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The thermodynamic models used to describe the Fe-Al phase diagram are studied in detail. We
calculate the phase diagram of Fe-Al within the Bragg-Williams approximation and the tetrahedron
approximation of the cluster-variation method, including nearest- and next-nearest-neighbor chemi-
cal and magnetic interactions. In contrast to previous calculations performed within the Bragg-
Williams approximation, we find that the model does not reproduce the experimentally observed
two-phase equilibrium region between a disordered Fe-Al solid solution and a paramagnetic 82 or-
dered phase. Within the model, the previously reported two-phase coexistence corresponds to
metastable equilibrium. The equilibrium phase in that region of the phase diagram is a ferromag-
netic 82 phase.

I. INTRODUCTION

The Fe-Al system is widely regarded, for both experi-
mental and theoretical purposes, as the prototype binary
magnetic alloy based on a bpc structure. Consequently,
Fe-Al has been the subject of several experimental and
theoretical investigations. The experimental work' has
revealed a complex phase diagram topology with phases
of different symmetry (A2, B2, and DO3) appearing in
both the paramagnetic and ferromagnetic states. Furth-
ermore, the existing experimental evidence indicates a
complex low-temperature magnetic behavior near 30
at. % Al. In this region, as the temperature is lowered,
the alloy transforms from a paramagnetic to a ferromag-
netic phase, reverts to a paramagnetic phase and, 6nally,
it transforms into a spin glass phase.

Much of the theoretical work to date has been aimed at
reproducing the Fe-rich portion of the equilibrium phase
diagram. These studies are generally based on Bragg-
Williams (BW) treatments of the free energy, with the
exception of the work of Golosov et al. who applied the
cluster variation method (CVM). These authors, howev-
er, neglected magnetism in their CVM modelling of the
Fe-Al system. General studies of bcc magnetic alloys
with one magnetic component, although not specifically
aimed at reproducing the Fe-Al phase diagram, have also
been carried out. ' Dunweg and Binder performed a
comparative study for model bcc alloys with one magnet-
ic component using Monte Carlo (MC) simulations, the
CVM and the BW approximation. These authors found
that, whereas the MC and CVM approximations are in
close agreement with each other, the phase diagram pre-
dicted by the BW approximation was significantly
different. In view of such results, we reexamine here the
thermodynamic models used to describe the Fe-Al sys-
tem. The set of interaction parameters used to reproduce
the Fe-Al phase diagram by previous authors in the BW
approximation are used with the tetrahedron approxima-

tion of the CVM. The more reliable configurational en-
tropy provided by the CVM should give an exacting test
of the interactions proposed in the past. As discussed
below, we focus also on qualitative differences between
the CVM and BW approximation.

Several well-documented features of the Fe-Al phase
diagram have been discussed extensively in the litera-
ture. ' ' In particular there is evidence' of a two-
phase region where a disordered Fe-Al solid solution
coexists with a paramagnetic ordered phase with the 82
structure. This two-phase region joins with a line of
second-order transitions between the paramagnetic bcc
solid solution and the paramagnetic B2 phase in a charac-
teristic tricritical point. The implications of the tricriti-
cal point for the possible decomposition modes of Fe-rich
Fe-A1 alloys have been discussed in detail by Allen and
Cahn. ' '" To the authors best knowledge, there are, at
present, three calculations that appear to reproduce this
two-phase region: a BW calculation by Sagane and Oki
involving first- and second-neighbor magnetic interac-
tions; a calculation involving up to third-neighbor chemi-
cal interactions for a nonmagnetic alloy by Hasaka; and
a calculation by Semenovskaya that includes chemical
and magnetic interactions for a spin 1 model. All these
calculations were carried out in the mean-field approxi-
mation, although the model developed by Semenovskaya
does not treat the chemical and magnetic entropy in the
same footing.

As pointed out by Allen and Cahn, "magnetic interac-
tions are not needed in order to reproduce a tricritical
point, a fact that was confirmed by Hasaka's computa-
tion in the BW approximation. Different results are
found by Sagane and Oki and by Semenovskaya, who
indicate that the two-phase region is between a ferromag-
netic disordered phase and the paramagnetic 82 phase,
ending at an apparent bicritical point. A motivation for
the present work was the fact that several CVM calcula-
tions performed by the authors, using a wide range of
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first- and second-neighbor chemical and magnetic in-
teractions, failed to reproduce the two-phase region be-
tween the bcc disordered ferromagnetic solid solution,
A2(F), and the paramagnetic ordered phase, 82(P) re-
ported by Sagane and Oki and by Semenovskaya. We
found that the two-phase region between A2(F) and
82(P) corresponds to metastable equilibrium. In fact, the
equilibrium phase predicted by the model in that region
of the phase diagram is a ferromagnetic 82, 82(F), which
develops via a second-order transition. A characteristic
feature of this metastable two-phase region is that it ends,
with zero width, at a tetracritical point resulting from the
intersection of four critical lines: the Curie temperatures
of the disordered ( A2) and ordered (82) structures with
the critical lines of order-disorder transitions between the
A2 and the 82 phases. We point out that, except for the
work of Hasaka that does not include magnetic interac-
tions, the phase diagrams calculated by Sagane and Oki
and by Semenovskaya display similar two-phase regions
between A2(F) and 82(P). Guided by our findings with
the CVM calculations, we recalculated the phase diagram
with the same interaction parameters used by Sagane and
Oki in both the BW and the CVM approximations. We
found that the two-phase region seen in the BW and in
the CVM calculations is metastable.

The rest of this paper is organized as follows: In the
next section we discuss briefly the CVM and BW models.
The results are presented in Sec. III and concluding re-
marks are given in Sec. IV.

II. MODEL

In the present thermodynamic model we assume that
the energy of the system with N lattice points is given by

2
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where co„,V„,and J„are,respectively, the coordination
number, the chemical interaction, and the magnetic in-
teraction for nth neighbors (n =1,2), and where y,

'"'
stands for the probability of finding a nth-neighbor pair
of species i and j. In Eq. (1), A is the magnetic com-
ponent and A I and A

&
represent the two allowed spin

configurations. The effective chemical interactions V„
are given in terms of the atomic interaction V,

-'"' between
atomic sPecies i and j by V„=(V„'"„'+Vs&' —2V„'"s)/4.

Positive values of the effective chemical interactions
favor pairs of unlike chemical species (ordering), whereas
positive magnetic interactions favor alignment of magnet-
ic moments (ferromagnetism). The ground state or T =0
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FIG. 1. The four interpenetrating sublattices in the bcc
structure.

K structures for the configurational Hamiltonian of Eq.
(1) have recently been determined by the authors9 for all
possible values of nearest (NN) and next-nearest neigh-
bors (NNN) chemical and magnetic interactions. In the
present work we calculate the equilibrium phase diagram
for the set of parameters used by Sagane and Oki to fit
the Fe-Al system. In units of the NN chemical interac-
tion (V, )0) these are V&=0.5V&, J&=0.715V&, and

J2 = —0.25 V&. For these interaction energies, the chemi-
cal ordering at T =0 K is DO3 for concentrations of the
nonmagnetic component x& =0.25 and xz =0.75, and B2
for x&=0.5. The magnetic structures of the ground
states are ferromagnetic for pure A (bcc) and for DO3 at
x&=0.25, and antiferromagnetic for the B2 phase and
the D03 at xz =0.75. The antiferromagnetic ordering is
due to the sign of the NNN exchange interaction and to
the fact that, at T=O K, there are no NN magnetic
species in either the 82 or the DO3 (xz =0.75) phases.

The free energy of the magnetic alloy as a function of
temperature and composition was calculated using both
the BW and tetrahedron approximation of Kikuchi's'
CVM. The basic configurational variables in this approx-
imation are the probabilities z;.kI of finding an irregular
tetrahedron, connecting sublattices a, P, y, and 5 (see
Fig. 1), occupied, respectively, by atomic species i, j, k,
and l. In the present case of a binary alloy with one mag-
netic component, the indices i, j, k, and l can take three
values corresponding to atoms A&, A&, and B. The
relevant subcluster probabilities, obtained trivially from
the z,.jk&, are the single site probability (x ), the NN (y;1 )

and NNN (u J ) pair probabilities, and the triangle prob-
ability t, k, where roman and greek indices refer to
atomic species and sublattices, respectively.

The configurational entropy for a general ordered state
is given by

S = Nk 6g L (z; Il ) —3 g—[L (t g~)+L (t, Isi)+L (rf~l s)+L ("rings)]+ —', g [L (u, i )+L (users)]
ijkl ijk lJ
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with k Boltzmann constant, N the total number of points
in the lattice and where L (x)=x ln(x).

The pair probabilities y,'.
"' in the configurational energy

[see Eq. (I)] are given by

y~ ~ ~ = (y, 'Y+y, s+yp f+'yps)/4

y'"=(u /'+u"')/2
ij ij ij

(3a)

(3b)

S = Nk g g—x,'lnx;",
V

(4)

where the sums are the four sublattices v and the three
species i. Furthermore, the pair probabilities in Eq. (1)
are now approximated by

Combining Eqs. (1) and (2), we obtain the CVM free
energy for a general ordered structure which must be
minimized with respect to the tetrahedron probabilities.
Di8'erent minimization algorithms as well as convenient
procedures to construct the phase diagram have been dis-
cussed extensively in the literature. In order to solve the
minimization equations we have used a successive itera-
tions scheme introduced by Kukuchi. Critical lines in
the equilibrium phase diagram were obtained by deter-
mining the vanishing of the smallest eigenvalue of the
80X80 matrix of second derivatives of the free energy,
the dimension of which is given by the number of linearly
independent tetrahedron variables zjk/ (3 —1). First-
order transition lines in the temperature-chemical poten-
tial space were obtained from the equality of the grand
potentials for di8'erent phases.

The free energy function takes a simpler form in the
BW approximation. In this case, the configurational en-
tropy is given by

III. RESULTS

The complete equilibrium phase diagrams calculated
using the BW and the tetrahedron approximation of the
CUM with NN and NNN interaction energies V& &0,
Vp =0.5 V] J& =0.715V] and J2 = 0.25 V& are shown
in Figs. 2(a) and 3(a), respectively. We see that the
phases found in the two calculations are the same, al-
though there are some notable diff'erences between the
two figures: (i) the phase fields in the CVM are much
narrower than in the BW approximation, (ii) there is no
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I/3

=0 for
the B32 structure, and (iv) r/, &0, r/z=gz&0 for the DO3
structure. We point out that for the set of chemical and
magnetic interactions used here, the 832 ordered phase is
not stable.
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In the paramagnetic state (m„=0for v=a, p, y, and
5), the different types of chemical ordering are given by
(i) g, =gz=q3=0 for the A2 structure, (ii) g,+0,

The free energy function is obtained from Eqs. (1), (4),
and (5), and the minimization is carried out with respect
to the probabilities x at a constant value of the chemical
potential. First- and higher-order transition lines were
obtained following the same procedure used in the CVM
calculations.

The different spatially and magnetically ordered phases
described by the present model can be fully characterized
using four sublattice magnetizations (m, ), the average
concentration of the nonmagnetic component (xa ), and
three chemical long-range order parameters (r/„)defined,
respectively, by

O
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FIG. 2. (a) Temperature-composition phase diagram model-
ing the Fe-Al system in the Bragg-%'illiams approximation.
Bold and fine lines are used to indicate, respectively, first- and
second-order transitions for both chemical (solid line) and mag-
netic (dashed line) ordering. (b) Detail of the phase diagram.
The dotted lines give the metastable two-phase region between
the ferromagnetic A2 and paramagnetic B2 phases.
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FIG. 3. (a) Temperature-composition phase diagram calcu-
lated in the cluster variation approximation using the same in-

teraction parameters of Fig. 2. Bold and fine lines are used to
indicate, respectively, first- and second-order transitions for
both chemical (solid line) and magnetic (dashed line) ordering.
(b) Detail of the phase diagram.

percolation concentration for spatial ordering in the BW
approximation, (iii) the second-order line separating the
B2 from the A2 phase joins the two-phase region at a
higher relative temperature in the CVM than in the BW
approximation, (iv) the range of stability of the ferromag-
netic B2 is very small in the CVM, and (v) the second-
order transition line separating the antiferromagnetic
from the paramagnetic B2 phases has a maximum at
xz =0.5 in the CVM, while this feature is absent in the
BW approximation.

Details of the phase diagrams near x~ =0.25 are
shown in Figs. 2(b) and 3(b) for the BW and the CVM ap-
proximations, respectively. As pointed out in the Intro-
duction, this region of the phase diagram has attracted
considerable theoretical interest. We point out that al-
though there are significant quantitative differences be-
tween the results of the BW and the CVM calculations,
the general features of' the phase diagram are the same in

both approximations. However, we have found qualita-
tive differences between our BW results and those report-
ed by Sagane and Oki using the same interaction param-
eters. In particular, these authors report the existence of
a two-phase region between the ferromagnetic A2 and
the paramagnetic B2 phases. Our results indicate that
the two-phase region, shown by the dotted lines in Fig.
2(b), is in fact metastable, falling within the region of sta-
bility of a ferromagnetic B2.

IV. CONCLUSIONS

Comparison of the CVM and the BW results indicates
that the latter are in error by as much as 30%%uo, although
the BW approximation appears to reproduce general
features of the phase diagram faithfully. We have seen
that the bicritical point and, consequently, the two-phase
region between the disordered solid solution and the B2
phase cannot be obtained with the values of first- and
second-neighbor interactions used by Sagane and Oki.
We find that the point in question is a tetracritical point
corresponding to the intersection of the Curie tempera-
ture of the disordered and ordered phases with the criti-
cal lines of order-disordered transitions. As pointed out
by Hasaka for nonmagnetic alloys, at least third-
nearest-neighbor interactions appear to be necessary in
the BW approximation in order to reproduce the tricriti-
cal point as well as the D03 phase in the phase diagram.

A study of the magnetic transitions by Inden' indi-
cates that chemical environmental effects should play an
important role in determining the local magnetic moment
of Fe in Fe-Al alloys. In general, a reliable description of
these environmental effects requires an accurate treat-
ment of chemical short-range order and, consequently,
the BW approximation is expected to be inadequate. On
the other hand, the CVM provides a sufficiently detailed
description of short-range order and its effect on local
magnetic moments, as shown recently' ' for the cases of
Ni-Pt and Co-Pt.

To date, however, CVM theories applied to magnetic '

and nonmagnetic ' bcc alloys include only first- and
second-neighbor interactions. Thus, although such
theories may accurately describe environmental effects,
they will not reproduce the two-phase region and the tri-
critical point observed in the Fe-Al system. A correct
description of this magnetic system will appear to require
at least a CVM treatment with up to third-neighbor
chemical interactions and many-body magnetic interac-
tions that will simulate the sensitivity of the magnetic
moment of Fe to the local chemical environment.
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