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Surface three-body recombination in spin-polarized atomic hydrogen
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We determine the rate of b +b +b surface dipole recombination for hydrogen atoms adsorbed on

a He film. The calculation is based on the Kagan mechanism adapted to a 22-dimensional initial

state. We find a rate constant L, =2.7(7)X10 " cm s ' at B =7.6 T and T=0.4 K, which is

roughly a factor of 6 smaller than the experimental results. The magnetic-field dependence also

disagrees with experiment. A scaling approach, although leading to the correct order of magnitude,
is discussed and shown to be unsatisfactory. The reliability of some of our approximations is es-

timated. We conclude that the dipole-exchange mechanism is probably responsible for the

discrepancies with experiment.

I. INTRODUCTION

Since the pioneering work of London in the early six-
ties, the phenomena of superconductivity in metals and
superfluidity in liquid He have been believed to be mani-
festations of quantum mechanics on a macroscopic scale.
Since then superfluidity has been observed in liquid He
and in the lower part of the energy spectrum of atomic
nuclei. It is also believed to play a role in neutron stars.
The prospect of observing quantum phenomena on a
macroscopic scale in electron-spin polarized atomic hy-
drogen H~ has strongly stimulated the investigation of
this gas at low temperatures (T =80 mK —1 K) in liquid-
helium-covered sample cells. ' Compared with the
above-mentioned systems, an attractive feature of H& is
the possibility of observing Bose-Einstein condensation in
a wide range of controllable circumstances of tempera-
ture and density. Up to now the decay of the gas into Hz
molecules has been the major obstacle to reaching the
density-temperature regime of interest.

Polarizing the electron spins in a strong magnetic field
(8 = 10 T) strongly reduces the decay and densities in the
range n =10' —10' cm were achieved. The next step
towards Bose-Einstein condensation was the creation of a
doubly polarized 0&& gas, ~here both the electron and
proton spins are polarized. The double polarization is
achieved by the spontaneous selective recombination of
the hyperfine a-state population as a result of the small
admixture of the antiparallel electron-spin state (the ls
hyperfine levels of atomic H are as usually labeled a, b, c,d
in order of increasing energy).

The first experiments based on this mechanism still
showed a slow decay, which was interpreted for low tem-
peratures in terms of b~a surface relaxation, studied
theoretically in Refs. 5—9, followed by rapid recombina-
tion. In Ref. 8 it was first pointed out that this interpre-
tation led to a discrepancy of order SO between experi-
mental and theoretical values for the b ~a surface relax-

ation constant G, . Many attempts were made to resolve
this discrepancy, in particular via a three-dimensional
calculation of the collision of adsorbed atoms and a pos-
sible role of surface dimers. '

Further experimental progress took place by compres-
sion ' of H&& to densities up to 4.5X10' cm . This is
to be compared with the critical density for the transition
to the Bose-Einstein condensed phase, predicted for an
ideal gas at

n, =(mHk~T, /3 31tri ) =1.6X10' cm

for T, =100 mK. The main obstacle to achieving higher
densities now turned out to be a process of magnetic-
dipole induced recombination in a three-body collision of
b atoms, first described by Kagan, Vartan'yants, and
Shlyapnikov. " Hess et al. ' first noticed that this same
process taking place at the surface could have been re-
sponsible for the apparent discrepancy at lower densities.
A reanalysis of previous experiments and a new experi-
ment by Reynolds et al. ' confirmed this and showed G,
to agree with theory taking into account the roughness of
the cell walls.

With respect to the three-body rate constant L the situ-
ation is less satisfactory. For the bulk constant the mag-
nitude is roughly in agreement with Kagan's calculation
for 8 =7.8 T. The field dependence, however, shows a
disagreement. At the temperature relevant for achieving
Bose-Einstein condensation, the Kagan process takes
place primarily at the surface. The present paper deals
with the theory of this surface process. The main results
were published earlier as a short report' (further referred
to as I), with only a superficial description of the methods
used and without a physical interpretation of the results.

The decay of H&& through the three-body channel is
described by an additional n term in the rate equation

dn Geon 2 I eon 3
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38 11 500 1988 The American Physical Society



38 SURFACE THREE-BODY RECOMBINATION IN SPIN-. . . 11 501

L' =L' +L,' —)).,h(T)exp( —3eolkT).a (2)

Here, A /V is the surface-to-volume ratio, A,,h the thermal
de Broglie wavelength, and —co the adsorption energy.
It should be noted that the L', constants include a subse-

quent recombination of the final H atom in case its elec-
tron spin is flipped:

e& L
—1 /2+ 2L +1/2

g~S g~S (3)

the superscripts +—, standing for the spin-projection m,'3
of this atom along B. The constants L,' and L +,'

denote the pure single- and double-spin-flip contributions
to L', . In this paper we shall sometimes consider the
rate constants

L —1/2 +L + 1/2
g, S g, S g, S

representing the pure b +b +b ~Hz+H recombination
decay. For comparison with experiment, however, we
present results of the separate contributions L,—+', as
well as the total effective rate constant L,' . A weight fac-
tor close to 2 for the double-spin-flip contribution has
been considered in several experimental papers. Results
to be presented here allow the derivation of L,' for such
weight factors.

In this paper we reexamine the results of I with respect
to the surface rate constant L,' . Throughout this paper
we approximate the helium film as an inert surface, the

I

Like the two-body relaxation constant, L' is the sum of
bulk and surface contributions

effect of which on an H atom is represented by a potential
well V(z). In Sec. II we present expressions for L,+ '~—in

terms of three-body collision amplitudes. In addition we
review our method to calculate L,—+ ' . In Sec. III we de-
scribe our results. It turns out that they show some
difference with I, primarily by the use of an H-H singlet
potential, describing more accurately the H-H binding
energy data. A major discrepancy still exists with experi-
mental data, both with respect to absolute magnitude and
Aeld dependence. In Sec. IV we confront our method
with the scaling procedure, described by Kagan et al. '

We show that the scaling method is unsatisfactory, al-
though the results do agree roughly with experiment (as
to magnitude, not to field dependence) and although it
enables one to obtain an L,' value without cumbersome
calculations. One of our model assumptions in Secs. II
and III is the complete neglect of the influence of the
helium surface on the final Hz+H state. In I we already
pointed out briefly that some of the effects which arise
when this assumption is relaxed are estimated to be small.
In Sec. V we describe how the estimate is carried out and
present its results. Some conclusions of the present paper
are given in Sec. VI.

II. CALCULATION OF L,+'/

Past experience in connection with two-body rates
shows that factor of 2 errors easily arise from a careless
treatment of identical-particle aspects. Since a corre-
sponding factor of 6 in the case of three H atoms is of the
same order of magnitude as the Anal discrepancy with ex-
periment, it is of importance to specify in sufficient detail
the rate expression which is used as a starting point.

We start from the expression'

P., '"=(&]])))' X fdPz f d0) ])f )fan P + /], p, q, l ]) (5)

with the scattering amplitude f being given by

—,mH
2

f p +]]] ])]' '(q)Pz]] +—,
'

) V~ Z P ))' '(p q ))
P

The operator Vd is the sum of magnetic dipole interac-
tions, while P'+' and P' ' are the initial and final three-
atom states, including the central (singlet and triplet) in-
teractions. By p; and q; we indicate a combination of
two-dimensional (2D) Jacobi relative momentum vec-
tors, ' which together with the bound z states of the atom
define the plane-wave part of g +'. The initial spin state
(Ms = ——', ) is suppressed in our notation. For the sake of
definiteness we choose p; to be the momentum of atom 1

relative to 2, while q, is the momentum of atom 3 relative
to the center-of-mass of atoms 1 and 2. The label n

denotes a particular molecular state of atoms 1 and 2.
For phase-space reasons we neglect the possibility that a
final atom is again adsorbed to the surface. The plane-
wave part of the final state g' ' is a state in which an
atom and a molecule with relative 3D momentum q& col-
lide with a wall with total perpendicular momentum Pz.

l

The normalization of the states g'+' and P' ' is chosen
according to

(g'+'(p;'q';)~g'+'(p;, q;) ) =&(p'; —p;)&(q'; —
q; ),

{g (Pzqfn m, )lp (Jzqf&m ))

=~(J'z J'z)5(qf qf )fi '

The model that we use to evaluate Eq. (5) is based on
the Kagan dipole mechanism. " In this description of the
recombination the electronic dipolar interactions induce
a transition from a b+b+b incoming state to a final
state, consisting of a bound pair of atoms (I and 2) and
atom 3, which does not interact with this pair. In view of
this and the selection rule S&p =1~S,p =1, the dipolar
interaction between 1 and 2 does not contribute. It was
pointed out in Ref. 18 that such a contribution does arise
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of three goninteracting H atoms bound to the surface,
i.e.,

' ~i~12+qi~12, 3e
Ip;q; & =No(zi)&o(z2)40(z3)

(2iriri)

XXs = 3/2, M& = —3/2( I r 2
&
3 ) (8)

Z3

of which the spatial part is distorted by the mutual triplet
interactions. For this distortion we use the "2

—,
' dimen-

sional" model. ' which has proved to be very successful
for the description of two-particle collisions along the
surface. In this model the distortion affects only the fac-
tor between large parentheses in Eq. (8). It is replaced by
a solution u (pi&,piz z) of the two-dimensional
Schrodinger equation for three H atoms mutually in-
teracting by means of triplet potentials V, averaged over
the z motion of the atoms:

FIG. 1. Situation for three-body collisions on a He film.

The distance of particle i from the surface is denoted by z;.
Furthermore, r„r„k and p„,p„ l, are 3D and 2D Jacobi momen-

ta, and 0 is the angle between magnetic-field direction and sur-

face normal.

when an additional exchange interaction of particle 3
with 1 or 2 in the final state is taken into account. This
dipole-exchange mechanism and possible other more
complicated higher-order processes are neglected in the
present paper. As for now the inclusion of this mecha-
nism in surface calculations is not feasible.

Figure 1 shows the geometry of the system. We use
Jacobi coordinates r;~,r;J k and their projections p;J,p;~ k

on the surface. To calculate f, we first consider the ini-
tial state

I

P'+ '(p;q; ) ) of Eq. (6). This represents a state
I

V' (p; )=f" dz, f" dz P'(z;)P'(z )

X V, (rj )$o(z, )Po(zj ) .

In the spin part y of Eq. (8) the magnetic quantum num-
ber refers to the magnetic-field direction.

The calculation of u(p, z,p~z 3) is a two-dimensional
three-atom problem. It could be obtained with the help
of the Faddeev formalism' ' in two dimensions. Instead
of this, however, we follow the method of Kagan et al."
~e approximate u (p, z,p, z i) by only taking into account
spatial correlations between the atoms of the recombining
pair (1 and 2) and the pair (1-3 or 2-3) interacting via the
dipolar interaction. We start with the symmetrized free
state and replace the exponentials of the recombining
pair and dipole pair by two-particle triplet scattering
states. For instance, for the Vz(1, 3) term of Eq. (6) we
make the replacement

X t u ~u(pie Pi&) —[u„(pie)+v i, q (Piz)]u' (Pii)+[u' (Piz)+u „„(Piz)]u' (P»)
12 12 13 13 13 12 13 12

+[ ~ (p,z)+ „'. (pi, )]u „„.(P,i),
12 13 12 13

(10)

in which k', z=(p, + —,'q;)/A', k'»= —q;/fi. Furthermore,
the 2D two-particle relative wavefunction v f, (p) has
exp(ik p)/(2M) as a plane-wave part. Note that this
Kagan-like replacement destroys partly the symmetry of
Q~Pu. Note furthermore that the combination of six
terms in Eq. (10) describes correctly the asymptotic
plane-wave part.

In the volume case the six terms are identical in the
T=0 limit, leading to Kagan's results. We believe that
Eq. (10) is a reasonable approximation, since the volume
of configuration space in which particles 2 and 3 are
closely together and thus correlated is only a small frac-
tion of the total volume contributing significantly to the
dipole integral. For low temperatures the only significant
contribution of uz(p) to the amplitude comes from the
lowest partial wave m =0, which for low k separates fur-
ther into p- and k-dependent factors:

ui, (p) =g (k)v '(p),
with

g(k) =
2 1/2

+ [y+ln(ka/2)]
4

(12)

and

ln(p/a )

2vrA
(13)

just outside the potential range. Here, y is Euler's con-
stant and a is the 2D scattering length, which for the po-
tential given by Eq. (9) has the value of 2.4ao, if the
Mantz-Edwards wave function ' is chosen for Po(z).
Note that vz(p) differs in norinalization from the radial
wave function in Ref. 21. A T=O calculation, as for
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volume recombination, is now impossible, because of the
logarithmic k dependence in Eq. (12). These equations,
however, still enable us to derive a low-T approximation,
since the energy dependence is now contained in a
separate factor. We will use this later to calculate the
thermally averaged quantity L,—+ '

We now turn to the final state ~lij' '(qfPzn+ —,')) of
Eq. (6). In the previous section we defined it as an eigen-
state of' the Hamiltonian with central interactions be-
tween the atoms and atom-wall, molecule-wall interac-
tions included. We now follow Kagan, however, in leav-
ing out the atom-molecule interaction. Furthermore, in
view of the rather high H+H2 relative kinetic energy
(-60 K for 8 =10 T, v =14, j =3 and m, = —

—,'), we

neglect the attractive part of the surface potential (-4.5
K) and replace it by a perfectly refiecting rigid wall. As a
first step, however, we will leave out the wall completely.
An estimate of the effects neglected with this approxima-

I

—'m~ 25

2M (2n.fi)

tion is given in Sec. V.
On the basis of this the final state reduces to

zz/~
e

'(qfP, nm, )) ="~,
J (ri2}

iqf rl2 3/ff
e

X
3y2 XS =O, M =0(1~2)

(2m.fi) n " ' s»

Xyix2 ~ (3) .
$3

(14)

In Eq. (14) Z is the center-of-mass position perpendicular
to the surface and u„j is the molecular wave function (m
relative to z). It turns out that only odd j final states are
possible, since the Vd(1, 3) and Vd(2, 3) terms of f cancel
for even j and are equal for odd j. Using Eqs. (8}, (10),
and (14) we obtain for the amplitude

X {Xs =o M =0(1,2)yi/2, ~ (3)l Vd(1, 3)IXS=3y2,M 3&2(1,2, 3))
12 ' SI2 S3 S

X u (P12 P13)40(z 1 )40(Z2 )40(z3 ) . (15)

To evaluate the integrals it is convenient to use cylindri-
cal coordinates with the surface normal as a symmetry
axis. The dipolar interaction can be written as a scalar
product of rank-two tensor operators X' ' and Y' ' in

spin and coordinate space, respectively. Clearly, only the
term

~(2) ~(2)
3/2+ m —3/2 —m

Sg
(16)

of this scalar product contributes, when these operators
have the magnetic-field direction as a quantization axis.
The z axis normal to the surface being the natural quanti-
zation axis for the spatial part of the problem, we express
the Y' ' operator in terms of Y' ' operators with respect
to the z axis. Choosing x along the projection of B as in
Fig. 1, the coefficients in this expression are reduced
Wigner functions

d'-"3i2-~, „(())m, ,p

2 3 2
PI 9'i

0 4H
P2 3 2

+ +g
6m H 4m~

+(—+m, }2@&8, (18)

where E, is the energy of the molecular state. In the first

Here, 0 is the angle between B and the surface normal
and pfi is the transfer of angular momentum from the
spin system to the orbital system along the z axis. The
Wigner functions describe the field-orientation depen-
dence of the amplitude. Furthermore, the Pz dependence
of f is concentrated in the exponential exp( iPzZIfi)—
and in qf by means of the energy-conservation relation

p z /fi
(19)

where (8~,$ ) are the polar angles of the final momentum

qf. Evaluating the two integrals over the azimuthal an-
gles p, 2 and p», reduces the expression for F „(O~,Z) to
a multiple integral over p&2, z, 2, p», and z». This is
worked out in the Appendix. There we also give the ex-
pression for G in terms of the functions g (k', 2 ), g (k'» ),
and g(~ —ki2 —

ki3~ ), defined in Eq. (12). In the volume
case, we would obtain two separable integrals over r&2

and r». Now the r, 2 and r» integrals are not completely
separable because of the surface bound states in Eq. (15}.
The problem, however, is still manageable numerically.

We now turn to the calculation of the rate constants
L,—' . By Parceval's theorem the integral over Pz in Eq.
(5) can be carried out analytically. Apparently, this is
due to the present neglect of the Pz/6m~ term in Eq.
(18). As we are only interested in low temperatures, the
energy pertaining to the initial state is much smaller than
that of the final state. Therefore, we neglect energy
changes in the final state due to the thermal-averaging
procedure. With the help of Eq. (12) it is now possible to
determine the temperature-dependent factor of the rate
constants L,—'

l

instance we neglect the Pz/6mH term, i.e., a possible en-

ergy transfer to the center of mass in the final state. In
Sec. V we discuss also the effect of this approximation.
This reduces the Z integral in Eq. (15) to a simpler
Fourier integral:

f=G(ki2, ki3)
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(G &T (G (k12&k13))th

, x'th fdk;, fdk;, exp[ —(k'tz+ kt3+ kt2 k't3) iri ImH k& T]G (kt2, k t3) .
16n-

We end up with L,—+' as a function of 8 and T:

I. "(B,T) =I "(B)(G'), ,

where

(20)

(21)

(B)=(2iriri) g g f dZ f d(cos8 )~F „(8,Z)~ [d' 3&2+,~z„(8)] (22)
, . 4mB

To exhibit more clearly the dependence on field orientation, we expand L, ' in—Legendre polynomials P„(cos8), mak-
ing use of Wigner 3j symbols:

2 2 n 2 2 n
[d' '„(8)] = g(2n+1) 0 0 P„(cos8) .

n

(23)

The result is

L,—' (B,T)= g A„—' (8, T)P„(cos8} .
n =0,2, 4

(24)

Only even n values contribute because F „ turns out to
be even in p. Apparently, as in the volume case the
double-spin-flip (m, =

—,') and single-spin-flip (m, = —
—,')

contributions are related by

2 2 nA„(B,T)
1 I 0

2 2 n=4A„'i (28,T), (25)

where the factor of 4 results from the spin-matrix element
of Eq. (15). Equation (25) is the counterpart of a similar
relation between L+' and L ' for the volume.

III. RESULTS

As in the volume case, the most important molecular
states appear to be the states close to the continuum. For
fields below 10 T 99%%uo of the total contribution to the
effective rates comes from the v =14, j =3 state, with a
binding energy of 72 K, and the small remaining fraction
from the v =14, j =1 state, with a binding energy of 183
K. This fraction becomes the dominant part for higher
fields.

In the previous section we used the wave function tI)o(z)

of Mantz and Edwards ' to calculate the effective poten-
tials V' of Eq. (9). To keep computation time within
reasonable bounds, we prefer to use the form
P~(z) =2a z exp( —az) for calculating f. For a
=0.15ao ', t}Ito resembles rather closely the Mantz and
Edwards wave function, while for a=0.20ao ' it resem-
bles the wave function in a Stwalley-type potential
reproducing the experimental adsorption energy. In
most of the calculations we shall use the farmer value for
a. The error bar in some of the results to be given corre-
sponds with the change in L,' as a consequence of the re-
placement of this value by a=0.20ao '. It turns our that
our values for L,' scale roughly with a, which would

suggest the validity of the scaling prescription' (see,
however, Sec. IV).

In Fig. 2 we present the partial contributions A„'
(n =0,2) to L,' as a function of 8 at T=0.4 K (dashed
curves). We also present the partial effective rate con-
stants A„'~ +2A„' for n =0,2 (solid curves). Note
that in I we presented values for L, instead of L,' . The
remaining differences between the results of I and Fig. 2
can be explained by the fact that we here use a H-H po-
tential, which reproduces more accurately the experimen-
tal data on singlet boundstate energies. Therefore the
effective potentials of Eq. (9) and the wave functions u,
and v' are slightly changed. An important effect comes
from the increase of the binding energy of the v =14,
j =3 state by about 6 K, which results in a shift of the
curves of the rate constant as a function of 8. From Fig.
2 we may conclude that the anisotropy is small, which is
caused by the fact that all p values in Eq. (22) give contri-
butions of the same order of magnitude. This seems to be
in agreement with experimental indications. ' '

Both the field dependence and absolute magnitude of
the effective rate constant, however, are at variance with
experiment. We find a rate which is growing with 8 by
70%%uo from 8 =4 to 9 T, whereas experiments show a slow
decrease. For the field orientation normal to the surface
we find L; =2.7(7)X10 cm s ' at 8 =7.6 T and
T =0.4 K, while the corresponding experimental values
are L,' =1.5(2) X 10 cm s ' (Ref. 22) and
L; =1.8(4)X 10 cm s ' (Ref. 12). These values are a
factor of 6 larger than our calculated value. In Ref. 15 it
was noticed that a scaling prescription to convert the
volume rate into a surface rate, leads to a correct order of
magnitude for L; . (More precisely, the difference with
experiment is a factor of 2.) Objections against this scal-
ing prescription will be presented in the following sec-
tion.

In Fig. 3 we present the temperature dependence of the
rate, governed by the function (G~)r of Eq. (20}. As a
reference temperature we use TO=0. 4 K and therefore
we plotted ( G ) r /( G ) r as a function of F. Note that

0

L,' goes to zero logarithmically for T~O, illustrating
again that a zero-temperature approximation as in three
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IV. SCALING PRESCRIPTION

As has been pointed out in the rin e previous section, the
roce ure, proposed by Lagan et al. ' leads to
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L eff 4& 2Leff
s 3 g (26}

At a field of 7.6 T, where the Kagan dipole rate constant
has the value L' =6.8X10 cm s ', this leads to
L', =3.2X10 cm s ' for the surface rate constant,
which is a factor of 16 larger than our value

L,' =2.0X10 cm s ' for 8 =7.6T, 0=0, T=0.4 K,
a =0.15ao ' (and only a factor of 2 different from experi-
ment}.

We notice that the bound states Po and Po of the two
models are different. The widths hz of the wavefunctions
are comparable, however. To analyze the differences be-
tween the two models, we first try to find out how the re-
sult of our calculation is modified by replacing our ]}]]oand
a by Po and a. This leads to an increase of L,' by a fac-
tor 2.4, which indicates that the different choice of bound
states is not the main reason for the large difference.

In the derivation of Eq. (26) by Kagan et al. , the rela-
tive and center-of-mass motions are considered to be in-

dependent, which is not strictly justified, since all three-
particle coordinates perpendicular to the surface should
essentially be positive. This gives rise to restrictions in
relative z coordinates, which have been taken into ac-

I

surface rates which differ by more than an order of mag-
nitude from the values presented here. Their results
agree better with the experimental data. We believe,
however, that this scaling procedure is a bad approxima-
tion in the present situation. To show this, let us analyze
step by step where the above-mentioned large difference
with our L,' value arises from.

In Ref. 15 Kagan et al. claim that a state of adsorbed
atoms can be regarded as quasi-three-dimensional, when
the width of the one-atom z wavefunction is much larger
than the interaction range of the particles. (In the case of
polarized atomic hydrogen atoms the interaction range
ro-6ao and the He-H potential well has a width of
d =10ao —20a o) The initial state is considered to be a
product of a 3D relative three-atom state and three sur-
face bound states ]}]]o. The authors use the function
Po(z) =(2a)' exp( —az), with a =+2mH ~so~/]]i', as a
bound state. A choice of 0.9 K for ~sJ in the case of a
He film leads to a value of 0.10ao ' for a. Strictly speak-

ing, the exponential form is only assumed for large posi-
tive z. The normalization factor implies a cutoff close to
z =0. The simple exponential form introduces a
simplification in that the product of bound states then de-
pends only on Z. When the relative and center-of-mass
motion are subsequently treated independently, this leads
to a very simple relation between the surface and bulk
rates

count correctly in our model, but not in the scaling pro-
cedure. If we introduce the same approximation in our
calculation, this leads to another increase by a factor of
1.6. The remaining factor of 4.2 can only be accounted
for by the two- and three-dimensional natures of the rela-
tive three-atom state, used in the two models.

As we already pointed out, Kagan et al. argue that the
nature of this state should be three-dimensional when
d ))ro. However, a third length scale plays a crucial
role: the wavelength A, . For d &&A, the well would indeed
be wide enough to justify this approximation, especially
near the interaction region. However, the actual situa-
tion is closer to the opposite limit: At 0.4 K the wave-
length A, =130ao. In this situation the typical single-
particle energy separation ~so~=]]'i /(2mHd ) in the z
direction is larger than the relative kinetic energy
4ir fi /(mHA, ) along the surface, thus impeding transi-
tions in which the z eigenstate ]}]]o is changed. Freezing
the Po eigenstate in the z direction, however, is the basic
assumption leading to the 2 —,'D mode. A 2—,'D approach
therefore seems more appropriate than the limiting situa-
tion ~Eo~ ((4' fi /(mHA, ) in which the atoms would
behave unconfined also in the z direction. This is also the
main conclusion reached in previous more exact calcula-
tions ' of b +b surface dipole relaxation.

To make the comparison of our surface recombination
model with the scaling approach complete, we also re-
placed our 2D triplet functions in Eq. (15) by 3D ones.
This indeed resolved the last factor of 4.2 discrepancy. It
is of interest here to point to the radically different low-
energy behaviors of 2D and 3D relative two-particle wave
functions: 2D wave functions tend to zero logarithmical-
ly, as can be seen from Eq. (12), while 3D wave functions
are finite in this limit. This feature expresses itself in the
temperature dependence of (G )], (see Fig. 3} and thus
represents a characteristic difference with the scaling re-
sult.

V. DISCUSSION OF SOME APPROXIMATIONS

In this section we estimate the errors introduced by
some of the approximations in the previous sections. To
begin with, we neglected the center-of-mass energy in the
final state in Eq. (18). If we take it into account, it leads
to a redistribution of the energy released by the recom-
bination among the relative atom-molecule motion and
the center-of-mass motion in the final state. As a result,
we cannot use Parceval's theorem to simplify the calcula-
tion, but we have to use Eqs. (5) and (6) to calculate
L, 'and f. All e—quations presented in Sec. II remain
valid, except for Eq. (22), which has to be replaced by

I,—]/i(B}=(2mB) g g f dPz q&(Pz) f d(cos8~)
. 4mH

—iPzZ IA 2

dZ ]/i F~„(8q,Z) [d' 3/i+]/i „(8)]
(2 ri)']]i

(27)

keeping in mind that F „also depends on Pz through its
dependence on q&(Pz). Since the center of mass now ab-
sorbs part of the recombination energy, the average value
of q& decreases compared to the situation before. There-
fore the curve of the rate constant as a function of 8,

I

presented in Fig. 2, is expected to shift to lower field
values. For 8 =7.6 T, T=0.4 K and field orientation
perpendicular to the surface we now find L,'
=2.2X10 cm s ', which is a factor of 1.1 larger than
the corresponding value given in Sec. III. In Fig. 5 we
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FIG. 5. The field dependence of the effective rate constant averaged over field directions: (1) solid curve, without wall, but center-
of-mass energy in the z direction taken into account; (2) dashed curve, with rigid wall.

present the effective rate constants averaged over field
orientations as a function of B (solid curve). Altogether
we find a shift of the curve by about 1.5 T, which corre-
sponds to an average of 2.0 K for Pz/6mH. This is at
least a factor of 20 smaller than the average kinetic ener-
gy 3qf /4mH. The expectation value of the kinetic energy
Pz/6mB in the initial state (t o(z, )ti}0(zz )$0(z3 ) is
t)1 a /2mH for the analytic choice of our bound state.
This leads to a value of 2.0 K for the center-of-mass ener-

gy if a=0. 15ao ' and is in agreement with the shift found
here. Furthermore, the field dependence of I.,' as a func-
tion of 8 found in Sec. III is hardly changed. The small-
ness of the effect is related to the small expectation value
and spread in the center-of-mass energy compared to the
relative kinetic energy.

The derivation of L, and f, given in Ref. 16, leads to
expressions for these quantities in which the influence of
the inert wall is included in the final state tt'j' '. In Sec.
II, however, the actual calculation was carried out
without it. This might seem a very crude approximation,
because the atom-wall interaction has a strong repulsive
part for small distances. Therefore, we will now estimate
the effect of this approximation. We improve the model
described in Sec. II by assuming that the surface is a hard
rigid wall. As we already explained, the shallow attrac-
tive part of the surface potential is neglected for the final
state (but not for the initial state). The atom and mole-
cule are now offered the possibility to reflect from this
wall in the final state. In principle the molecule could be
deexcited to states with higher binding energy by these
collisions. This is not likely, however, because the addi-

—I =2
at, z 3 ~Z +qz ~ Pmol, z 3 Z qz (29)

can be both positive and negative. The final-state vector
'(qfP, n+ —,')) in Eq. (6) for f p „+t&2 is then

given by Eq. (14), where the z motion is described by

&P z3 jA &P l (zl +z2)/2Aat, z 3 e mol, z l 2

)=pat, z pmol, z (30)

In the case including the wall the integrals over p„tz and

p, t, in Eq. (28) run from 0 to 0D, because the particles
can only move away from the surface. Furthermore, the
plane-wave part Eq. (30} should be supplemented with
"time-reversed" reflected waves of atom and molecule:

Ip...p..t,.&+I —p... —p .t,, »

tional energy released would give rise to higher final mo-
menta, and a decreasing overlap with the initial state.
Therefore we will only consider reflections of the center
of mass of the molecule from the surface.

To compare with the case without a wall, we explicitly
give the expressions for both Inodels here. Without wa11

Eq. (5) can be rewritten as

L, ' '=(2M)' gg f dtp fdp„, f dp
mH n a

&« Ifqf pzn+I/2, p,.q, aI ~thermal &

(28}
where the momenta perpendicular to the surface
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For the following it is of importance to point out that we
may now extend the ranges of integration of p„, and

p „,again to (
—~, ~) if we multiply Eq. (28) by an ad-

ditional factor —,'. The total z wave function now vanishes
for z3=0 and for —,'(z, +z2)=0. We note that the in-

tegrals over z3 and —,'(z, +zz) in the expression for the
amplitude F run over positive values only.

We were able to calculate the rate constant numerical-
ly for this case of a rigid wall. In Fig. 5 we plot the
effective rate constant averaged over magnetic-field direc-
tions as a function of B at T =0.4 K for the case includ-
ing the wall (broken curve). We see that the difference
with the case without a wall is not significant. It is at
most 20%. There is also no sign of change with respect
to the field-orientation dependence. The similarity be-
tween these results can be explained as follows. In good
approximation the four terms of Eq. (31) give rise to
equal and noninterfering contributions to the transition
probability, which add up to the original result. As a
matter of fact, the main contribution of the terms comes
from nonoverlapping parts of the (p„„pm,l, ) plane. As
has been pointed out in the foregoing, small center-of-
mass momenta in the z direction are dominant. There-
fore the dominant regions in the (p„„p,l, ) plane are
the parts where p„,= —p,~, (p„, )0), p„,= —p

(p„, (0) for the terms of Eq. (31), respectively. Be-
cause of the absence of high momenta along the surface,
p„,/2mH+p „,/4mH is large for weaker fields. Con-
sequently, the foregoing regions do not overlap and do
not interfere. For stronger fields this is no longer the case
and the difference with the results without a wall is
indeed observed to increase.

ments. (4) The field dependence of L' calculated by Ka-
gan et al. and that of L,' display a similar behavior and
disagree both with the experimental B dependence.

Although the model we presented here is far from ex-
act, we believe that the essential features of the interac-
tion of the particles with the wall are included. Some
refinements to improve the model in connection with the
influence of the inert wall have shown to be of minor im-
portance. Part of this discrepancy with the experimental
data may be ascribed to the dynamical role of the wall.
However, since the magnetic-field dependence of the
volume and surface rate constants display similar devia-
tions, it is likely that the discrepancies in both cases are
caused by the same mechanism. We have strong indica-
tions that the discrepancy in the volume case is caused by
the neglect of interactions between the final-state mole-
cule and atom, in particular by the absence of exchange:
A more rigorous calculation of volume recombination, in
which all three-particle correlations are included except
for exchange, lowers the rate constants to values a factor
of 5 too small compared to the experimental data. The
physical picture underlying this correlation effect is the
quenching of the dipole force at small distances due to
repulsion. From the same physical picture we expect the
above-mentioned factor of 6 surface discrepancy to show
a further increase, when similar correlations would be
taken into account. It seems probable that the dipole-
exchange mechanism' is crucial to resolve the discrepan-
cies for both volume and surface recombination. It
remains to be seen, however, whether a calculation in-
cluding this mechanism would be feasible in the surface
case, where a great part of the symmetry of the volume is
lost.

VI. CONCLUSION

In the foregoing we described a method, based on the
Kagan dipole mechanism, for the calculation of the
three-body dipolar recombination rate for atoms ad-
sorbed on a He film. The results can be summarized as
follows. (1) At a field of 7.6 T and temperature of 0.4 K
we obtained L; =2.7( 7 ) X 10 cm s ', which is about
a factor of 6 smaller than the experimental value. (2) The
field-orientation dependence of the effective rate constant
is found to be weak, which agrees with experimental data.
(3) We predict a strong increase of L,' with increasing
temperature between T =0. 1 and 0.6 K. It might be in-
teresting to include this in the analysis of the experi-
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APPENDIX

We here present a complete expression for the reduced
amplitude F „(8~,Z) of Eq. (19) for fixed final-state
quantum numbers v, j,m, m, , qf and fixed p, Z:

3

1/2

2m.A (2m'�) 4~.
3Z —iq, z

l 2 /2' b +iq z&3/AX dz&2 e * " dz|3 e ' " I (z|2,q~~ )K„(z&3,q~~ )Po(z|)(to(z2)$0(z3) .—3Z Q

(A 1)

This includes the subsidiary conditions z, 0 introduced in Sec. IV, which also ead to

a =min( —3Z —
z&2,

—3Z +2z, z ),
b 2Z+ 2Z12 ~

(A2)
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Furthermore,

oo u~j( r12 )I ( 12, 1J(~)= dP12P1zu '(P1z)J (V~~P, 2/2') Y' (812 0)
0 r]2

( F2p(813 0)
+p( 13 J~( ) P13dP13U (P13)Jp(~~~P13~~)

0 r]3

(A3)

represent the uncoupled integrals along the surface with
q~~

=qfsinO and q, =qfcosO . The functions J are cylindri-
cal Bessel functions and cos8, =z; /r, . Finally, the energy dependence in the f amplitude is concentrated in the func-

tion

G(k12, k13) =2[g(k12 )g(k13 )+g(k13 )g( I

—
k12

—
k13I )+g (k12 )g ( I

—
k12

—k13I] (A4)
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