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Monte Carlo simulations have been carried out to study the kinetics of precursor-mediated order-
ing of a lattice gas with nearest- and next-nearest-neighbor repulsive interactions. We find that the
growth exponent x is affected strongly by the rate at which a precursor is deexcited into a chem-
isorbed state. If this rate is high, x is close to the value obtained for conservation of density. If this
rate is low, x is close to the value for nonconserved density even though the total number of parti-
cles is actually conserved. We conclude that the length of precursor “hops” influences the growth

exponent.

When an adsorbed system is quenched below an order-
disorder transition temperature, ordered domains begin
to form. If the ground state is degenerate, the local
configurations at the boundaries between domains are not
those with the lowest free energy. To reduce the total
free energy of the system, the lengths of these boundaries
are reduced, and the domain sizes become larger. In
Monte Carlo studies of the kinetics of domain growth
with lattice-gas models, two types of dynamics have been
used widely: Kawasaki dynamics and Glauber dynam-
ics.!™3 In Kawasaki dynamics, which simulate closed
systems, particles migrate from one lattice site to a va-
cant nearest-neighbor lattice site. Glauber dynamics,
which simulate open systems, allow exchange of particles
with an external reservoir.

By analogy to static critical phenomena, it has been
proposed*’ and observed®? that at late stages of growth,
when the domain sizes are much larger than all micro-
scopic lengths, the growth law has a power law form
I ~t*, where [ is the length scale of the domains. The
physics of domain growth is governed by only one length
scale: the size of the domains. One of the main goals in
the study of kinetics of domain growth is to determine
the value of the growth exponent x and to establish the
factors that affect its magnitude.

For a square lattice gas that orders into a c(2X2)
structure, the degeneracy is p=2, and the growth ex-
ponent is x =1, independent of whether Kawasaki or
Glauber dynamics are used.'°”2° The situation, however,
is not so clear for p > 2. This occurs, for example, in the
case of a lattice gas with equal repulsive nearest- and
next-nearest-neighbor interactions on a square lattice. In
this case, a (2X 1) structure with p =4 occurs when the
lattice gas is quenched below the transition temperature.
For a fractional coverage of 0.5, this transition tempera-
ture is 1/B,6=0.525 (Ref. 21), where ¢ is the lateral in-
teraction strength. Sadiq and Binder?? have studied this
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system in detail, showing that x ~0.35 for Kawasaki dy-
namics and x ~+ for Glauber dynamics. In the case of
Kawasaki dynamics, they argued that domain growth is
governed by the diffusion of an excess (or deficit) fraction-
al coverage at the domain walls. It was suggested that
diffusion of the adsorbed particles from regions of excess
to regions of deficit fractional coverage is necessary for
domain growth, and that such a mechanism gives rise to
x ~L.2% An investigation by Vinals and Gunton®* of a
lattice-gas model for hydrogen chemisorbed on Fe(110)
was not able, however, to verify this conjecture.?? This
system has both a (2X 1) and a (3X1) phase. The (2X1)
phase has degeneracy p =2, and the (3X 1) phase has de-
generacy p =3. Although domain walls with excess frac-
tional coverage exist for both phases, it was found that
x =1 for the (2X 1) phase, whereas the value of x ranged
from ~0.14 to ~0.25 for the (3X 1) phase. Hence, for
p > 2, domain growth is not well understood. Indeed, a
recent Monte Carlo study even suggested that the Sadig-
Binder result of x ~0.35 is due to crossover from zero to
the true asymptotic value which is 1.%°

These dynamical models have not heretofore con-
sidered the possibility of a precursor state. In many real
systems, however, precursor states are important inter-
mediates for surface diffusion,?® adsorption, and surface
reactions.?””?® The preexponential factor for diffusion D,
of hydrogen adatoms on the Pt(111) surface has been
found experimentally?® to be 1.0 cm?s ™! (at a fractional
coverage of 0.24). If we take the lattice constant A to be
3.0 A and the vibrational frequency parallel to the sur-
face v to be 10'3 s™!, then the value of the preexponential
for a random walk between sites is Dy=A*v/4=2.25
X 1073 cm?s™!. The high experimental value is strong
evidence for the existence of a stable precursor particle
that executes many “hops” before it is deexcited into a
chemisorption state. Therefore, we have investigated a
lattice-gas model with both a strongly bound chemisorp-
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tion state and a weakly bound, mobile precursor state.
We consider a square lattice gas with identical and repul-
sive nearest- and next-nearest-neighbor interactions in or-
der to compare with previous results that did not include
a precursor state.”> Here two possible adsorption states
exist at each site on the lattice, a strongly bound chem-
isorption state and a weakly bound precursor state. A
particle in the chemisorbed state can only be excited into
the precursor state at the same site. On the other hand, a
particle in the precursor state can experience one of the
four following fates: (1) it can be deexcited into the
chemisorbed state at the same site (if there is not another
particle chemisorbed there already); (2) it can desorb
from the lattice (if the system is open); (3) it can migrate
into the precursor state of a nearest-neighbor site; or (4) it
can remain in the precursor state at the same site. We al-
low adsorption from the gas phase into the precursor
state at any site when an open system is being modeled.

There are five microscopic processes, the rates of
which we have to consider: excitation, deexcitation, mi-
gration, desorption, and adsorption. The excitation-
deexcitation potential is modeled by two intersecting par-
abolae, as illustrated in Fig. 1, where

E, =k, /2+aq
and
E,=ky((—60)/2+a,,

and the variable § is the excitation coordinate with origin
at the equilibrium position of the chemisorbed particle.
The model parameters are k| k,, a;, @,, and ;. The zero
of energy is the bottom of the chemisorption well of an
isolated particle. The bottom of the precursor well is «,,
and the bottom of the chemisorption well is given by
;= dnnVan T OnnnV NN Where the subscripts indicate
nearest- and next-nearest-neighbor sites, N is the number
of occupied sites, and ¢ is the strength of the lateral in-
teraction. The top of the barrier is the point of intersec-
tion of the two parabolae. The barrier heights for excita-
tion E.,. and deexcitation E,, are therefore functions of
the local configuration of chemisorbed particles. We in-
vestigate only cases where the precursor density is van-
ishingly small and hence need not consider the interac-
tion between precursor particles. We assume there is no
interaction between a chemisorbed particle and a precur-
sor particle.”® Thus, @, is independent of the local
configuration of adsorbed particles. The migration and
desorption barriers of the precursor, E;, and E, are

Energy of isolated
chemisorbed particle

£=0

£=%,

FIG. 1. Model for excitation-deexcitation potential.
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also assumed to be constants, independent of the local
configuration.?® If we take the “attempt frequency” to be
771 for each of the microscopic processes, the probabili-
ties of success in each attempt is the appropriate
Boltzmann factor. The probability of adsorption p,4 is
assumed to be constant and is chosen according to the
value of the probability of desorption and the constraint
of constant average fractional coverage.

The method we use differs from those used by previous
investigators in two ways. First, the probability of suc-
cess of a microscopic event is calculated using the proper
energy barrier which has to be surmounted to go from the
initial state to the final state. This is in contrast to
Kawasaki and Glauber dynamics where the probability of
success of an event is calculated using the difference in
energy of the initial and final states. It can be shown that
the Kawasaki probability is in general not equivalent to
the probability calculated using the proper energy bar-
rier, and hence Kawasaki dynamics do not correctly de-
scribe the kinetics of barrier crossing.?’

Second, the probabilities of success of the various mi-
croscopic processes vary over many orders of magnitude.
To carry out the simulation, we divide the microscopic
processes into a “fast” group and a “slow” group. The
“fast” group consists of processes that a precursor parti-
cle undergoes, i.e., deexcitation into a chemisorption
state, migration to a nearest-neighbor precursor state,
and, in the case of open systems, desorption into the
external reservoir. The choice of which event in the slow
group to pick during the simulation is made similarly to
the “n-fold” way.*® We group the slow excitation and ad-
sorption events into classes i, each corresponding to a
probability p; of a successful attempt, and m; is the num-
ber of potential events in each class i. For instance, if
there were a total of n; chemisorbed particles with a par-
ticular environment such that the probability of success-
ful excitation were p;, then m;=n;. An event in class i is
chosen with relative probability R;=m;p;/> m;p;.
Having chosen an event in class i, the time is increased by
67/p;. The factor of 6 is due to the assumption of
equipartition of energy, i.e., the heat bath excites a chem-
isorbed particle with equal probability in six directions,
and only one of these can produce a precursor particle.
Once a precursor particle is produced, it can either mi-
grate, deexcite, desorb, or remain where it is. Again, the
attempt frequency in each of the six directions is the
same, and the time increment for each attempt is 7. The
time is incremented by 7 even if the precursor remains in
its original location. The unitarity condition is

(pdex +pdes+4pmig +P0)/6=1 ’

where pg., is the conditional probability for successful
deexcitation given that the precursor is excited towards
the surface, and py is the conditional probability for
successful desorption given that the precursor is excited
away from the surface. Similarly, p,, is the conditional
probability for successful migration in one of the four
possible directions for migration, given that the precursor
is excited in that direction. p is the sum of the six condi-
tional probabilities of failure. When the precursor either
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FIG. 2. (1) for each set has been multiplied by an offset fac-
tor, f for clarity. fis 1, 2, 8, 4, 16 for sets 4, B, C, D, E, respec-
tively. For sets 4, B, and C, k,£3/¢=20, and k,£3/¢=10. For
set D, k,£3/¢=40, and k,£3/¢=10. For set E, k,£5/$=20,
and k,£3/6=1.

deexcites or desorbs, we go to the slow events again and
either excite or adsorb another particle into the precursor
state.

The values of the parameters used are summarized in
the caption for Fig. 2. Table I shows the probabilities of
successful excitation of the chemisorbed particle and
deexcitation of the precursor particle for the extreme
cases of zero and eight repulsive interactions. We used
the same temperature as Sadiq and Binder,?
1/B$=0.3325; and we constrained a,/¢ to be equal to
10. If we assume a value of 1.5 kcal/mole for the lateral
repulsion, then the system has a temperature of 251 K,
and the excitation energy of an isolated chemisorbed par-
ticle is 15.0 kcal/mole. The probability of successful
desorption is set equal to 0.3 for simulations in set 4 and
0.06 for simulations in set B. The value of p,4 is
4.32X107° for set 4 and 8.64 X107 '° for set B. Sets C,
D, and E are closed systems. Each of the sets of parame-
ters shown in Table I utilized 20 runs each with a lattice
size of 100X 100 and five runs each with a lattice size of
120X 120. We did not detect any finite-size effects al-
though this could be due to the similarity in size of the
lattices. The domain sizes were calculated by evaluating
the area of each individual domain and taking the aver-
age. The length scale as a function of time /(¢) was then

TABLE 1. Probabilities of success for excitation and deexci-
tation of an isolated particle and a particle with eight nearest-
and next-nearest neighbor repulsive interactions.

Set al/¢ Pexc Pgex
A4.B.C 0 8.679 8448 X 1074 1.000 0000
T 8 1.1494297 X 107* 0.0470738
D 0 2.6870601 10714 0.309 5745
8 1.7452212X107° 0.007 1473
E 0 8.679 8448 X 10~ 14 1.000 0000
8 1.5827465X 1073 0.648 1999
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obtained by taking the square root of the average area,
and we did not let /(z) exceed ~L /3. Since our lattice
sizes are only 100X 100 and 120X 120, there is a possibili-
ty of our not having reached the asymptotic regime.
However, our domain sizes are comparable to those at-
tained in??2 which we take as a benchmark. Initial ran-
dom configurations with a fractional coverage of 0.5, and
periodic boundary conditions were used. The growth ex-
ponents are shown in Fig. 2. These were obtained by
least-squares fitting of all the data points between the ar-
rows. If 1/7~10s™!, this corresponds to domain
growth at 0.5 <t <200s.

In Kawasaki dynamics, a particle that hops successful-
ly then occupies one of the nearest neighbor sites to the
original site. In Glauber dynamics, a particle that
desorbs from the lattice has a uniform probability of at-
tempting to readsorb on each site of the lattice, thus al-
lowing a more efficient search for domain configurations
of lowest free energy. In the precursor-mediated order-
ing described here, a chemisorbed particle is first excited
into the precursor state, after which it may either deex-
cite into its original site, migrate to a neighboring site, or
(in the case of an open system) desorb. In the limit of
strong coupling of the precursor to the lattice, the distri-
bution of sites into which it attempts to deexcite will be
peaked sharply at its original site. In this case, the search
for the lowest free-energy configurations is even less
efficient than with Kawasaki dynamics (where the distri-
bution of sites is composed of 8 functions at the nearest-
neighbor sites). In the opposite limit of weak coupling of
the precursor to the lattice where the probability of deex-
citation is low, the distribution of sites into which the
precursor attempts to deexcite will be more uniform over
the lattice. When p;, >>p 4.y, the precursor particle can
be excited or deexcited into a site on the lattice at any
distance from its original chemisorption site. There is no
constraint for deexcitation (readsorption) into the
nearest-neighbor site. Thus, the range for particle
“hops” becomes similar to what it is when using Glauber
dynamics, although the total density is still conserved.

This discussion can be quantified by considering the re-
sults for sets C, D, and E of Table I which are closed sys-
tems. The growth exponent obtained for this system by
Sadiq and Binder?? using Kawasaki dynamics is ~0.35.
In set E, p4., is high (cf. Table I) and x is less than the
value obtained using Kawasaki dynamics. This is the case
in the experimentally obtained growth exponent of
0.28+0.05 for O on W(110) which orders into (2X1)
domains and may have a degeneracy of p=4.3! More
stable precursors in sets C and D (cf. Table I) increase the
growth exponent to values higher than expected for a
closed system described by Kawasaki dynamics. Sets A
and B of Table I simulate open systems in which all pa-
rameters except for the probabilities of adsorption and
desorption are the same [and also equal to those of the
closed system of set C (cf. Table I)]. The contribution of
particle exchange via adsorption and desorption is
greater in set 4 and x ~0.5. With a lower rate of desorp-
tion and adsorption, set B has a growth exponent that is
smaller than that expected for open systems (cf. set A)
but greater than that of an otherwise identical closed sys-
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tem (cf. set O).

To summarize, we have presented a description of
precursor-mediated ordering at surfaces, a situation that
is expected to obtain in “real” systems.?®”?° Hence, ex-
perimental values of the growth exponent can be used as
a qualitative assessment of the stability of the precursor
state. For systems in which both surface migration and
particle exchange via desorption and adsorption occur,

H. C. KANG AND W. H. WEINBERG 38

the experimental growth exponent can be used to gauge
the relative rates of these processes.
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