenberg chain. The calculation is

based on the Sutherland mapping between the spin-chain ground state and the six-vertex model at
its critical temperature. New results are obtained for rings with the number of spins X =32 and 40.
We give evidence that the asymptotic decay of C(r) at large r is slower than the 1/r behavior of
Luther and Peschel, and that this might be attributed to a logarithmic factor, i.e.,
C(r)-( 3 /r)(lnr/ro), with 0 =0.2 to 0.3.

I. INTRODUCTION

One-dimensional spin chains have been attracting con-
siderable attention in many-body and condensed matter
physics for a long time. ' In recent years especially inten-
sive investigations have been made in this field stimulated
by Haldane's conjecture, which claims the existence of
an energy gap between the ground state and the excited
states of the Heisenberg antiferromagnet with integer
spins. Rigorous analytical solutions are available only for
the S=—,

' XYZ model and recently found solvable mod-
els with higher-order interactions for S ~ 1. Even in the
case of rigorously solved models quantities such as spin-
correlation functions are not easily found rigorously and
one must rely on numerical methods or some approxi-
mate method. As far as critical properties field theoreti-
cal methods are quite powerful and lead to important re-
sults. ' Their arguments usually include several assump-
tions which are plausible though not proved. Therefore
numerical investigation is necessary to check their validi-
ty. Quite a few numerical methods are known so far and
have been used to study the spin correlation functions of
one-dimensional spin chains. We discuss some of them
here to compare a new method we propose and apply in
this paper.

The exact diagonalization of small chains is the most
reliable method as it includes no approximation or sta-
tistical errors necessarily accompanying stochastic
methods. On the other hand, the system size treated is
rather restricted ito date, N ~24 for S=—,', N ~ 16 for
S= 1, and N ~ 12 for S=

—,
' } and the extrapolation process

to infinite chains is quite important. One of the well-
known extrapolation schemes is the 1/N fit used in the

famous Bonner and Fisher work. Recently the finite-size
scaling idea was used to extract critical behaviors in a
variety of problems quite successfully. In some cases,
however, the available system size turns out still not large
enough even with use of finite-size scaling. Quite recently
the idea of conformal invariance was found to be very
useful. The transfer-matrix method based on the Trotter
formula was applied to the XXZ model with S=

—,', 1, and

—,
' for estimation of the critical indices. ' In this method
the system size has practically no restriction. On the oth-
er hand, the available number of Trotter slicings N, is
rather small and an extrapolation procedure to infinite N,
was employed. The critical indices obtained showed
good agreement with previous analytical results for S=—,

'

in a region close to the XY model but the results were not
good in regions close to the isotropic models, where the
N, employed seemed not large enough. Monte Carlo
simulation based on the Trotter formula is becoming a
standard method to study quantum-mechanical many-
body systems;" its applicability is quite general and
furthermore rather large systems can be treated. Extra-
polation to infinite N, is again necessary. At high tem-
perature one can treat N, large enough to be practically
infinite. More and more Trotter slicings are necessary
with decreasing temperature. Two limiting processes are
necessary to obtain ground-state properties, namely to
infinite N, and to T=O, which makes it dificult to apply
this method to ground-state properties. This seems to be
the reason why no accurate analysis of ground-state criti-
cal behavior by this method has been reported. Careful
treatment of these two limiting processes would show the
usefulness of this method for ground-state properties.

The MC simulation we investigate here has quite limit-
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ed applicability, i.e., to ground-state properties of the
S=

—,
' XYZ model. On the other hand, it has a merit that

only one limiting process is necessary. Of course extrapo-
lation to the infinite system is necessary, as with the
Trotter approach. But reasonably large systems could be
simulated. The method is based on the equivalence of the
ground state of the S=

—,
' XYZ model and the maximum-

eigenvalue eigen vector of the transfer matrix of the
eight-vertex model. ' We apply the method to calculate
the ground-state spin correlations of the antiferromagnet-
ic Heisenberg model. A preliminary account of this work
has been presented. '

Recently another MC calculation of this model has
been carried out. ' This is an early version of the Green's
function Monte Carlo (GFMC) method. ' It shares with
the Sutherland mapping approach the advantage of being
directly a ground-state calculation (so the T~0 extrapo-
lation is unnecessary). The accuracy of the method is
limited by the accuracy of the variational wave function
which is used in importance sampling, and there is a
difficulty in going to very large systems associated with
the need to estimate the second-order correction to the
importance sampling. The structure factor at wave vec-
tor m is calculated in Ref. 14 for up to 110 spins.

We shall use the results of the present MC calculation
plus the known exact results to address the question of
the asymptotic behavior of the spin-correlation function
C(r, N) [see Eq. (2)]. In particular we shall present evi-
dence which suggests that the asymptotic decay of
C(r, ao) as r~ao is slower than that of Luther and
Peschel (LP), and we shall argue that this might be attri-
buted to a logarthimic term multiplying the 1/r behavior
of LP, namely, C(r, ~ ) —= A(lnr/ro) Ir for large r, with
o —=0.2 to 0.3.

II. MODELS

In this section we explain brieAy the S=—,
' XYZ model

and the eight-vertex model, and introduce notations.

A. XYZ model

The S=
—,
' XYZ model is described by the Hamiltonian

H = —Jg [(1+I )S,"S,",+(1—I )S~Sfi,

is a quantity of interest for the antiferromagnetic Heisen-
berg model.

B. Eight-vertex model

The eight-vertex model is a classical model on a square
lattice. An arrow is placed on each bond connecting
nearest-neighbor sites and an energy assigned to each
configuration of four arrows about a vertex. Among the
16 possible vertex configurations only the eight with an
even number of incoming or outgoing arrows are allowed.
Statistical weights for these configurations are given in

Fig. 1. Now we consider a square lattice with M rows
and N columns with periodic boundary conditions (N and
M are even). The partition function of the system is
given by

Z~ &(M
=Tr( T~ ) (4)

where Tz is the transfer matrix between the successive
rows. We use the variable cr;~ =1(—1) to represent the

up (down) arrow on the vertical bond connecting sites
(i,j ) and (i,j +1) and similarly r; =1(—1) to represent
the arrow pointed to the right (left) on the horizontal
bond between (i,j ) and (i + 1,j). Then a configuration of
vertical arrows in a row is represented by
(o „o2, . . . , o ~) where o; =+1 and therefore TN may be
regarded as an operator in the same vector space of the
Hamiltonian of a spin chain with N spins. The correla-
tion of vertical arrows on the same row on a N XM lat-
tice C(r, N;M) is defined as

C(r, N;M)=( —1)"(o;o;+„)~„~
and written with use of T~ as

(5)

C(r, N;M ) =( —1)"Tr[o';o';+„(T~ ) ]IZ~„sr, (6)

ground-state correlation function

C( r, N ) =4( —1 )"( %~ ~ S,'S,'+ „~0'~ ),
where +z denotes the ground-state wave function of a
ring with N spins. The structure factor at wave vector m

X/2 —1

S(N) = 1+2 g C(r, N)+ C(N/2, N)

+AS S +, ],
where S; denotes the a component of a spin- —,

' particle at
site i. We consider the case with J&0 and 1~I 0.
This parameter region proves to be general if one uses cy-
clic exchanges of notation of S,-, S,", and S,' and rotations
of every other spin about the z axis. Basis vectors which
diagonalize the z component of the spin at each site are
used throughout the following discussions. We notice
that off-diagonal matrix elements of the Hamiltonian in
this representation are seminegative definite. The XXZ
model is the version with I =0 and includes all the well-
known cases, i.e., ferromagnetic Heisenberg model
(b, = 1), antiferromagnetic Heisenberg model (b = —1),
and XF model (6=0). This model conserves S', the z
component of total spin. We are interested in the

q
1/2 b . 1/2 ~ -1& ~ q-1/2

~
g

1/2 ~ ( 1/2 ~ e 1/2
g I

112

FIG. 1. Allowed vertex configurations and their statistical
weights of the eight-vertex model. The last two are prohibited
in the six-vertex model.
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where o', is a Pauli matrix on site i. The six-vertex model
is a version where the last two configurations in Fig. 1 are
prohibited, i.e., 0=0. In this model X=+;o," is indepen-
dent of j and correspondingly Tz conserves S'. Also
II =g r, is "a conserved quantity.

III. SUTHERLAND'S MAPPING THEOREM

Sutherland proved that the transfer matrix T~ of the
eight-vertex model commutes with the XYZ Hamiltonian
of N spins with periodic boundary conditions if

and

2b, =rl+i) ' —g—8

(gg)1/2

(7a)

(7b)

Then seminegative definiteness of the off-diagonal matrix
elements of Hxzz and the semipositive definiteness of
those of Tz lead to the equivalence of the ground state of
Hxzz and the eigenstate of T~ with the maximum eigen-
value (with help of the famous Frobenius' theorem).
Another condition is necessary to apply this theorem, i.e.,
the ~hole space must be connected both by Tz and

Hxzz. It is easily seen that Hxxz and T& of the six-
vertex model connect by successive operations all the
states in each subspace with a fixed S'. Therefore
equivalence holds in each subspace with given S'=X/2
between the XXZ model and the six-vertex model, if
2b = i)+ i)

' —
g and 9=0. For I & 0 we can write down

the XYZ Hamiltonian as

H~yz=H~~z+H H = JI g (S+S +] +S S +~ )

and 0' changes S' by +2. Also Tz of the eight-vertex
model with 8&0 changes S' by a multiple of 2, i.e., the
difference of X between adjacent two rows is a multiple of
4. This is a result of the periodic boundary condition
which imposes n, + n =nf + n& on each row for the
numbers n„ng, nf, and ni, of vertex e, g, f, and h on the
row [5X=2( n, + n i nf —n )]—. Therefore the whole
space is divided into two subspaces with even or odd S'
and the equivalence holds in each subspace. As the state
with the maximum eigenvalue dominates Eqs. (4) and (6)
in the limit M~ ~, the correlation function (2) is given
by

C(r, N )= lim C(r, N;M ) .~~ oo

This mapping is useful for obtaining the ground-state
spin correlation of the XYZ model, as the classical statis-
tical average C(r, N;M ) can be calculated easily with the
help of MC simulations. In the ease of the XLZ model,
the average over configurations in the six-vertex model
with a fixed value of X=2S' is sufficient where S' is the
total spin of the ground state.

In the following we apply this method to the antiferro-
magnetic Heisenberg model (6=—1, I =0). Although
some freedom still remains in the choice of g and g, we
use the values which give the same weights for vertices a
and c in Fig. 1, i.e., i) = 1 and /=4.

IV. MONTE CARLO SIMULATION OF THE
SIX-VERTEX MODEL

In this section we explain the MC technique for the
six-vertex model. The checker board lattice mapped
from the XXZ model through the Trotter formula is
equivalent to the eight- or six-vertex model and MC stud-
ies on that lattice have been reported by several au-
thors. ' ' Their calculational techniques, and ours, are
essentially the same (although their fundamental ap-
proach is essentially different from ours, as explained in
the introduction).

In a MC simulation we generate configurations of ar-
rows updating successively the initial configuration in
stochastic ways. For an Ising lattice updating is simply
done flipping one spin at each site. Flipping a single ar-
row is not allowed on the eight-vertex model as it causes
prohibited configurations of vertices (see Fig. 2). One im-

mediately sees that possible updating processes are to flip
all arrows to the opposite direction on closed loops, since
an even number of arrows about each vertex must be
flipped. This process is always allowed on the eight-
vertex model but it is allowed on the six-vertex model
only when all the arrows are pointed in the same way
along the loop. The minimum loop is a square of four
bonds and we call flipping along it a minimum local flip
(MLF). It can be shown that MLF's on all possible
squares connect all the configurations in a subspace with
a given X and 11, provided X&+N and II&+M (see the
Appendix). A flip is called global if the loop stretches
from one boundary to another, i.e., the winding number'
is &0. Global flips on the loops which have winding
number equal to 1 in the horizontal direction (HGF) con-
nect subspaces with different values of H and those in the
vertical direction (VGF) connect subspaces with different
values of X. %'e do not need VGFs as we can restrict
configurations to the X =0 subspace: The ground state of
the antiferromagnetic Heisenberg model is known to be a
singlet. ' To obtain the statistical average corresponding
to Eq. (5) in the X=O subspace we need HGF's. As
HGF's we employ those which flip all the horizontal ar-

C "
D

A „B

A i~ B

C .i D ~& C ~~ Q

A " 8

FIG. 2. An example of the configurations of the eight-vertex
model on the XXM square lattice. A division to four sublat-
tices in the MC simulation is illustrated.
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rows on a given row (assuming of course that they are all
parallel). Both MLF's and HGF's on all the rows com-
pose an ergodic updating process.

Next we choose the transition probabilities which give
the correct equilibrium ensemble of MC steps, i.e., the
detailed balance condition is required for the transition
probability for a elementary flipping process. We apply
the heatbath method; a flipping process is accepted if
R ( W„/(W„+ W, ) where W„and W, are weights for
new and old configurations and R is a random variable
generated between zero and unity. The total lattice is di-
vided into four sublattices (A D) o—n each of which prob-
abilities for LMF s are all independent (Fig. 2). Also
HGF's on even (odd) rows occur independently. The unit
MC step is, for example, the total of processes of LMF's
on sublattice A, LMF's on B, LMF's on C, LMF's on D,
HGF's on even rows, HGF's on odd rows, and those pro
cesses in the reversed order. In each subprocess squares or
rows are visited once in a fixed order. Taking this unit
MC step we can easily prove the detailed balance condi-
tion of the transition probability. We sample data twice
in a unit MC step, in the middle and at the end. So dou-
bling the unit MC step has practically no disadvantage.
Correlations between cr," and 0, +, are measured for all i
and j and averaged at each MC step to give C(r, N;M).

We simply chose HGF's on rows. As the probability
for a row to have all arrows on it parallel decreases ex-
ponentially with increasing N, the acceptance of HGF's
becomes negligible for large N. To have appreciable ac-
ceptance of HGF's we have to search for the loops with
all arrows aligned along it. Such a method was studied
by Cullen and Landau' in a MC simulation of a
checker-board lattice. As far as we understand, however,
it was quite time consuming and a good algorithm for the
process is not known. As will be shown in the next sec-
tion it turns out that HGF's are not really necessary to
get the quantum-mechanical expectation values and we
employed only MLF's in the simulations for N )24.

V. EXTRAPOLATION TO INFINITE M

From Eq. (7) we immediately see that the finite-M
effect decreases exponentially, namely

5C(r, N;M) =C(r, N;M) —C(r, N)

—1+O(1/N), then In(A, , /Ao) will be linear in M/N
and this is found by numerical transfer-matrix calcula-
tions for N=4 —8 as shown in Fig. 3. Also additional N
dependence is seen to be weak. MC simulations also have
been performed for N=6 and 12 with M/N=1, 2, 3, and
4 for N=6 and M/N= 1, 2, 2.5, 3, and 4 for N= 12. The
average was taken over 1.2X10 MC steps for N=6 and
8X 10 steps for ¹ 12. Some of the results are shown in
Fig. 4 together with the exact transfer-matrix results ( )

for N=6. Data of C(r, N;M) are extrapolated assuming
C(r, N;M)=C(r, N)+ah i by using the least-square
fit. The result is shown in Table I. We see that the es-
timated values of C(r, N) are within a half-percent error.
The errors estimated from the least-square fit are too
small compared to the deviation of the extrapolated
values from the exact ones for N=12. This means our
MC run was not long enough to average out fluctuations
with a long decay time. These fluctuations we think are
due to fluctuations of H, which last long due to the low
acceptance of HGF's. The acceptance of HGF's de-
creases very rapidly with increase of ¹ We had 0.017
per row acceptances of HGF's per MC step for N= 6 but
the number decreases to 1.5 X 10 for N=12, while 0.32
per site acceptance for MLF's occurs independently of N.
No acceptance of a HGF occurred during 8X10 steps
for ¹=24.This fact means that we need a different algo-
rithm for HGF's to obtain the correct C(r, N;M) for
large N. However, we are only interested in the quantity
C(r, N), not C(r, N;M) itself. So we look for another
quantity which gives C(r, N) in the limit M~oo and can
be obtained more easily.

Dividing the summation over the whole configuration
into summations in subspaces with fixed value of H we
write

C(r, N;M ) =g P(II )C'"'(r, N;M ),
rr

(10)

where P(II) is the probability distribution for II and
C" '(r, N;M) is the average in the subspace. As M in-
creases the distribution P(II) becomes peaked around its
mean value Ho as

P(II)=exp[ —(11—II ) /2(],
with g= ((II—IID) ) proportional to M. Then we
rewrite Eq. (11) as

—(Oio', o', +„io)],
where ko and A, , are the largest and the second largest ei-
genvalues of T~. The ratio k, /ko is expected to ap-
proach unity as N ~~. If it goes as A, , /Xo

C(r, N;M ) =C(r,N;M)—
+ C (r&N M)iii —n

1

2 BH
(12)

replacing summation by integration. As the second term

TABLE I. Correlation function C(r, N) and the structure factor S(N), resulting from MC simulations with HGF s. The number
in parentheses is the error in the last decimal place. Extrapolation assuming exponential dependence on M was used. Exact values
obtained by numerical diagonalization (Ref. 7) are added for comparison.

6
6

12
12

exact
MC

exact
MC

C(1,N)

0.622 84
0.622 5(3)
0.598 60
0.598 9(2)

C(2,N)

0.277 35
0.276 7(5)
0.25044
0.251 1(4)

C(3,N)

0.309 02
0.308 5(4)
0.221 10
0.222 1(5)

C(4, N)

0.161 14
0.162 3(5)

C(5,N)

0.163 21
0.164 1(6)

C(6,N)

0.142 65
0.143 5(6)

S(N)

3.10940
3.107 (2)
3.931 63
3.941 (5)
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is O(1/M) as M ~ ao, we have

5C (r, ¹M)=C (r, N;M) —C(r, N)

=O(1/M),
for large M. As the MC simulation with only MLF's
gives the statistical average in a subspace with fixed II,

( llo)C (r, N;M) is easily obtained if we know IIo. In our
case HO=0 is easily deduced from symmetry.
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FIG. 3. log~o[[C(r, N;M) —C(r, N)]/C(r, N)] obtained with
use of the transfer matrix is plotted against M/N. (a) Plots for
different r for N=8. All the plots show the same exponent con-
sistent with (9). (b) Plots of correlations between spins with the
largest distance for different chains (N=4-8). They show only
a weak-N dependence.
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FIG. 4. M dependence of [C(2,6;M) —C(2, 6)]/C(2, 6) ob-
tained by the MC simulation with HGF. Dots ( ~ ) are the exact
transfer-matrix results. The estimate of C(2,6) with use of the
least-square fit assuming an exponential dependence on M/N is
depicted by 4 on the vertical axis.

FIG. 5. M dependence of [C'o'(r, N:M) —C(r, N)]/C(r, N)
obtained by the MC simulations without HGF: (a) N=6, r= 1,
2, and 3; (b) N=12, r=6; (c) N=24, r=12. Best fits which as-
sume linear dependence on M ' are depicted in (b) and (c) as
dashed lines. Estimates of C(r, N) are shown with their error
bars on the vertical axis (0).
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The approach of the MC data of C' )(r, N;M) (note
IIo=0) to C(r, N) is shown in Fig. 5 for N =6, 12, and 24
where the exact C ( r, N) is available. Linear dependence
in M ' is observed to hold rather nicely for large M
(M 2N), although deviation from the linearity is seen
for intermediate value of M (2N )M )N ). We estimated

FIG. 6. M dependence of [S I(N;M) —S(N)]/S(N) ob-
tained by the MC simulations without HGF. Estimates of S(N)
are also shown (0 for N= 12, 6 for N= 24).

C(r, N) and the structure factor S(N) using the least-
squares fit of the data to an M ' dependence for M 2N
where the dependence is approximately obeyed in all the
cases studied. One should also note that
5C' '(r, N;M)/C(r, N) is already fairly small at M=2N
for even C(N/2, N) which is the correlation between the
two farthest separated spins on the ring. The quantity is
=—0.06 for N= 12 and =0.04 for N= 24.

The finite-M effect on S(N) decreases with increasing
N as is shown in Fig. 6. We have observed small wiggling
behavior around M ' behavior whose real reason we do
not understand. This wiggling is the main cause of the
uncertainties of extrapolated values of C(r, N) if we rely
on data with not large enough M/N. This uncertainty
may be reduced to less than 1% if we perform simula-
tions up to M=10N for N (24. Extrapolated values of
C(r, N) and S(N) are listed in Table II; they are in very
good agreement with the exact values. A marked im-
provement over the results in Table I is seen for N=12,
where we utilized data with M 10N for the extrapola-
tion (we used data with M (5N for N=6).

The above result convinces us the method is quite use-
ful for the calculation of C(r, N). Computing time is
about 4 h for 8 X 10 MC steps for (N, M ) = (24,240) on a
CDC750. The increase of CPU time is proportional to
NM for generating the ensemble and to N M for mea-
surement of the correlation function. The CPU time for
measurement is by no means negligible and amounts to
58% for (N, M) =(40,400). The total CPU time increases
proportionally to N with a=2-3. We accomplished the
simulation for N=32 and 40 where no numerical result
for C(r, N) (r )2) has been reported. Data are obtained
from the average over 8 X 10 MC steps for each M stud-
ied. Some of the results are shown in Fig. 7. The results
show an upward curvature in M ', it is not clear wheth-
er this is due to a fluctuational artifact or the real M
dependence, as the statistical errors are fairly large com-
pared to this curvature. The result of the extrapolation
which assumed M ' dependence for M )2N might be a
little smaller in magnitude than the correct value if the
curvature is real. The magnitude of the M dependence is,

TABLE II. C(r, N) resulting from MC simulations without HGFs. Extrapolation assuming M dependence was used. Exact
values are taken from Ref. 7.

riN

1

2
3
4
5
6
7
8
9

10
11
12

MC

0.6223(5)
0.2761(10)
0.3076(10)

Exact

0.622 84
0.277 35
0.309 02

MC

0.5985(2)
0.2504(4)
0.2210(5)
0.1610(5)
0.1631(6)
0.1424(6)

12
Exact

0.598 60
0.25044
0.221 10
0.161 14
0.163 21
0.142 65

MC

0.5927(2)
0.2445(3)
0.2055(4)
0.1434(4)
0.1315(5)
0.1062(6)
0.1019(6)
0.0886(7)
0.0880(7)
0.0802(7)
0.0821(7)
0.0776(8)

24
Exact

0.592 779
0.244 568
0.205 664
0.143 668
0.131 789
0.106 629
0.102 444
0.089 206
0.088 663
0.080 952
0.082 926
0.078 484

3.104(4) 3.1094 3.930(5) 3.931 63 4.807(12) 4.81706
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however, fairly small as one can see from Fig. 7; the rela-
tive difference between C(16,32;64) and C(16,32;320) is
about 6% and that between C(16,32,320) and C(16,32) we
expect less than 1%. Accordingly we can expect rather
accurate results for the extrapolated data in spite of the
simple M ' dependence assumed.

The results of simulations for N=40 are shown in Fig.
8. In this case the data are accompanied with strong sta-
tistical fluctuations, which smear the M dependence of
the data. We observe that the M dependence itself is
again rather weak and we feel safe in using the simple
M ' extrapolation.

The results of extrapolation for N=32 and 40 are given
in Table III. Comparison of the estimates of C(1,32) and
C(1,40) with the exact values (obtained from the Bethe
ansatz), i.e., 0.591 939 and 0.591 551, respectively, shows
excellent agreement. We notice that the MC estimate of
C(1,32) [C(1,40)] gives a small negative (positive) devia-
tion from the exact values although within the estimated
errors.

We observed that the statistical fluctuations in our MC
data for C' '(r, N;M) at different r with the same N and
M were strongly correlated. This correlation comes from
the fact that in MC runs most of the configurations real-
ized are composed of rather large clusters of antifer-
romagnetically ordered states of o;, , and thermal equilib-
rium is reached by domain wall motions rather than lo-

VI. EXTRAPOLATION TO INFINITE N

The bulk correlation function C(r):C(r, —ao) and its
decay at large r are of current interest and will be dis-
cussed in Sec. VII.

To obtain C(r) we used a recently reported extrapola-
tion method (Kaplan et al. ) based on the scaling relation

C (r, N) =C (r)f(r/N) (14)

for large r and N, where the scaling function f (y) is
determined numerically and given in the reference. In
this method we extrapolate C(r, N)/f (r/N) which, be-
cause f(0)=1, approaches C(r) as N ~ oo. The extrapo-
lation of C(r, N)/f(r!N) rather than C(r, N) leads to
more accurate results since the variation of

calized fluctuations. In such a situation subaverages of
correlation functions (we have taken 4000 MC steps for a
subaverage) for different r are strongly correlated and our
final results still carry the effect. From the viewpoint of
the correlation mentioned above it is highly probable that
deviations of MC estimates of C(r, N) from exact values
have the same sign with that for C(1,N). We expect
therefore exact values of C (r, N) to be larger than our es-
timates for N=32 and smaller for N=40 although within
our estimated errors.
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FIG. 7. (a) C' '{16,32;M) and (b) S' '(32;M). Best fits and es-
timates for M= ~ are also shown.

FIG. 8. (a) C' '(20,40;M) and (b) S' '(40;M). Best fits and es-
timates for M = ~ are also shown.
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C(r, N )/f'(r/N) with N is smaller than that of C(r, N)
alone, according to the scaling relation (14).

The extrapolated values of C(r) are shown in Table
III ~ For r = 1 and 2, where the exact values are
known, ' the agreement is excellent. For r ~12 we ex-
trapolated the C(r, N) known from the exact numerical
calculations for N up to 24. The agreement with the re-
sults of Kaplan et al. , where only rings with N 18
were used, is excellent. The errors reported here are re-
duced, as expected. The MC results for N=32 and 40 are
consistent with C(r) W.hile their errors are too large to
influence the extrapolation for the smaller r [where there
are already many data, C(r, N), N=2r, . . . , 24], they did
inhuence the results for r=11 and 12; for r&12 the
determination of C(r) is based essentially entirely on the
MC results.

C(r)= A (15)
r

where A, o. , and ro are constants. We then present nu-

TABLE III. Correlation function C(r, N). Columns labeled
32 and 40 are new MC results. The last column is the result of
extrapolation from all available N values [4(2)24,32,40]. It
should be remembered that the smallest N for given r is 2r.

r&N 32 40 00

1 0.5919(1) 0.5916(1) 0.590 8(1)
2 0.2437{2) 0.2434(1.5) 0.242 7(1.5)
3 0.2035(3) 0.2027(2) 0.200 94(0.8)
4 0.1413(3) 0.1404(3) 0.1386{2.5)
5 0.1279(4) 0.1265(3) 0.123 5(2)
6 0.1023(4) 0.1009(3) 0.097 8(4)
7 0.0965(4) 0.0944(4) 0.089 9(3)
8 0.0828(5) 0.0805(4) 0.075 9(4)
9 0.0800(5) 0.0769(4) 0.071 1(3)

10 0.0716(5) 0.0683(5) 0.062 1(3)
0.0707(S) 0.0664(5) 0.0589(5)

12 0.0651(6) 0.0605(5) 0.052 9(6)
13 0.0654(6) 0.0596(6) 0.050 7(6)
14 0.01617(6) 0.0556(6) 0.046 1(6)
15 0.0630(6) 0.0554(6) 0.044 6(6)
16 0.0606(6) 0.0524{6) 0.040 9(7)
17 0.0528(6) 0.039 6(7)
18 0.0507(6) 0.036 8(9)
19 0.0516(6) 0.035 9(9)
20 0.0501(7) 0.033 5(9)

VII. LARGE-r BEHAVIOR OF C (r)
The question of how C(r) approaches zero as r~~

was investigated by Luther and Peschel (LP), who found,
by analytical means, C(r)= 3/r for large r As .pointed
out later, ' LP neglected certain terms in the Hamiltoni-
an, namely Umklapp terms in the framework of the fer-
mion representation. These terms are far from negligible
for the Hesenberg model and may modify the asymptotic
behavior of C(r) Previo. us studies based on exact calcu-
lations for finite systems (N 24) (Ref. 7) did not investi-
gate the modified asymptotic behavior in detail. '

It is rather widely believed that the Umklapp processes
mentioned above will lead to some form of logarithmic
corrections to the large-r behavior of C(r) In. 'this
section we give a plausibility argument for a logarithmic
dependence of the form

(lnr /ro )

where

-=H(N, cr ), (17)

merical evidence that C(r) approaches zero more slowly
than as 1/r .Finally we show that these finite-system data
are consistent with (15), with o =0.2 to 0.3, suggesting
that the slower-than-1/r decay indicated by the data is
perhaps associated with this logarithmic behavior.

We note that the Heisenberg Hamiltonian 6= 1, I =0
is a very special point: With I =0, for

~
b,

~

~ 1 there is no
LRO, while for 6) 1 there is LRO. The ground state of
the model for ~b,

~

(1 is already critical as can be seen
from the slow algebraic decay of the correlations. The
ground state of the Heisenberg Hamiltonian, therefore,
corresponds to a multicritical point in usual finite-
temperature critical-phenomena terminology. There are
examples of similarly critical models which show loga-
rithmic dependence in the large-r behavior of correlation
functions. The q-state Potts model in 2D at its critical
temperature is one case: As a function of q, the value

q =4 is separating second-order from first-order transi-
tions and is also a multicritical point; and further
the correlation function for q =4 goes as
r '~ [ln(r/ro)] '~ . Another case is the Kosterlitz-
Thouless (KT) model where the decay of the correla-
tions is algebraic below T, and exponential above T„
while C(r)=r '~ [ln(r/ro)]'~ at T, . So the two can
be summarized as C(r)=r "[ln(r/ro)] . Furthermore,
these two models have an even closer relation to the
Heisenberg model. The four-state Potts model actually
maps to our Heisenberg model; unfortunately the map-
ping of the correlation function is not known and seems
difficult to find. Similarly the KT model is intimately re-
lated to the ground state of the 1D quantum sine-Gordon
model which maps onto the XXZ model (I'=0) ground
state with the help of the boson representation. ' The
KT model at T, corresponds to the Heisenberg model.
The correlations showing logarithmic behavior were de-
rived for the above two models using renormalization
group techniques.

Now it is generally believed that the exponent g found
by LP, namely g=1, is correct. This is because they in-
voked the exact exponent known from the work of
Baxter as input to the index relation derived by them.
Furthermore the same result was recently derived
rigorously by Bogoliubov et al. through the quantum in-
verse scattering method. ' Hence it seemed to us plausi-
ble to analyze the numerical results in terms of the
asymptotic form (15). In the following we will attempt to
estimate the parameters in (15) assuming (15) is the true
asymptotic form and, in addition, that the larger r's avail-
able are large enough to be in the asymptotic region. In
the process we will of course test the consistency of these
assumptions with the finite-N results.

First we consider an analysis which does not depend on
the extrapolation of C(r, N) to N~ oo. Consider the
structure factor. If we assume (14) and (15), (3) gives

S(N)=a[in(N/2ro)] +'+b for N~~, (16)

a =2 A /(0 + 1 ), and b is constant. Then, asymptotically,

G(N) = [S(N+2) —S(N)]/[S(N) —S(N —2)]



11 558 KENN KUBO, T. A. KAPLAN, AND J. R. BORYSO%ICZ

H(N o)= ln
27p

N
ln

2Tp

a+1
ln

21p

N —2
ln

2Tp
(18)

S(N)=a(lnN/2ro) +'+b . (19)

For if we substitute this into (17) then for N~ ao it can
be seen that

tr[in("o/ro)]/lnN .

In addition to this slow approach to o, this gives, for
o )0, 5o ~~&0 when ro5Fo, as found in Fig. 9 where S (N)

To test the relation (17), we define a ~ via
G(N) =H(N, rr~), and see if cr~ approaches a limit as N
increases for various values of rp. The results, based on
the values of S (N) in Table IV for N ~ 24, are shown in
Fig. 9. The errors indicated arise from an assumed error
of +1 in the last figure of the original data for C(r, N).
Equation (18) implies that o~ approaches a limit rr as
N —+ ~ for any rp assumed and with the least X depen-
dence for the correct rp ~ The results are clearly con-
sistent with this; o.z decreases with N when small rp is
assumed and it increases when rp is large. It apparently
converges to o =—0.2 to 0.3. The plots with rp —=0.6 to 0.8
give almost fiat behavior for 6 ~N ~22. The extremely
slow convergence of o.z when rp is very small or very
large, apparent from the figure, is precisely what is ex-
pected if the true behavior were

is from the actual chain data. In fact, for rp=0. 6 and
o. =0.25, the plot o.~ versus N for various rp looks quan-
titatively very much like those obtained from actual S(N)
as shown in Fig. 9 (with smooth behavior replacing the
bumpiness at N ~ 16, of course).

Next we plot in Fig. 10, ln[rC(r)] versus ln lnr, where
C(r)=[C(r —1)+2C(r)+C(r+ I)]/4 is an average in-
troduced to smooth out the even-odd oscillations of C(r).
According to (15) this should approach a straight line
with slope o as r increases and lnro/1nr becomes negligi-
bly small. A zero slope (rr =0) would correspond to the
Luther-Peschel result. Clearly a positive slope is ob-
served even at r & 11 where the MC results are not essen-
tial. And this clearly is strong evidence that the asymp-
totic decay of C(r) is slower than the I/r LP behavior,
quite independent of any assumption as to the form of the
asymptotic behavior. Further, the plot indicates con-
sistency with the particular form (15). Assuming that
form, we estimated o and A from the two straight lines
shown in the plot. They give cr =0.21 and 0.29 and cor-
responding values A=0.53 and 0.50. The points from
r ~ 12 show less scatter from a linear behavior than could
be expected from their estimated errors. We think that
this is due to one or both of the following: (a) We always
chose to err somewhat on the conservative side in decid-
ing the errors, i.e., the errors are overestimated. [Thus

TABLE IV. The structure factor S(N) from Ref. 7 and Eq.
(3). Errors are estimated by assuming independent errors of +1
in the last figures for original data of C(r, N). Rows 32 and 40
are new MC results, whose errors are estimated from the fluc-
tuations of the MC data for S(N).

0. 7
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0. 5

0,05

0 0 0 o ~ ~

0

4
6
8

10
12
14
16
18
20
22
24
32
40

S(N)

2.666 67(2)
3.10940{3)
3.441 83(4)
3.708 54(4)
3.931 63(5)
4.123 62(5)
4.292 31(5)
4.442 872(6)
4.578 824(6)
4.702 912{7)
4.817 060(7)
5.196(13)
5.511(16)
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FIG. 9. Exponent rr~ of logarithmic factor [see text follow-
ing (18)] vs N for various ro Assumed values of ro .are attached
to the plots. Error bars are depicted only for ro=0.25 as the
data for a same N have the errors with almost same size. Dot-
ted lines show results for the model given by (19) with ro=0.6
and o =0.25.
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FIG. 10. Plot of In[rC(r)j; the linear scale of the x axis is

lnlnr. The dashed lines correspond to o.=0.29, A=0.50 and
0.=0.21, A =0.53, respectively.

FIG. 11. Plot of [rC(r)]'~ for cr=0.25; the linear scale of
the x axis is lnr.

the apparent consistency of (15) with the data is stronger
than indicated by the errors shown. ] (b) The points for
large r are correlated because they were obtained from
only one (N =40) or two (N=32, 40) rings.

We also plotted [rC(r)]'~ versus lnr for various as-
sumed 0. to see the linearity of the plot. The linearity in
fact does not depend very much on o.. We show the plot
with 0.=0.25 in Fig. 11. The least-square fit assuming
linear dependence between r=9 and 19 gives A=0.50
and rp =0.75 consistent with the previous analysis of S~.
The fitted value of A does not depend much on the as-
sumed 0 and changes from 0.55 to 0.45 while rp de-
creases from 1.3 to 0.44 with o. varying from 0.2 to 0.3.
The last test we consider is based on an examination of

K(N) = (N /2)C(N /2, N)

[note: C(N /2+ 1,N ) =C(N/2 —1,N) ]. If we assume
(14) and (15), it follows ' that

K(N) —Af( —,') ln
2rp

for N~ ~. The slope of lnK(N) versus lnlnN/2 should
thus approach 0. for large N. As seen from Table V, it is
still increasing with slight oscillations in the region con-
sidered, and it is plausible to expect that it will approach
a value consistent with that of o. obtained previously.

VIII. SUMMARY AND DISCUSSION

We have presented a novel Monte Carlo simulation of
the spin correlations in the ground state of the spin- —,

'

Heisenberg chain which is based on the Sutherland map-
ping between the spin-chain ground state and the six-
vertex model at its critical temperature. The new results
are for chains with number of spins N=32 and 40. We
have given evidence which suggests that the asymptotic
decay of the spin-correlation function is slower than
the 1/r behavior of Luther and Peschel, and that this
might be attributed to a logarithmic factor, i.e.,
C(r) A(l/r)[l -(rn/r )] o. The evidence consists of a
plausibility argument (based on known behavior of relat-
ed models) for this form, plus analysis of data for finite
chains of up to 40 spins, assuming such a form, and as-
suming that the larger r's available are in the asymptotic
region. On the basis of the four rather diA'erent analyses
presented, we conclude that 0.2 0. 0.3.

TABLE V. The slope of ln(N/2)C(N/2, N) =lnK(N) vs ln ln(N/2), obtained from the least-square fits of three points (four points'
for the last column).

N/2

Slope of ink(N)

5 —7

0.134 0.140

7—9

0.171

8—10

0.176

9—11

0.194

10-12

0.199

12-16

0.19+0.10

12-20

0.26+0.07
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Jo

FIG. 12. A configuration of the six-vertex model which ac-
companies with a vertex of type f at P. Definitions of Q and R
are in the text.
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APPENDIX

In this appendix we prove that for the six-vertex model
MLF's on all possible squares connect all the
configurations in a subspace with a given X and H if
X&+N and H&+M. For the proof we show that any
configuration can be changed to the configuration
Co(X, H} where o; =1 for 1 i ~(X+N)/2 and any j
and r; = 1 for 1 ~j ~ ( H+M )/2 and any i by successive
operations of MLF's. Then Co(X, H) can be changed to
any other configuration because the inverse of any al-
lowed change is also allowed. This completes the proof.
We show (i) any configuration can be changed by MLF's
to a configuration in which only vertices of type a -d ap-
pear, i.e., a configuration whose columns and rows have
arrows pointed in the same direction (let us call such a
configuration a straight configuration), and (ii) any

straight configuration can be changed to Co(X, H).
Proof of (i) L. et us assume that the columns 1 to io —1

are straight and the column io is not. Let the vertex

(io,jo) be of tyPe f (P in Fig. 12). Let (i, ,jo) (Q in Fig.
12} be the first vertex with a downward arrow starting
from it when we proceed from P to the right on the row

jo (io (i, ~N). Next we follow downward arrows start-

ing from Q to R =(i&,j, ) where a leftward arrow starts
for the first time. Then we easily see that 0.; =1 for

io i ~i, —1 and j&
~j ~ jo —1 and also 7j 1 for

io ~i ~i& —1 and j&+1~j ~ jo are forced (see Fig. 12).
An MLF is possible on the square sharing R as its lower-

right corner. Successive operations of MLF on squares
lying between columns i, —1 and i, change 0-. .. for

j, ~j & jo —1 to —1. Then we search for R'=(i, —l,jI )

on the column i, —1 where a leftward arrow between
columns i, —2 and i, —1 starts for the first time
[j', —j, ~0 Mod(M)] and operate MLF's on the squares
between columns i, —2 and i, —1 as before. Such j', is al-

ways found, since cr; &, =1 and therefore there must be
&Jo

at least one vertex of type f on the column i&
—1. Re-

peating this process on the squares between columns

i&
—2 and io we finally change 0.; J for j2 j ~ jo —1 to

lpJ
—1 (j2 ~j,). Repetition of this process makes the
column io straight and successively all columns can be
made straight.

Proof of (ii) It is. sufficient to show that directions of
two neighboring straight columns (rows} can be ex-
changed. Let us assume the column i is upward and i+1
downward. There must be a leftward row jo with the
row jo+1 [Mod(M)] rightward due to the assumption
H&+M. Then MLF is possible on the square sharing the
vertex (i,jo) as its lower-left corner and it exchanges o;~

and 0.
, +, J . If the row jo+2 is rightward again we can

do an MLF on the neighboring square proceeding up-
ward exchanging a, J +, and 0;+& +&. We can proceed

upward until we encounter a leftward row. Let the row

j, be the lowest leftward row with j, & jo and j2 the
lowest rightward row with j2&j, . Then we can do
MLF's on the squares between these rows starting from
the uppermost one and proceeding downwards and ex-
change 0.; and 0, +, for j, j j2 —1. Repetition of
this process exchanges 0, and cr, +& for all j. Exchange
of rows can be done in the same way under the assump-
tion X&+¹
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