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A theoretical model is developed to describe the polarization and depinning of charge-density
waves (CDW’s) in the inorganic linear-chain compounds which exhibit Frohlich sliding conduction.
Each individual impurity within the crystal is assumed to pin the CDW phase very strongly at the
impurity site, and dc CDW motion is made possible only by phase slip. Simple estimates are ob-
tained for most observed properties of sliding CDW systems with use of a three-dimensional
Ginzburg-Landau analysis. These predictions are found to be in excellent quantitative agreement
with available experimental data characterizing virtually every aspect of CDW dynamics.

I. INTRODUCTION

Charge-density-wave (CDW) motion in quasi-one-
dimensional metals has been studied intensively since
1976, when Monceau et al.! first observed the dramatic
non-Ohmic behavior of NbSe;. They found that the dc
conductance below both Peierls transitions at T, =145 K
and at T, =59 K could be described by the expression

0(E,T)=0,(T)+0,(T)exp[ —E((T)/E] . (1.1
The functional form of the nonlinear term suggested the
possibility of Zener tunneling across an energy gap,
analogous to the mechanism of reverse breakdown in
semiconductor p-n junctions. The estimated magnitude
of this tunneling gap, however, was about 3 orders of
magnitude smaller than the Peierls gap for normal quasi-
particle excitations, and about 2 orders of magnitude
smaller than kz T at their experimental temperatures.

Fleming and Grimes? subsequently demonstrated that
the nonlinear conduction sets in only for electric fields
greater than a threshold value E;. They also showed
that “narrow-band noise” is observed in this region with
a fundamental frequency that increases along with the
non-Ohmic current. These observations were interpreted
as direct evidence for CDW motion, supported by x-ray
experiments® which showed that the CDW is not des-
troyed in the presence of an electric field. Experimental
data of Fleming* illustrating the differential resistivity of
NbSe; for both CDW transitions are reproduced in Fig.
1. The solid lines are fits to an expression similar to Eq.
(1.1) that incorporates the dc threshold field E; within
the nonlinear term.

A strongly frequency-dependent ac conductivity was
first observed by Ong and Monceau® in NbSe;. The de-
tailed frequency dependence was subsequently character-
ized by Loncor and Portis,® by Griiner et al.,” and by
Gill,! who found that the observed behavior could be
qualitatively characterized in terms of an overdamped os-
cillator. Simple theoretical models were then put for-
ward by Griiner ef al.’ and by Monceau et al.!” which de-
scribed the general features of the observed CDW dy-
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namics as overdamped motion of a single particle in a
periodic sinusoidal pinning potential.

Meanwhile, Lee and Rice!! interpreted CDW dynam-
ics using Ginzburg-Landau theory, following earlier work
by Fukuyama and Lee.'? Their analysis of strong and
weak impurity pinning eventually came to serve as a basis
for all subsequent theoretical efforts.

Bardeen!*'* had been the first to interpret the non-
Ohmic behavior of NbSe; in terms of Frohlich!® sliding
conduction due to CDW motion. In 1979, he resurrected
the idea of Zener-type tunneling across a very small ener-
gy gap at the Fermi surface.!® This “pinning gap” was
supposed to occur in the collective excitation spectrum of
the CDW, due to its weak interaction with large numbers
of impurities within a phase-coherent domain. In the fol-
lowing year,'” he applied photon-assisted tunneling
theory, which had been highly developed!® to describe
millimeter-wave superconductor mixers, to accurately fit
experimental ac-conductivity data on NbSe;, using only
the predicted Zener form for the dc I-V curve. The tun-
neling hypothesis was subsequently pursued by our own
group, working in collaboration with Bardeen, over the
next several years. A wide range of mixing and
harmonic-generation experiments were performed in or-
der to characterize the nonlinear ac response of TaS; and
NbSe;, and the results were found to be in reasonably
good agreement with a modified version of the tunneling
model.!*2°

An alternative classical theory of CDW dynamics was
proposed by Sneddon, Cross, and Fisher.?! Their model
regarded the CDW as a charged and deformable “rubber
sheet,” moving over randomly scattered periodic poten-
tials located at the impurity sites. This approach was
developed and extended by Klemm and Schrieffer,?? Fish-
er,”> Sneddon,’* subsequently by many others. The
mathematical complexity of these models, however, has
led to very few firm predictions that could be tested
against experiment. A computer simulation in one di-
mension was constructed by Littlewood?® in order to il-
lustrate many salient features of the classical model of de-
formable CDW?’s, and recently this simulation was used
by Coppersmith and Littlewood?® to predict the effects of
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FIG. 1. Normalized differential resistance for (a) the upper
and (b) the lower CDW states of NbSe;. A threshold field Er
for the onset of nonlinear conduction is clearly observed. Solid
lines are fits to an empirical expression o,+0,(1—Er/
E)exp[ —Ey/(E —Er)] using the indicated parameters. Repro-
duced from Fleming (Ref. 4).

ac-dc interference and mode locking within this frame-
work.

The predictions of Coppersmith and Littlewood ap-
peared to be in rough general agreement with the experi-
mental data?’~% on ac-dc interference that was available
to them at the time. Our own recent studies of current
oscillation and ac-dc interference phenomena®® in NbSe;,
however, produced data of much higher quality that
directly contradicts®' all of their qualitative conclusions.
This dramatic disagreement between our experimental
findings and the predictions of Coppersmith and Little-
wood results, we believe, from a critical difficulty of the
underlying Sneddon, Cross, and Fisher model.

In their theory, the CDW phase continuously deforms
as it moves over the randomly distributed weak impuri-
ties in order to reduce its net pinning energy. The max-
imum dc drift frequency w; at which the CDW can
quasistatically optimize its phase configuration is there-
fore approximately equal to the dielectric relaxation fre-
quency wg, which is readily measured to be ~10 MHz in
NbSe;. At higher drift frequencies, the CDW does not
have sufficient time to relax over a static phase correla-
tion length during one cycle of the dc motion. The effect
of the periodic pinning potential (but not the dissipation

due to short-wavelength distortions) is therefore predict-
ed to decrease rapidly and become negligible for w,; >> w,.
The saturation that we observe in the magnitude of the
current oscillations at high dc fields, together with com-
plete ac-dc mode locking at frequencies in excess of 300
MHz, thus appears to completely invalidate the most
basic assumption of this phase-only model.

This conclusion has led us to explore a classical theory
for CDW dynamics in which the pinning to individual
impurities is assumed to be so strong that dc motion can
proceed only by phase slip. In contrast to phase-only
models, the process of amplitude collapse and phase slip
necessarily preserves the effects of the periodic pinning
potential to arbitrarily high dc fields and drift frequen-
cies. Furthermore, we have found that this theory pro-
duces very simple predictions which are in excellent
quantitative agreement with experimental data on virtu-
ally every aspect of CDW dynamics. The nature of this
agreement is already so extensive that we are confident
that the basic ideas must be fundamentally correct, al-
though much work remains to be done.

In this paper, we will describe our theoretical model
based on strong pinning and phase slip, and illustrate its
predictions with experimental data taken from many
sources. No effort has been made to find data which
compares particularly favorably with the theory, and we
have also invested -very little energy in “fine tuning” our
approximations and parameter estimates in order to op-
timize the agreement with experiment. While many
refinements suggest themselves, those improvements will
be deferred to a later date. Many of the parameter esti-
mates and some of the experimental data that we shall
use are taken from the excellent review articles by
Griiner and Zett1’? and by Monceau.>

II. STRONG PINNING

In this section, we shall reexamine the simple free-
energy arguments of Lee and Rice!! to reach the follow-
ing important conclusions.

(1) Strong pinning of the CDW phase requires only a
small interaction energy in excess of A/4~10"2% eV at
each impurity site, where 2A represents the Peierls-
energy gap.

(2) Phase gradients near a strong-pinning site are large-
ly confined to a very tiny region surrounding the indivi-
dual impurity. Outside these regions, the average CDW
phase ¢ will remain correlated over volumes much larger
than the mean volume n;~! associated with a single im-
purity.

(3) An individual impurity does not strongly pin the
phase on neighboring chains, so that longitudinal CDW
displacements will be correlated over a distance compara-
ble to the average spacing between consecutive impurities
along any single chain.

The picture of strong impurity pinning developed here
differs greatly from the conventional wisdom. The Lee
and Rice analysis has universally been interpreted as im-
plying that the phase-coherent volume should be the in-
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verse impurity concentration n,”! for strong pinning, and
that the CDW phase will be smoothly interpolated be-
tween its pinned values at the various strong-pinning
sites. We believe that this view is demonstrably in-
correct, and that this error has thus far precluded a
correct theoretical interpretation of CDW dynamics.

Lee and Rice!! presented an analysis of CDW pinning
based upon a three-dimensional Ginzburg-Landau expan-
sion for the free energy:

2
d
F=fo[dr|—t| 9|2 +1 ¢4+ 3%'
2 2
2 | 9Y 2| 9Y
8| +8 |5 @.1)

Here t=(T,—T)/T, is the reduced temperature, and the
magnitude of the order parameter has been normalized so
that || —1 for T <<T,. The CDW condensation ener-
gy is then f;/2 per unit volume at low temperatures, and
the amplitude coherence lengths §,,£,,§, represent the
distance scales over which spatial variation of the order
parameter costs the entire condensation energy.

Conduction along the chain direction can be represent-
ed in terms of a tight-binding band:

4
e(k)=——Lcos(ka,), ——<k<—. 2.2)

2 a a

Bandwidths for several sliding CDW materials are in-
ferred to lie in the range W =~1-4 eV, based on spin-
susceptibility and thermopower measurements.’? The
bands are nearly }-ﬁlled in all materials, so that
kp=~m/4a, with an average spacing a,~3.4 A between
metal atoms along the chain direction. Accordingly, the
Fermi velocity is given by

vp=W,a,/2V2#i~(1.8X 10" cms~")W,(eV) (2.3)
and the band mass is
my =ik p fopm — (2.4)
b F F W“(CV) e .

where m, represents the free-electron mass.
When the Peierls-energy gap 2A is opened, the T=0
condensation energy becomes

AZ

%f0=%N(O)A2zm .

(2.5
Here A, is the cross-sectional area per CDW chain, and
we have used the one-dimensional density of states
N(0)=2/7fiv; at the Fermi surface.

The amplitude coherence length along the chain direc-
tion is given by the BCS expression

£, =t /TA=(0.38 A)W, /A . (2.6)

For most sliding CDW materials, the gap parameter lies
in the range A=0.04-0.12 eV, so that for W =1-4 eV
this gives ;=10 A. The transverse coherence lengths are
not known, but an estimate can be made based upon the
reduction of the transition temperature 7, below its
mean-field value, T)F =A/1.76kp, due to the quasi-one-
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TABLE 1. Parameter estimates for the upper NbSes, ortho-
rhombic TaS;, and (TaSe,),]I CDW systems used in generating
numerical predictions from the theory. The value for A in
NbSe; has been estimated by scaling from the o-TaS; gap ac-
cording to the ratio of the transition temperatures. The values
for W) are based on scaling a rough experimental estimate for
NbSe; according to the ratio of the Peierls gaps. The asterisks
are explained in the text.

(NbSe;)! 0-Ta$, (TaSe,),I
n (10 cm™3) 6.5° 3.2
A (V) 3.9%1072 * 6.0 1072 0.12°
Mg/m, 300° 10%¢ 10%¢
W) (eV) 1.8* 2.8* 5.5*

2 Reference 32.
®Reference 33.
¢ Reference 34.
d Reference 35.
¢ Reference 36.

dimensional nature of the band structure. This calcula-
tion, whose details are summarized in Appendix A, yields
an average value

§,~0.08¢, (2.7

approximately independent of material. It is important
to note that £ =1 A, and will thus in all cases be much
smaller than the transverse spacing between CDW
chains.

In the following sections, we shall make detailed com-
parisons with experimental data primarily for the upper
(NbSe;)! transition, orthorhombic TaS,, and (TaSe,),l.
The necessary parameters are listed in Table I, together
with their sources. An asterisk denotes quantities that
have not been accurately measured, and we have chosen
these particular values as reasonable estimates. The
Peierls gap for the (NbSe;)) CDW cannot be inferred
from temperature-dependent resistivity data, since this
material does not undergo a complete metal-insulator
transition. The value of A listed for (NbSe;)! in Table I
has simply been scaled from the o-TaS; result by the ratio
of the transition temperatures. Experimental estimates
for the longitudinal bandwidth of NbSe; have yielded
W,~1.2 eV on the basis of room-temperature spin sus-
ceptibility,”” and a calculated value®® of W ~2.8 eV
based on the measured thermopower.’®> The estimate
W,~1.8 eV is adopted here, and the values listed for
0-Ta$S,; and (TaSe,),I have been scaled up by the ratios of
their Peierls gaps. Simple mean-field theories predict the
relation AzZW”cxp(-—l/X), so that this procedure is
equivalent to assuming a uniform electron-phonon cou-
pling constant A. The result is that we have only a crude
estimate for W|| in these materials. Fortunately, most of
the quantitative results obtained in the following sections
depend, if at all, only on the square root of the band-
width.

Lee and Rice chose z as the chain axis and rescaled the
transverse dimensions in Eq. (2.1) according to
x'=(§,/€;)x and y'=(§, /&)y, so that the gradient term
could be represented as in an isotropic system:
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FV)=fol&,&, 7€) [dx' [dy' [dz €2 |Vyp|2. (.8)
For strong pinning, the CDW phase is constrained to an
optimal value #} at each pinning site. Considering only a
single impurity, they estimated the energy needed to in-
terpolate the phase between ¢, at that one strong-pinning
site and a fixed value ¢ at infinity. Replacing
| V¢ | — | ¢—do| /L in Eq. (2.8), the energy cost is seen
to grow linearly with the length scale L within their
three-dimensional model:

(6—¢o)?

I L. 2.9

F(VY)=fob,§,

According to this argument, the system will seek to make
L as small as possible. In this limit L =§,, since more
rapid phase gradients would reduce the magnitude of the
order parameter and sacrifice the condensation energy.
Also, the replacement §,§, — A, should be made in Eq.
(2.9) whenever the transverse coherence lengths are
smaller than the interchain spacing. Lee and Rice thus
estimate the pinning energy due to a single strong impuri-
ty as

Ef ($—do)=fo Aoky($—0)

We know from Eq. (2.7) that the transverse coherence
lengths are indeed much smaller than the interchain
spacing. Under these conditions, the system can actually
do somewhat better in minimizing its gradient energy
than the Lee-Rice estimate suggests. Here we paraphrase
their argument, but now consider a volume with length L
and area A4:

(2.10)

2
F(Vy)=f, AL |28 —‘L +£2 96
0 L ox I ax,
A
~fo |26lL +—— ” (F—do)?, @.11)

where we have taken |3¢/dx, |~ |F—do|/V' A4 and
|0¢/0x, | = |$—@o| /L. This expression will again be
minimized for the smallest possible area A4, the area of a
single chain, since transverse phase variations on a scale
smaller than the interchain spacing would make no phys-
ical sense. Minimizing with respect to L, however, yields
a larger optimum value,

Lo=§(Ay/28D)"?, 2.12)
and a lower pinning energy,
172
51 -
pm(¢ ¢0)~ 4 fOAo§||(¢—¢0) . (2.13)

The reduction from the original Lee-Rice estimate is con-
tained within the square-root factor. Using a representa-
tive value £, ~0.8 A, together with a cross-sectional area
Ay~70 A2 per CDW chain, gives

12

8

—él- ~1. (2.14)
4o

r

The value 4,~70 A ? that we have used here deserves

some comment. For NbSe;, the unit-cell cross section is
15.6X10.0 A2 and contains six chains. However, these
six may be grouped into three separate two-chain sets,
and, roughly speaking, only one of these two-chain sets is
associated with each CDW transition. The cross-
sectional area per CDW chain for either transition is thus
~80 A? An identical estimate can be made for mono-
clinic TaS,;, which is isostructural to NbSe;. For ortho-
rhombic TaS;, the detailed crystal structure is unknown,
but we might guess that the area per CDW chain could
be as small as half the corresponding value in NbSe;, or
=~40 ;\2, on the basis that only one CDW transition
takes place in which all of the conducting chains partici-
pate. For (TaSe4),I the (9.5 A)? unit cell contains two
equivalent chains, so that the area per chain is =45 A
To simplify our analysxs, we shall adopt the representa-
tive value 4,=70 A Zfor all materials.

The result of Eq. (2.13) may be combined with Egs.
(2.5), (2.6), and (2.14) to yield a quantitative estimate for
the pinning energy due to a single strong impurity:

pm(¢ ¢0)~ (¢ ¢0)2 (2.15)
In order to dictate the maximum phase adjustment of 7,
the energy gain from optimizing the phase to ¢, at the
impurity site must be larger than A /4~1072eV. On this
basis, we expect that most types of impurities (and de-
fects) should act as strong-pinning centers. It is impor-
tant to note that, according to this analysis, the CDW
phase will be distorted from its global average ¢ only
within a very tiny region surrounding the strong-pinning
site. The distance over which the phase is adjusted be-
tween ¢ and ¢, along the chain direction may be estimat-
ed from Eq. (2.12) as

Lo=75A . (2.16)
The transverse phase variations, as we have seen, are
effectively confined to the particular chain which con-
tains the impurity.

Thus far, we have considered only the problem of a sin-
gle strong-pinning center embedded within an infinite
CDW system whose global phase ¢ is determined at
infinity. The problem of physical interest, however, con-
cerns the behavior expected in the presence of many such
impurities that are randomly distributed throughout the
system. It will prove most convenient to characterize an
impurity concentration n; per unit volume by the average
spacing L between consecutive impurities along any indi-
vidual chain:

1 10

L= = . 17
L n; Ag n-(ppm)a” @17

For all sliding CDW materials @, =3.4 A, so that a typi-
cal value L =1 um corresponds to n; ~340 ppm.

In the presence of many strong impurities, we might at
first imagine the CDW phase to be separately adjusted
between its global average ¢ and the pinned values ¢ at
each impurity site, independently for every strong-
pinning center. Were the system to do this, the average
phase ¢ would remain correlated over infinite distances,
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and the energy cost would be given by Eq. (2.15) for each
impurity.

On the other hand, we might imagine that when many
strong-pinning centers are present, the CDW phase
would be smoothly interpolated between its values ¢; on
adjacent sites over a volume n;~! surrounding each im-
purity. The elastic energy required for this interpolation
can be estimated by returning to Eq. (2.11) and constrain-
ing the volume AL of the phase adjustment to equal
AL, the volume of a single impurity. This calculation is
carried out in Appendix B. The result is most simply
presented in terms of the ratio between the elastic energy
needed for a smooth interpolation and the pinning energy
we computed previously for local independent phase ad-
justments to a constant global ¢:

E elast

~4.9[L(um)]'” . (2.18)
pin

Were the system to smoothly interpolate the phase be-

tween strong-pinning sites, the phase correlation length

along the chain direction would be given by

L i =(500 A)[L(um)]'/* . (2.19)
The actual equilibrium phase distribution will
represent some compromise between the two extremes
that we have outlined here. On the basis of Eq. (2.18), we
expect that the energy E;, needed for local individual
phase adjustments to a constant average ¢ will be sub-
stantially smaller than E ), required for a smooth inter-
polation between each strong-pinning site, so long as
L >>0.01 pum or n; <<3.5%. Unless the impurity con-
centration is very high, most of the phase adjustment
should take place within a tiny volume centered on each
pinning site, and the average phase ¢ should remain
correlated over volumes larger than that of a single im-
purity. _

In the range of dilute impurity concentrations L ~1
pm (n; ~340 ppm) present in nominally “pure” CDW
crystals, individual localized phase adjustments to a con-
stant @ cost far less gradient energy, by a factor of ~5,
than a smooth interpolation of the phase between the im-
purity sites. Under these conditions, ¢ will be approxi-
mately constant on a volume scale much greater than

~!. This average CDW phase ¢ is therefore only weakly
pinned by the individual impurities, and its value will be
optimized to fluctuations in the total pinning energy over
relatively large phase-coherent regions. We might, there-
fore, seek to estimate the large-scale phase-coherence
properties of the system by means of the following argu-
ment. If the average phase ¢(r) is adjusted over a volume
containing N; impurities, then the value of ¢ within this
reglon can be optimized to fluctuations in the total pin-
ning potential to gain an energy ~(N,)'’E;,. The elas-
tic energy that this costs may be obtained from Appendix
B by multiplying the right-hand side of Eq. (2.18) by
N}73. Equating these two expressions then leads to the
result N; ~10*[L(um)}®. This value is enormous. It is
probably too large because, for one thing, there is some
small adjustment of §(r) toward the optimum value ¢} at
each impurity site even when L ~1 um. Furthermore,

the above estimate is unreliable, since it requires raising
the numerical factor in Eq. (2.18) to the sixth power:
(4.9)°~10*. The large-scale phase correlation properties
of the true equilibrium ground state are thus apparently
beyond the reach of our simple arguments.

On the other hand, we are usually less interested in the
properties of the equilibrium ground state than in the
volume over which motion of the CDW phase will
remain correlated when an external electric field is ap-
plied. Since most of the phase adjustement between the
average ¢(r) and the pinned value @} at any impurity site
takes place over a very tiny region that is effectively
confined to one chain, longitudinal displacements in the
phase should be correlated over a distance comparable to
L, the average spacing between impurities. Imagine first
that each segment lying between two impurities on every
chain is polarized independently in the presence of an
electric field. The average distance over which CDW
motion would be correlated in this case is clearly L.
When transverse coupling is included, this correlation
distance should be reduced to the extent that an individu-
al impurity is able to effectively pin the phase on adjacent
chains. Because we estimate that the transverse phase
variations associated with each individual strong-pinning
site are largely confined to a single chain, we expect that
CDW motion will remain correlated over distances com-
parable to L. Similarly, we expect that motion of the
average phase @(r) will remain correlated across the
chains over dimensions at least as large as the nearest-
neighbor distance between impurities in the transverse
direction, approximately (L /a)'"> 442,

Fung and Steeds*’ have estimated the phase correlation
properties of NbSe; on the upper CDW transition by
analyzing the time-dependent “twinkling” seen in their
superlattice dark-field electron-microscope images. The
length of the apparent domains is L =2 pum along the
chain axis. In the following section, we shall use our
model to infer essentially the same value from the mea-
sured low-frequency dielectric constant. The Nb-atom
spacing along the chains is ay= ~3.5 A, so that
L /alI ~6X 10, According to our interpretation, this ap-
proximates the average impurity spacing, corresponding
to a density n; =175 ppm or about 0.02%. The trans-
verse phase correlatlon distance is then expected to be
roughly (6x10°)'3(80 A?)!/2=~160 A, This compares
favorably with the estimate of ~200 A made by Fung
and Steeds. The model we shall present here is thus cap-
able of producing good agreement with existing experi-
mental evidence on phase correlation in NbSe;, based
only on the measured value of the low-frequency dielec-
tric constant.

Indirect evidence on the volume of a velocity-coherent
region in NbSe; can also be obtained from the amplitude
of the current oscillations, or narrow-band noise, which
accompany CDW motion in a dc electric field. Accord-
ing to the above estimates, the volume of an 1nd1v1dual
region is roughly 2 umx (160 A)P?=5x10"* um®. A
typical small NbSe; crystal of the type used in our recent
current oscillation experiments® has a total volume of or-
der 1 mm X 10 um X 1 um~ 10* um?3, and would thus con-
tain ~ 107 velocity-coherent domains. The amplitude of
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the externally observed current oscillations should thus
be reduced by a factor of order (107)~12=3x 1074, so
that their absolute magnitude for a 1-mm-long sample
with E;~0.1 V/cm would be ~3 uV, in agreement with
experiment.

A crucial feature of the present analysis is that the
average phase ¢(r) will remain correlated over regions
that are much larger than the volume n;~! per strong im-
purity. According to the above estimate, the total num-
ber of strong-pinning centers within a single phase-
coherent domain is roughly

N;=~(L /a)**=~200[L(pm)]*" . (2.20)

This result is initially very surprising. The common no-
tion that the CDW phase is smoothly interpolated be-
tween strong-pinning sites has, we believe, led most peo-
ple to conclude that the domain volume should be n,~!.
When experiments showed this estimate to be at least 2
orders of magnitude too small, theoretical efforts became
exclusively devoted to models of weak pinning. We are
proposing here to revive the idea of strong pinning, to-
gether with CDW motion by phase slip, and will demon-
strate in the following sections how this picture can be
used to interpret a very broad range of experimental ob-
servations.

III. LOW-FREQUENCY POLARIZATION

The polarization of a CDW system in a dc electric field
below threshold can be used to accurately infer the phase
correlation length L for displacements along the chain
direction. We have argued above that for strong pinning,
L should be comparable to L, the average spacing be-
tween impurities along a single chain. In this section, we
shall develop a simple model for calculating the polariza-
tion in terms of this phase correlation length. Values of
L inferred from dielectric measurements on intentionally
doped 0-TaS; crystals are then found to be in very good
agreement with the average impurity spacing L calculat-
ed from the doping concentration. Furthermore, the pre-
diction for the CDW angular displacement in a dc field
just below threshold agrees precisely with a surprising re-
sult obtained in recent NMR experiments on NbSe;.

To begin, we consider the polarization along a single
chain within the context of a one-dimensional model.
Considering only phase variations, the Hamiltonian for
this system takes the forrzn
1k I 3| po

H= [dz |} —-—-E¢

+ 3 Viz—z)plz) (3.1)

The first term here is the gradient energy for phase defor-
mations along the chain axis. According to Eq. (2.1), the
stiffness constant is given at low temperatures by*!

ﬁUF

K=2fo&t A0~— (3.2)

The second term in Eq. (3.1) represents the coupling of
the CDW to an applied electric field. Advancing the

phase by 27 displaces the total CDW charge density p,
through one wavelength, Acpw=27/Q, thereby lowering
the potential energy by poEAcpw per unit volume. Here
Q =2k represents the wave vector that spans the one-
dimensional Fermi surface. At temperatures well below
T,, pp=2e /Acpw so that

P
Poe

Q 7
The final term in Eq. (3.1) characterizes the effects of pin-
ning by impurities located at positions {z;} along the
chain. We shall assume that V(z—z,)=V;8(z—z;),
where V; is taken to be strong enough to pin the CDW
phase to its optimal value ¢} at each impurity site under
all conditions. dc motion is then made possible only by
phase slip.
In this one-dimensional model, the CDW polarizes
freely between impurity sites according to

(3.3)

SH _pd'$ Pop_g

(3.4)
8¢ dz?  Q
The solution for 8¢(+L /2)=0 is given by
8¢(z) ——[(L /2 —z%]. 3.5

This result is sketched in Fig. 2. The average angular dis-
placement of the CDW over a length L between two
strong-pinning centers is calculated to be

1 eL’E

547=sz/2 dz 8¢(z)= ooy (3.6)

This is two-thirds of the maximum displacement at z=0.
The dielectric constant can now be obtained from the
average polarization along a single chain:
b Po §F__eLE
T A, Q  6mhwp Ay

Equating this expression to €E yields the following result:

(3.7

FIG. 2. Phase displacement in a dc electric field below
threshold as a function of distance along the chain direction for
a one-dimensional CDW pinned at z =+L /2, according to Eq.
(3.5). Dashed curve indicates expected modification within a
three-dimensional crystal.
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elw—0)= =(1.45%10¢,

6mfivg A,

where €,=8.85x 10~'* F/cm.

This expression for the low-frequency dielectric con-
stant in terms of the phase correlation length L is essen-
tially generic. It should be applicable to models of weak
pinning as well, in which case L would represent the
characteristic length scale discussed by Lee and Rice.
The key feature here is that we identify this phase corre-
lation length L with the average impurity spacing L
along a single chain. In the preceding section, we argued
for this result on the basis that most of the phase adjust-
ment between the average ¢(r) and the pinned value ¢ at
each impurity site will be made over a very small volume
that is effectively confined to a single chain. If this is
true, then individual impurities cannot strongly pin the
phase on neighboring chains, and the phase correlation
length should therefore be approximately given by the
average impurity spacing.

Within the context of our polarization calculation, we
expect that the angular displacement will be approxi-
mately equal to 8¢ everywhere throughout the crystal.
Inclusion of the transverse coupling between the chains
should not greatly affect this average value. The detailed

: [vp(107 cms™1)][ 44(10~* cm?)] ’

(3.8)

[
dashed curve in Fig. 2 indicates our qualitative expecta-
tion, with most of the difference between 8¢(z) and 8?
resolved within the immediate vicinity of each impurity.
The energy cost for this deformation will be somewhat
higher than for the optimum one-dimensional distortion.
The effect of the interchain coupling will thus act to
reduce the effective value of L below the average spacing
L. If our arguments are correct, however, this reduction
is expected to be relatively small.

The form for the dielectric constant given in Eq. (3.8)
can be easily related to a more familiar result obtained
from the simple damped oscillator model.*!* Lee, Rice,
and Anderson*? have shown that phase disturbances in
an unpinned CDW system will propagate along the chain
direction at a velocity
172

m
d Vp . (3.9)

0= | My,
F

The average pinning frequency for standing waves
confined to a mean distance L is therefore given by

spatial dependence of 8¢(z) along any individual chain (T>p=—L— (3.10)
will, however, be somewhat altered in the three-
dimensional system from the form given in Eq. (3.5). The Inserting this relation into Eq. (3.8) then yields
|
n.e? n.(10*' cm—3)
e(w—+O)=ﬁ £ —=(6.7X107¢) ; , (3.11)
12 M52 (Mg /10°m,)[®, /2m(GHz))?

where n,=2kp/m A, represents the condensate electron
density well below the Peierls transition. Except for the
factor of 72/12, this expression is seen to be identical to
the corresponding result of the damped oscillator model.

Equation (3.8) allows an estimate for the phase correla-
tion length L to be obtained from the measured value of
e(w—0). As an example, the dielectric constant is mea-
sured to be e~3 X 10’¢, on the upper NbSe; CDW transi-
tion.*> Assuming that two conducting chains within the
10.0x15.6 A2 unit cell participate gives 4,~78 A2
The longitudinal bandwidth estimate W ~1.8 eV from
Table I predicts the Fermi velocity in Eq. (2.3) as
vp~3.2X 107 cms~'. Inserting these values into Eq.
(3.8) gives L =2.3 um, in excellent agreement with the es-
timate L ~2 um made by Fung and Steeds.*

Our estimate for the phase correlation length L can be
used in Eq. (3.10) to infer the average pinning frequency.
For this we require values of the inertial Frohlich mass,
which are now available from analyses of the roll-off in ac
conductivity over the millimeter-wave region. The value
obtained for NbSe; at 130 K and listed in Table I is
Mg /m,=300. Combining this with the above estimates
for L and vg, Egs. (2.4), (3.9), and (3.10) yield
@,/2m~3.6 GHz. This value is in excellent agreement
with the results® @, /2m~3-6 GHz obtained by fitting
the complete experimental ac response over the frequency

[
range 1 MHz < w /27 <100 GHz to a damped oscillator
model. The actual form of the ac conductivity as a func-
tion of frequency will be considered in detail in Sec. V.

To complete our discussion of the dielectric response in
NbSe;, we note that the expression given in Eq. (3.6) can
also be used to interpret a rather surprising result ob-
tained by Ross, Wang, and Slichter* in their recent
NMR experiments. In terms of Eq. (3.8), the predicted
angular displacement may be written in the form

%:%e(w—»omoE ) (3.12)
Using the experimental value e~3X107¢, and A4,~78
A 2 an electric field E ~0.1 V/cm close to the dc thresh-
old for the upper (NbSe,)' CDW should produce an aver-
age angular displacement 8¢~2°. This is precisely the re-
sult that Ross et al. obtained using pulsed NMR tech-
niques with an applied dc field E =0.75E7. Such a small
displacement near threshold is very anomalous from the
viewpoint of a simple damped oscillator model, in which
the angular displacement would be 6¢=50° at
E=~0.75E;. A great virtue of the present theory is its
ability to quantitatively account for all of the important
results obtained by Ross et al. in the course of their
NMR studies of NbSe;. We shall return to a more de-
tailed consideration of these experiments in Sec. VII on
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TABLE II. Comparison between experimental measurements and theoretical predictions for pure
and intentionally doped o0-TaS; crystals at T =160 K.

Experiment _ Theory
€/€* Ep (V/em) o,/27 (GHz)® L (um)  L(pm) &,/27 (GHz) E, (V/cm)
Pure 3% 10’ 0.5 5-8 1.3 3.9 0.75
0.1% Nb 6x10° 3 35 0.33 0.57 8.7 23
0.2% Nb 5x10° 25 120 0.16 0.17 30 11
2 Reference 45.
b Reference 46.
the current oscillations. wy/2m~15 MHz.

In order to test our assertion that the phase correlation
length L is related to the spacing L between impurities,
we shall now analyze experimental data shown in Table
II for Nb-doped o-TaS; crystals grown at UCLA. To our
knowledge, this provides the only instance in which
dielectric constant, dc threshold field, and millimeter-
wave ac-conductivity measurements have all been pub-
lished for intentionally doped crystals taken from the
same growth batch. The dielectric and dc threshold data
have been extracted from Wu et al.** and the millimeter-
wave results from Reagor and Griiner.*

The parameter estimates we have used for 0-TaS; are
listed in Table I. The crystal structure is unknown, so we
have first estimated @, /27 using Eq. (3.11) and then cal-
culated the phase correlation length L from Eq. (3.10).
The results are listed in Table II, along with the experi-
mental data. The experimental values for the pinning fre-
quency are seen to be systematically larger than our esti-
mates for @,/2m by a factor of 2-4. This apparent
discrepancy will be largely resolved in the course of our
detailed discussion of the ac conductivity contained in
Sec. V. Here we note the excellent agreement obtained
between the calculated values of L and the average im-
purity spacing L given by the nominal Nb concentration.
Without an assay, we cannot be certain that the nominal
concentrations accurately reflect the actual impurity den-
sities. Nevertheless, the close correspondence seen here
between L and L is significant evidence in favor of our
basic approach.

IV. DIELECTRIC RELAXATION

The polarization of the CDW was calculated in the
preceding section in the limit of a static electric field. At
finite frequencies, the dielectric response function is relat-
ed to the small-signal ac conductivity according to

ala) @.1)
lo

6(w)=60+

In Fig. 3, we show our experimentally measured values of
o(w) for a crystal of orthorhombic TaS; at 150 K. The
dielectric response function €(w) calculated according to
Eq. (4.1) is shown in Fig. 4. The magnitude of Ree(w) is
seen to approach its limiting static value
€(@w—0)=7x 107¢, at the lowest frequencies, but rolls off
quickly above ~10 MHz. The position of this roll-off
marks the dielectric relaxation frequency wg which can
be roughly estimated from the peak in Ime(w) near

The solid curves in Figs. 3 and 4 represent the predic-
tions of our strong-pinning theory, based upon the results
that we derive for ac conductivity in Sec. V. The theoret-
ical curves shown here were generated by convolving the
ac-conductivity expression for a damped harmonic oscil-
lator, given in Eq. (5.2), with the distribution in pinning
frequencies obtained in Eq. (5.4). The only material pa-
rameters required are the average pinning frequency
®,/2m=3.9 GHz, calculated in Table II for nominally
pure o-TaS;, and the damping parameter 1/277=120
GHz inferred from the roll-off in experimental ac-
conductivity data* at frequencies above ~ 10 GHz. The
spectacular agreement seen in Figs. 3 and 4 is tempered
only by a small discrepancy of ~2 between our measured
value for é(w—0) and the result of Wu et al.** quoted in
Table II, although the threshold fields and ac-
conductivity data are closely similar for the two different
crystals.

The physical nature of the dielectric relaxation fre-
quency can be nicely illustrated within the context of our
model. For this purpose, we return to the one-
dimensional Hamiltonian given in Eq. (3.1). Assuming
the system to be overdamped, the equation of motion,

<
[S¢)
T

o (W /Tmox

0.0

TR | s N |
106 107 108 10°
Freg (Hz)

] T i n

FIG. 3. Real (X) and imaginary (O) parts of the nonlinear
ac conductivity as a function of frequency for a crystal of pure
0-TaS; at T =150 K. Solid lines are predictions of the theory
using @, /2w =3.9 GHz, 1/277=120 GHz, and taking o ,,,(150
K) approximately equal to the room-temperature conductivity.
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Ad=—G8H /64, that determines the phase in regions be-
tween the strong impurities becomes

d 9?2 Po
x—aﬁ‘ti=1<§z4;—+55(t> .

The viscosity coefficient A can be related to a CDW relax-
ation time 7 according to

A=Mg/mQT . (4.3)

With this definition, the limiting dc high-field CDW drift
velocity is given by the standard expression,
Q (3¢ /0t)—>eET/Mp.

Consider now the relaxation of a phase displacement
within the average length L between two strong impuri-
ties. For zero electric field, a transient solution to Eq.
(4.2) may be obtained in the form

4.2)

Rel€(w) ]/€(0)

0.0

1 A
10° 107 10° 10 ¢
Freq (Hz)

TR | TR | IR |

0.4

(b)

0.3

0.2

In[ew)]/€(0)

0.1

0.0

e |
107 108 109
Freq (Hz)

o ol L

= 0 A LA B (RN B B S |
s L J
o

FIG. 4. (a) Real and (b) imaginary parts of the dielectric
response as a function of frequency for a crystal of pure 0-TaS;
at T =150 K, calculated from the experimental results shown in
Fig. 3 according to Eq. (4.1). Solid lines are again predictions of
the theory using @, /2m=3.9 GHz and 1/277=120 GHz.

8¢(z,t)=8pye ““sin(mz/L) . (4.4)

The dielectric relaxation frequency is thereby estimated
to be

_mK
ALZ

Here the average undamped pinning frequency is given
by @, =mcy/L, as in Eq. (3.10). This expression for the
dielectric frequency w is thus seen to be identical to the
“crossover frequency” for an overdamped oscillator with
pinning frequency @,. Inserting the estimates quoted
above for o0-TaS; at T=160 K into Eq. (4.5) yields
wo/2m~=125 MHz. This value is close to the experimen-
tal crossover frequency defined by the maximum in
Imo(w) in Fig. 3. The actual dielectric relaxation fre-
quency, however, is seen to be wy/27m~15 MHz from the
maximum of Ime(w) in Fig. 4. The substantial difference
between these two characteristic frequencies, which are
identical for a single overdamped oscillator, results from
the distribution in pinning frequencies given in Eq. (5.4)
for the different CDW segements contained within the
crystal.

The estimate for the dielectric relaxation frequency in
Eq. (4.5) can be cast into an alternate form by using the
relation

g =(7)12,T . (4.5)

2
1 ﬂAoab
Ve

(4.6)

where 0, =n_.e?r/Mp represents the maximum high-field
and high-frequency CDW conductivity. The resulting
expression may then be written:

Oy

=12 dw—0)

where we have utilized Eq. (3.8) for the static dielectric
constant. In all common sliding CDW materials except
NbSe;, the Fermi surface is completely gapped below the
Peierls transition. The concentration of thermally excit-
ed normal electrons will then decrease rapidly at low
temperatures according to n ~exp(—A/kpT). Eventual-
ly, the normal carrier concentration will become so small
that the CDW charge fluctuations resulting from polar-
ization and motion of the condensate cannot be screened
by slight expansions and compressions in the normal elec-
tron density. When this occurs, the dissipation for low-
frequency CDW motion will become dominated by that
of the normal electrons, which must now flow over com-
parable distances in order to provide the required
Coulomb screening. Under these conditions the normal
conductivity o y(T) effectively replaces o, in Eq. (4.7)
and '

4.7)

)
20~ (0—0)

Because o y(T) is temperature activated, the dielectric
relaxation frequency will decrease rapidly at low temper-
atures according to an Arrhenius behavior in those ma-
terials which undergo a complete metal-insulator transi-
tion.

(4.8)
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A more detailed appreciation of this result may be ob-
tained by relating the present picture of CDW polariza-
tion to our previous RC circuit model.*’ In Fig. 5, we
have again sketched the form of Eq. (3.5) for CDW po-
larization within the context of the one-dimensional
theory. Deformations of the CDW phase cause varia-
tions in the condensate charge density according to

8p,(z)= < 98z)

P 4.9)

per chain. _
The charge Q that is transferred from left to right
across z=0 in Fig. 5 may then be calculated as

~  e’L’E

= arhin, (4.10)

If we now associate the voltage V' =EL with the potential
drop across this length, the charge may be written as
Q=1C,V where C,=€e(w—0) 4, /L defines the polariza-
tion capacitance associated with this region. The average
length over which charge must move when Q changes is
found to be L, =ZL within this model. At low tempera-
tures in CDW materials with a completely gapped Fermi
surface, the normal electrons that are “frozen” onto the
CDW charge variations must also move over a compara-
ble distance. Their dissipation thus leads to an effective
CDW resistance R g=L;/0ox(T)A, for the region in
Fig. 5 that lies in series with the polarization capacitance
C,. The characteristic relaxation frequency is then given
by the inverse RC time constant, a>0=1/Re,pr, which
reproduces the result quoted in Eq. (4.8) multiplied by

L/L,~1:
ox( @ 'em™)

20 (1.8 102 s~1)
27 elw—0)/e, L, °

4.11)

Cava and co-workers*®®~* have recently performed a
series of important experiments on the dielectric response
of (TaSey),I, Ky 3;Mo00;, and 0-TaS; in the frequency
range 5 Hz to 13 MHz. In each of these materials, they
find that the dielectric relaxation frequency decreases
with an Arrhenius behavior at low temperatures, and

3¢(z)

|
t
|
I
|
I
|
|
I
I
|
I
1
1
!
I
1
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1
0

—
L/2
z

-L/2

FIG. 5. Phase displacement in a dc electric field below
threshold as a function of distance along the chain direction for
a one-dimensional CDW pinned at z ==*L /2, according to Eq.
(3.5). A total charge Q is transferred across z =0 by the CDW
polarization.

these results have led us directly to the analysis summa-
rized above. For (TaSe,),l, the data of Cava et al.*® cov-
ering the temperature range 90 < T < 180 K may be accu-
rately fitted by

wS*Pt

=(1.0%x 1010 g—1)e ~(1436K)/T (4.12)

Over the same temperature range, their measured normal
resistivity gives

on(T)=(3.7X10° Q@ 'cm~!)e ~(434KV/T (4 13)

Their experimental value for the low-frequency dielectric
constant is €(w—0)=1X10%,, roughly independent of
temperature, so that the prediction of Eq. (4.11) becomes

theor

~(0.7% 1010 g~ 1)e —(1434K)/T L

, 4.14
2T L @.14)

in precise numerical agreement with experiment for
L,=L.

In K, ;MoO;, the data of Cava et al.*’ for 60 < T < 100
K yield>!

o—=0) _ (1 6y 108 +3HKIT

€o
(4.15)

&=(32X 109 s—l )e—(829K)/T .

27
Inserting these values into Eq. (4.11), we infer a normal
conductivity:

L
oWeo(T)=~(3.0x 10° Q"cm“’)e“(“”KVTTS . (4.16)
Although Cava et al. did not published complete resis-
tivity data for this particular sample, their data published

in a subsequent paper>’ for pure K, ;M0O; over the same
temperature range give

oS (T)=(2.0x10° @~ 'cm~1)e ~“¥BKV/T = (4.17)

again in precise numerical agreement for L, =L with the
prediction of our simple model. This last paper contains
dielectric measurements on K, ;Mo00O; crystals intention-
ally doped with Rb and W, and many of the features ob-
served in these experiments can be understood on the
basis of the simple functional relation given in Eq. (4.8).

According to our model, an Arrhenius temperature
dependence of the dielectric relaxation frequency should
be observed at low temperatures in all CDW materials
which undergo a complete metal-insulator transition. At
sufficiently high temperatures, on the other hand, we ex-
pect that o, will be given by Eq. (4.7), and should there-
fore be approximately temperature independent. The
boundary between these two regimes can be estimated by
considering the density of normal carriers that are avail-
able to screen the CDW charge fluctuations. For a one-
dimensional semiconductor with conduction-band ener-
gies

#k?
Ec(k)=A+2 ol

(4.18)
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the thermally excited carrier density is given by

e

n(ry=2 [T KB T | arkr
21#?
12 A/k, T
=(2.68x10° cm")[m [T(K)]'%e 77777 .

(4.19)

When a Peierls gap opens in the tight-binding band of
Eq. (2.2), the quasiparticle spectrum in the neighborhood
of the Fermi surface will be approximately given by
e(k)==t[A2+(Fivpk )*]'/? for A << W,. Expanding this
relation, we can identify the appropriate effective mass in
Eq. (4.18) as

A(eV)

*—A/vi= .
UF [vp(10" cms™1)]?

(17.6m,)

(4.20)

The number of normal electrons that are required in or-
der to screen the CDW charge fluctuations corresponds
to approximately one per phase correlation length L on
each chain. When the average normal carrier density
n(T) falls below this value, those normal electrons which
are screening the CDW charge fluctuations become
effectively frozen onto the CDW phase gradients. For
the CDW to polarize, these normal electrons must move
over a comparable distance, and this leads to the Ar-
rhenius behavior that we have characterized above.
When n(T)>>1/L at higher temperatures, the dissipa-
tion associated with the normal screening is negligible.
The temperature T, at which the Arrhenius behavior sets

in can therefore be estimated by the criterion
n(T,)=1/L:
[Ta(K)]l/zexp[—A(Ta)/kBTa]
—1/2
~(3.7x107?) . 421
. L(pm)

In Fig. 6 we show our experimental data for the dielec-
tric relaxation frequency of the same orthorhombic TaS,
crystal characterized in Figs. 3 and 4, this time as a func-
tion of temperature. Using the estimates A~=0.06 eV and
vp=~5X10" cms~! obtained from Table I in Eq. (4.20)
gives m*/m,~4.2X 1072, Inserting this result into Eq.
(4.21) along with the value L =1.3 um estimated previ-
ously then yields T, =155 K. In Fig. 6, the dielectric re-
laxation frequency is seen to be roughly temperature in-
dependent below 200 K until it breaks sharply into an
Arrhenius behavior near T,~=(1000 K)/6.7=150 K, in
precise agreement with our estimate. All essential as-
pects of the dielectric relaxation behavior seen in sliding
CDW materials thus appear to be accurately described by
the present model.

V. ac CONDUCTIVITY

The ac conductivity seen in sliding CDW systems has
often been interpreted in terms of a simple damped oscil-
lator. Displacements of the CDW along the chain axis
are given by 8x =38¢/Q, so that the phenomenological
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FIG. 6. Dielectric relaxation frequency as a function of tem-
perature for pure 0-TaS;, obtained from the experimentally ob-
served maximum in Ime(w). Dashed line is a guide to the eye.

equation of motion for CDW electrons is taken to be

M 2
= EM——QM sing | =eE(1) . (5.1)

Here it is assumed that the periodic pinning potential is
sinusoidal, with an undamped natural frequency w,. For
small fields, this model predicts an ac conductxvxty

iw/T
olw)=0 , (5.2)
b (0} —0®)+iw/T
where o,=n.e’r/My again represents the maximum

CDW conductance.

ac-conductivity data for orthorhombic TaS; at T =160
K, covering the entire frequency range from 10 MHz to
100 GHz, are reproduced from Reagor and Griiner* in
Fig. 7. The dashed curves represent their fit to the
single-oscillator expression of Eq. (5.2) using w, /2m=5
GHz and 1/277=120 GHz. The roll-off at frequencies
beyond ~ 10 GHz is due to the inertia term in Eq. (5.1),
and their fit to the data in this millimeter-wave region is
very good. On the other hand, the rise in ac conductivity
at frequencies below ~1 GHz is clearly much too broad
to be descrlbed by a smgle oscillator. In a subsequent
publlcatxon, the data in Fig. 7 were fitted reasonably
well by assuming a distribution of pinning frequencies
with relative weight Plw,)=1 for w,/2m <5 GHz and
P(w,)=0 at higher frequenc1es

The discussion of the preceding sections has focused on
the phase correlation length L along the chain axis, and
the associated average pinning frequency o, =mcy/L.
We have argued that for strong pinning and small impur-
ity concentrations, this correlation length should approx-
imate the average spacing L between consecutive impuri-
ties along any individual chain. There will, of course, be
a distribution in the lengths / between particular impuri-
ties given by

P(l)=%e‘”‘ . (5.3)
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FIG. 7. (a) Real and (b) imaginary parts of the ac conductivi-
ty as a function of frequency for pure o-TaS; at T =160 K.
Solid curves are predictions of the theory using @,/27=3.9
GHz and 1/277=120 GHz. Dashed curves represent a single
damped oscillator fit with w,/27=5 GHz. Experimental data
points are reproduced from Sridhar et al. (Ref. 35).

If each segement can be considered to respond indepen-
dently, the corresponding distribution in pinning frequen-

cies w, =mcy /1 becomes

[ o, /0,

(3] —
Pla,)=—Le 777 . (5.4)
@p

We have argued in Secs. II and III that an individual
segment cannot polarize independently at low frequen-
cies, so that the static dielectric constant reflects only the
average correlation length L. An inspection of Egs. (5.1)
and (5.2), however, reveals that for an overdamped sys-
tem, the maximum ac conductivity is approached only
when the viscosity term exceeds the restoring force due
to pinning. This is seen to occur for w>wf,f, when the
applied frequency exceeds the “crossover frequency” of
the overdamped oscillator. In this region, pinning ceases
to play a significant role in determining the ac conduc-
tivity, and the response is essentially that of an ideal un-
pinned CDW subject to damping, and eventually to iner-
tia. If we now consider the behavior of an individual seg-

ment of length / located between two impurities, it be-
comes clear that this region cannot contribute its max-
imum to the ac response until o> (mc,/I)*r, since at
lower frequencies it must still feel significant effects of the
impurity pinning. On this basis, we expect that the dis-
tribution of pinning frequencies given in Eq. (5.4) should,
in fact, provide a reasonably accurate description for the
shape of the ac conductivity as a function of frequency.

The solid curves in Fig. 7 are obtained by convolving
the distribution of pinning frequencies given in Eq. (5.4)
with the damped oscillator response of Eq. (5.2). Here we
have used the value @, /2m=3.9 GHz obtained in Table
II for nominally pure 0-TaS,, together with the experi-
mental damping parameter 1/277=120 GHz. The fit to
the data is seen to be remarkably accurate over this entire
frequency range. The nominal crossover frequency in
this case is given by @ 27/2m~125 MHz, and the peak in
Imo(w) is seen in Fig. 7(b) to occur at a slightly higher
frequency near ~150 MHz. The theoretical predictions
shown in Fig. 7 are the same ones that were used to fit
the ac-conductivity and dielectric response data for a
comparable 0-Ta$S; crystal at T=150 K in Figs. 3 and 4.

Experimental ac-conductivity data are also available
on NbSe; out to the millimeter-wave region.>* The re-
sults for both CDW’s are very similar to the data shown
for 0-TaS; in Fig. 7. The estimate &, /2m~3.6 GHz that
we have obtained in Sec. III for the (NbSe;)! CDW can
be used in conjunction with the damping parameter
1/277=105 GHz inferred from the millimeter-wave
roll-off to produce predictions that are as accurate as
those obtained above for 0-TaS;.

The ac-conductivity data®® on (TaSe,),I displays a very
different behavior. Figure 8 illustrates the results of mea-
surements at 150 K by Reagor et al.>* covering a large
frequency range 1 kHz<w/2w<100 GHz. The
millimeter-wave data indicate a single-oscillator reso-
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FIG. 8. ac-conductivity data for a crystal of (TaSe,),I at
T=150 K, covering the extensive frequency range
1 kHz <w/2m <100 GHz. The millimeter wave resonance fre-
quency w, /2m=34 GHz and the dielectric relaxation frequency
@o/27m =1 MHz are indicated, along with the maximum ac con-
ductivity o, and the nearly constant value o for
@ << w << w,. Reproduced from Reagor et al. (Ref. 53).
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nance centered at w,/2m~34 GHz, with a damping pa-
rameter given by 1/277r=~21 GHz. Below ~1 GHz, the
ac conductivity is seen to be nearly independent of fre-
quency, with o, ~1072 o, all the way down to the
dielectric relaxation near w,/2m~=1 MHz. Below this
dielectric relaxation frequency, Reo(w)~w? and Ree(w)
approaches its static value. The magnitude of o, and
®y/27 are both observed to decrease rapidly with tem-
perature according to an Arrhenius behavior, displaying
an activation energy A/kp=~1400 K determined by the
Peierls gap.

The dielectric relaxation frequency wy/2m=~1 MHz
seen in Fig. 8 for (TaSe,),I at 150 K is consistent with the
low-frequency measurements of Cava et al.*® that we
have characterized in Eq. (4.12) of the preceding section.
There we showed that these experimental values for the
dielectric frequency could be predicted from Eq. (4.8),
based on the notion that normal carrier screening
effectively dominates the CDW dissipation at low tem-
peratures. According to this model, we would also pre-
dict that o, ~0oN(T). All modes which involve a spa-
tially dependent polarization of the CDW should be sub-
ject to greatly enhanced dissipation associated with the
Coulomb screening process at low temperatures. In this
regard, it is interesting to note that the high-field dc con-
ductance measured by Fleming et al.>* also follows the
normal conductivity on(T) in (TaSe,),I, as well as in
TaS; and K, ;M0O; at low temperatures. This behavior
directly reflects the polarizations of the CDW that ac-
company dc motion by the phase-slip process, as de-
scribed in the following section.

The single underdamped mode at o, /27~34 GHz in
Fig. 8 is not subject to the huge increase in damping asso-
ciated with normal electron screening. Millimeter-wave
data taken as a function of decreasing temperature®
show a slight increase of the maximum conductivity near
w,/2m=~34 GHz, with o, close to the room-
temperature value ogr=~350 Q~'cm~! for all TR 30 K.

The average pinning frequency in (TaSe,),I can be in-
ferred by inserting the measured*® static dielectric con-
stant e(w—0)=~1X 10%, into Eq. (3.11), along with the
estimates for n and My /m, contained in Table I. The re-
sult of this calculation yields &,/27~4.6 GHz, much
lower by a factor of ~7-8 than the resonance seen at
w,/2m~34 GHz in Fig. 8. The average pinning frequen-
cy ®,/2m=cy/2L, as we have defined it, refers to large-
scale polarizations of the average phase #(r). At low
temperatures, restricted normal electron screening drives
the effective crossover frequency for these modes down
rapidly according to wy=o y(T)/e(w—0), producing a
highly overdamped contribution to the ac conductivity
with a greatly reduced o, ~0N(T). The unscreened
mode seen at w;, /27 =34 GHz is, we believe, not associ-
ated with these large-scale polarizations of the average
phase, but with oscillation of the smaller phase ripples
that occur on a volume scale n,~! surrounding each indi-
vidual impurity. According to Eq. (2.18), the amplitude
of these interpolations of the average phase é(r) toward
the pinned values ¢} at each strong pinning site should be
relatively small for dilute impurity concentrations
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L20.3 pm or n; S1000 ppm. When the large-volume
¢(r) modes are effectively frozen out, however, coherent
oscillations of the phase ripples on the n,~! scale should
produce a contribution to the ac conductivity that is
much more easily screened. A rough numerical estimate
of the associated resonance frequency can be obtained in
terms of the approximate length scale L, given by Eq.
(B2) for the extent of these phase modulations along the
chain direction:

’

(2]

D __Co

2 AL (5.5)

min

For (TaSe,),l, this relation yields w,/27~(30 GHz)/
[L(zm)]'”3, in excellent agreement w1th experiment for
the values of L =0.5 pum inferred from €(w-—0) for nomi-
nally pure material. Doping studies should easily distin-
guish between this low-temperature millimeter-wave res-
onance, o, ~n;'”%, and the fully screened average pinning
frequency @,~n; seen in NbSe; and in o-TaS; for
T X 140K.

In all common sliding CDW materials except NbSe;,
the Fermi surface is completely gapped below the Peierls
transition. At sufficiently low temperatures, therefore,
each of these other materials should also display the same
general features illustrated in Fig. 8 for (TaSe,),l.
The low-frequency dielectric response measured* in
K,.3M00O; for 60 < T <100 K indeed shows the charac-
teristic Arrhenius dependence, as discussed in conjunc-
tion with Egs. (4.15)-(4.17). Far-infrared reflectance
measurements® on K, ;MoO; also clearly establish a
conductivity resonance near ~84 GHz at liquid He tem-
peratures, which we tentatively identify with w /2T, A
simple theoretical interpretation is precluded however,
by an apparent commensurate transition>® that occurs in
K,.3M0Oj; near 100 K. In o0-TaS,, the dielectric response
again displays an Arrhenius-type behavior for T <150 K,
as shown in Fig. 6. But here also, both electron-
diffraction studies®’ and dc-conductance data®* indicate
some type of commensurate transition setting in about
140 K, with perhaps a second transition to complete
three-dimensional commensurability near 80 K. The
large apparent increase in the pinning frequency of pure
0-TaS; seen in the millimeter-wave data® for T <150 K
is, nevertheless, consistent with the freeze-out of the
o, /2m=3.9 GHz modes, leaving a single resonance in
the general neighborhood of w,/2m~50 GHz. This
freeze-out occurs at higher temperatures in (TaSe,),I due
to its much larger Peierls gap.>®

VI. de MOTION

In Sec. II, we estimated the pinning energy associated
with an individual strong impurity to be
pm(¢ ¢0)~ (d) $0) . (6.1

This result is sketched in Fig. 9, together with the corre-

sponding curves for ¢, displaced by integral multiples of
27. When the average phase ¢ surrounding the impurity
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FIG. 9. Pinning energy associated with a single impl_lrity as a
function of displacement in the average CDW phase ¢ relative
to the pinned value ¢, at the strong impurity site, according to

Eq. (6.1).

increases beyond the pinned value ¢, the elastic energy
rises quadratically until the relative phase difference
reaches . At this point, a phase-slip process can transfer
the system to a lower-energy configuration in which ¢, is
suddenly increased by 27. We shall assume that this
phase-slip process occurs instantaneously on experimen-
tal time scales, so that the effective potential due to a sin-
gle impurity approximates the solid curve given by the in-

tersecting parabolas in Fig. 9.
J

de/dz | ,_1pye—dd/dz | ,_1 )

The basic aspects of phase slip are most easily illustrat-
ed by returning to the one-dimensional model of Sec. III.
There the phase displacement of the CDW between two
strong-pinning centers in a dc electric field was deter-
mined by Eq. (3.5) and sketched in Fig. 2. This model
produces an abrupt discontinuity in the phase gradient at
each impurity site:

¢ —¢LE 6.2)
dx |, _p e fivp

This discontinuity is an artifact of our phase-only ap-
proximation for the Hamiltonian in Eq. (3.1). We should
really have written down the Ginzburg-Landau equation
that comes from minimizing the total free-energy expres-
sion of Eq. (2.1), in which ¥(x) = | ¥(x) | e'#* is allowed
to vary in amplitude as well as in phase. In one dimen-
sion and for ¢ =1, setting 8F /8¢*(z) =0 yields

2

—vtulw - o
oz

The inclusion of amplitude variations will affect the solu-

tion only within a very small region of order £, about

each strong-pinning site. For small electric fields, the

average magnitude of the gradient term within these re-

gions is given by

(6.3)

__2eLE

§2 8_21£
z 622 gz

zéﬁl’ﬁl’

When this term reaches a value of order ~3 ||, the

state having ¥=0 within such a region will represent a
lower-energy configuration and the order parameter will
therefore collapse. The critical electric field for phase
slip at T =0 is then roughly estimated as

Returning now to our three-dimensional result for the
effective impurity pinning potential in Eq. (6.1), we can
make a more careful estimate of the electric field needed
to induce dc motion by phase slip. Approximately equat-
ing the energy for displacing the phase by 7 at each pin-
ning site to the potential gained by moving the CDW for-
ward by Acpw/2 in the presence of the electric field
yields

'yniEpin(7T)=nCeE0(0)A.CDw/2 N (6.6)

where the value of y will be estimated below. Using
n,=(AoL)""and n, =2/Acpw A4, this result becomes

A(eV)

Ey(0)= =(2500 V/cm)}/m . (6.7)

4 4eL
For y =1, this value is seen to be smaller than the one-
dimensional estimate of Eq. (6.5) by a factor of 7.

The result given in Eq. (6.7) for ¥ =1 is still much too
large. According to the analysis presented in Sec. II, the

- 6.4
elld ©4)

average phase ¢(r) will be only partially interpolated to-
ward the pinned value ¢} in the neighborhood of each im-
purity when the system is in equilibrium. Substantial
phase displacements are thus already built in at most im-
purity sites, and the value of ¥ should therefore be much
less than unity. If the interpolation of #(r) toward the
pinned value ¢; at each site is very small, then the elec-
tric field needs only to overcome fluctuations in the pin-
ning energy within a phase-coherent volume. Under
these conditions, ¥ =1/(N;)!”? where N, represents the
total number of impurities contained within this region.
From Eq. (2.18), we estimate that the interpolation ener-
gy remains relatively large, so that E,, >3E;,, for an
average impurity spacing of at least L 0.3 pum. In this
regime, the value for N; given in Eq. (2.20) may be used
to give

y=~0.07[L (um)]~1/3 . (6.8)

It is clear that this rough estimate may represent too
large a reduction in the critical electric field, since some
small interpolation of the average phase ¢(r) still takes
place in the neighborhood of each impurity site. We
shall, nevertheless, make use of it in analyzing the experi-
mental data for relatively dilute impurity concentrations.
Our estimate for the average depinning field thus be-
comes
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A(eV)
[ “m)]4/3 .

It should be kept in mind that the resulting numerical es-
timates are likely to be somewhat too small, especially
when L <0.3 pum or n; > 1000 ppm.

Finite temperatures will substantially reduce the mag-
nitude of the electric field needed in order to depin the
CDW. This is apparent from Eq. (6.1), since the pinning
energy at each impurity site is seen to be comparable to
kpT at typical experimental temperatures. Independent
local fluctuations of the CDW phase configuration will
occur in the immediate neighborhood of every impurity,
each mode approximately confined to the tiny volume
containing the localized phase gradients at the various
pinning sites as discussed in Sec. II. The effect of these
thermal fluctuations on the pinning energy can be includ-
ed very simply by modifying an argument originally ap-
plied to CDW systems by Maki.>> This calculation is
outlined in Appendix C. The temperature dependence of
the depinning field is found to be of the form

Eo(T)=Eq0)e T,

Eo(0)=~(175 V/cm) 6.9

(6.10)

where the temperature scale within the present model is

approximately
T~ww)

O nky

This characteristic behavior of the threshold field with
temperature is nicely illustrated in the data collected by
Monceau*® and reproduced in Fig. 10. The functional
form predicted by Eq. (6.10) is seen to be followed in all
of the materials represented here. The rapid divergence
in E seen near each Peierls transition temperature re-
sults from the fact that the condensate electron density
n.(T) vanishes more quickly than the energy gap A(T) as

~(1160 K)A(eV) . (6.11)

T T A\l T
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FIG. 10. Threshold field data as functions of temperature for
representative crystals of several sliding CDW compounds.
Reproduced from Monceau (Ref. 33).
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T —T,, reducing the force of the electric field relative to
the pmnmg In mean-field theory, n.(T) is proportional
to AXT) with A(T)~(T,—T)'% The additional factor
multiplying Eq. (6.10) would then be given by

A(T) n:.(0) N 1
A(0) n(T) ~ (1—-T/T,)'?

as T—T,. (6.12)

The divergencies seen in the threshold fields near T, in
Fig. 10 appear much sharper than this mean-field predlc-
tion, for reasons which are quite understandable. One-
dimensional fluctuations cause the expectation value of
the average gap (A) and the condensate density n_ to go
to zero at T,~0.3T)F, far below the mean-field transi-
tion temperatures for these materials. The value of (A?)
does not go to zero at Tp, however, and fluctuation effects
due to this pseudogap are observable well above T, in
most cases. In regions where the CDW phase is pinned
down by a strong impurity, the magnitude of the gap
should therefore tend to remain larger than the bulk
value of (A) as the temperature approaches T,. The re-
sult presumably leads to the very sharp dlvergences seen
in the threshold fields in Fig. 10 close to T,.

Table III shows a comparison between the values of T,
inferred from the experimental data in Fig. 10 and those
calculated using Eq. (6.11). An experimental value is not
listed for orthorhombic TaS; because of the unusual be-
havior apparent in Fig. 10, thought to be associated with
the onset of a commensurate transition near T =140 K.
The correlation between the experimental and calculated
estimates of T, appears to be reasonable, except that the
theoretical predictions are apparently too large by a fac-
tor of 2-3 in the larger-gap materials. This problem actu-
ally arises because the measured threshold field E; does
not usually provide a reliable estimate for the average de-
pinning field E,, except in NbSe; where the abundance of
normal carriers ensures very uniform electric fields and
CDW drift velocities throughout the entire crystal
volume. In (TaSe,),I, for example, threshold field data
published by Cava et al.*® indicate that E is nearly tem-
perature independent for 90 < T < 180 K, while in Fig. 10
it is shown to change by a factor of ~4 over a compara-
ble region. These discrepancies, as we shall demonstrate
below, can be largely resolved by fitting the complete dc

TABLE III. Comparison between the experimental tempera-
ture dependences exp(— T /T,) seen in the data of Fig. 10 and
the theoretical predictions of Eq. (6.11). The values labeled
with an asterisk for A in NbSe; are estimated by scaling from
the 0-Ta$S; gap according to the ratio of the transition tempera-
tures.

A (eV) T (K) T& (K)
(NbSe;)! 1.6x1072 * 19 ~20
(NbSe;)! 3.9%1072 * 45 ~40
TaS; (ortho) 6.0% 1072 70
TaS; (mono) 8.2x1072 95 ~30
(TaSe,),1 0.12 139 ~65
(NbSe4)1013 0.17 197 ~60
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I-V curve to a Zener-type expression in order to extract a
value for E that is more representative of the average
depinning field.

The basic shape of the dc I-V curve for sliding CDW
materials under most experimental conditions is very dis-
tinctive. Above threshold, the CDW conductance fol-
lows the functional form exp(—E,/E), as indicated in
Eq. (1.1). This form is, of course, reminiscent of the
Zener-type tunneling which occurs in semiconductors.
In most cases, the experimental data can be reasonably
fitted by the approximate expression

—E,/E
e 0

ICDW(E)sz(E_ET) Py (6.13)

where Er < E;. An alternative form with E replaced by
E —E; in the exponential factor was proposed several
years ago by Fleming,4 who obtained very accurate fits in
this manner to his experimental data on NbSe; as shown
in Fig. 1. The precision of the fit to a Zener form is fur-
ther illustrated in Fig. 11, using some of our recent data
on NbSe; superposed for five different temperatures on
the upper CDW transition. The measured values of
Icpw(E)/Gy,E are seen to depart from the universal
curve exp(—E,/E) only in the immediate neighborhood
of threshold, and to very precisely follow this simple form
over 2 orders of magnitude in the applied electric field.
For strong pinning, the simple Zener form of the dc
I-V curve was explained several years ago by Portis.%
His argument requires only a minor reinterpretation
within the present context. If we return to Eq. (6.7), the
average depinning field is given by the condition
eE,L =~y(A/4). The distribution in the lengths / be-
tween successive impurities about the average value L is
given in Eq. (5.3). If each segment on every chain could
move independently, an electric field E would depin only
those segments longer than /;, =(E,/E)L. The conduc-
tance under these conditions would thus be proportional
to
© o _in_ ,~E/E
i) | dipe!t=e : (6.14)

Of course, each segment on every chain cannot depin in-
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FIG. 11. Normalized nonlinear dc-conductance data as a
function of electric field for a crystal of NbSe;, superposed for
five different temperatures on the upper CDW transition. The
solid curve represents the Zener form exp(—E,/E).

dividually. The acceleration of a large phase-coherent
volume containing a great many strong impurities
should, however, still be roughly proportional to the frac-
tion of individual segments which would conduct if they
could move separately. The dc CDW current thus as-
sumes the approximate form given in Eq. (6.13). Accord-
ing to this argument, we should expect that the threshold
field E; is essentially equal to the characteristic field E,,.
This value is indeed approached in the best NbSe; sam-
ples under optimum experimental conditions. But in
most cases, Er is found to be considerably less than E,,
presumably due to inhomogeneities in the impurity distri-
butions and electric fields within the crystals. Values of
E, extracted from fits to Eq. (6.13), therefore, represent
the most reliable experimental measure of the average
electric field needed in order to depin the CDW.

In his early work on NbSe;, Fleming* was able to
determine accurate values for E,(T) at several tempera-
tures on the upper transition, in addition to the tempera-
ture dependence of the threshold field E; for both
CDW?’s. His results are reproduced in Fig. 12. The rapid
increase in Ey(T) seen as the temperature is reduced
below 100 K can be accurately fitted by

EZP(T)=(1.8 V/cm)e ~T/36K) (6.15)

Using the estimate A~3.9X 1072 eV given in Table I, to-
gether with the representative value L =~2.3 um obtained
in Sec. III, the theoretical predictions of Egs. (6.9)-(6.11)
for the upper (NbSe;)! CDW become

Eheor(T)=(2.2 V/cm)e ~ T/ K) | (6.16)

The quantitative agreement seen here is quite remarkable
in view of our many approximations.
Turning now to orthorhombic TaS,;, we should like to

T T T T T T T T 2 T v T 7T

240} -
] EO
® Ey:NOISE ONSET
2001 & Ey:dv/d1 4

160

120

E (mV/cm)

40

T(K)

FIG. 12. Characteristic depinning field E, for the upper
CDW state of NbSe;, and measured threshold fields E for both
upper and lower CDW states, as functions of temperature.
Dashed curve shows relative magnitude of the low-field dc resis-
tivity, indicating the two CDW transitions at T,,'= 145 K and
T?=59 K. Reproduced from Fleming (Ref. 4).
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see how the experimental values of E; listed for the in-
tentionally doped crystals in Table II compare with the
predictions of the theory. Using A=~6.0X 102 eV and
the values for L estimated from the experimental dielec-
tric constants yields the theoretical results for E, quoted
in Table II. The comparison is seen to be very good, al-
though it should be noted that E,=3E; for typical
o-TaS; crystals at this temperature. Nevertheless, the
theoretical estimates seem generally accurate, although
they appear to rise a bit too slowly with decreasing L,
particularly in the case of the 0.2% Nb crystal. This be-
havior is, however, in qualitative accord with the discus-
sion given in conjunction with our estimate for y in Eq.
(6.8). For values of L £0.3 um or n;20.1% we indeed
expect a larger E,, since the average phase 4(r) should
become significantly interpolated toward the pinned
value ¢, at each impurity site, causing our estimate of
¥ =~1/(N;)"? to be too small.

To check the temperature dependence of Ey(T) for or-
thorhombic TaS;, we can utilize some of our previously
published data.®! Five quoted values for E, covering the
temperature range 154 < T <209 K above the apparent
commensurate transition near 140 K can be accurately
fitted by

ES™(T)=(34 V/cm)e " T/ K) (6.17)

Using the value L~1.3 um obtained in Table II as
representative of nominally pure o-TaS;, the prediction
of Egs. (6.9)—(6.11) becomes

Efer(T)=(7.5 V/cm)e ~T/70K) | (6.18)

in reasonable agreement with experiment. We note that
E, rises abruptly with decreasing temperature over this
range, although the threshold field E is often observed
to be relatively constant as seen in Fig. 10. This observa-
tion again indicates the importance of using E, rather
than E; to characterize the average depinning field.

The importance of measuring E, is further under-
scored by our recent dc data on (TaSe,),I shown in Fig.
13. The initial CDW motion is observed above a thresh-
old field E;~1 V/cm nearly independent of temperature
as in the data of Cava et al.*®® On the other hand, E, is
seen to rise sharply with decreasing temperature in quali-
tative agreement with the E; data of Monceau®® shown
in Fig. 10. The experimental values for E in Fig. 13 are
accurately fitted by

E§P(T)=(94 V/cm)e ~T/112K) (6.19)

The phase correlation length L can be estimated using
the value o /2m=~4.6 GHz obtained in Sec. V, together
with the parameter estimates given in Table I which yield
co~4.9%X10° cms~!. Inserting these values into Eq.
(3.10) gives L =0.5 um. The theoretical prediction for

the average depinning field then becomes

Efor(T)=~(53 V/cm)e ~T/U¥K) | (6.20)

again in good agreement with experiment.
The theory of strong pinning and phase slip that we
propose here easily accounts for the functional form of
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FIG. 13. Characteristic depinning field E, and minimum
threshold field E for a crystal of (TaSe,),I as a function of tem-

perature. Dashed lines are guides to the eye.

the dc I-V curve seen under most experimental condi-
tions, as well as for the characteristic temperature depen-
dence of the threshold field shown in Fig. 10. Estimates
for the average depinning field E,(T) are found to be in
excellent quantitative agreement with experimental data
on NbSe;, 0-TaS;, and (TaSe,),I. The variation of E,
with impurity concentration shown in Table II also ap-
pears generally correct, with some understandable devia-
tion at the highest doping level caused by an inadequacy
in our approximations for L $0.3 um. The range and
quality of the correspondence between the theory and
available experimental data on dc motion is thus very
substantial.

VII. CURRENT OSCILLATIONS

According to the present theory, dc CDW motion
occurs by means of phase slip. Far above threshold,
where the drift velocity is nearly constant, small current
oscillations are produced by the CDW’s motion over an
effective pinning potential of the general form illustrated
in Fig. 9. Close to threshold, however, the dc motion is
composed of discrete “jumps” which rapidly advance the
phase by 27 within each phase-coherent volume, produc-
ing many harmonics in the narrow-band noise spectrum.
When phase slip occurs within a particular region, the
time scale for transient readjustment of the phase
configuration is given by the dielectric relaxation frequen-
cy, as discussed in Sec. IV. For average CDW drift fre-
quencies w, =d ¢ /dt small compared to the dielectric re-
laxation frequency w,, we should thus expect to observe a
locally “jerky” motion consisting of discrete periodic
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pulses with a duration ~1/w.

The results of this behavior are readily apparent in ex-
perimental measurements of the narrow-band noise. In
our recently published data on NbSe;,** the magnitude
and harmonic content of the current oscillations may be
seen to become effectively independent of electric field for
applied dc voltages VX 5V, as shown in Fig. 14. At
these dc voltages, the fundamental drift frequency
exceeds the dielectric relaxation frequency wy/27m=5
MHz. In this high-field regime, we demonstrated that
the current oscillations and the mode locking to external
ac signals could be quantitatively reproduced by a simple
model based on overdamped motion in a nonsinusoidal
effective pinning potential. The form for the effective po-
tential used in that analysis consisted of intersecting
cosine curves, very similar to the intersecting parabolas
shown in Fig. 9, and the experimental data indicate that
the actual periodic potential is slightly more rounded.
From the widths of the current steps induced onto the dc
I-V curve by mode locking, we found that the maximum
restoring force associated with this periodic pinning po-
tential corresponds to at least one-third of the threshold
field in good crystals, as shown in Fig. 15 for ac frequen-
cies * 5 MHz.

This simple behavior seen in our experiments at high
fields and frequencies is dramatically altered for V <5V,
when the fundamental drift frequency w,; becomes small-
er than w,. In this regime, the harmonic content of the
current oscillations increases rapidly and the magnitude
of the fundamental falls off. The number of measurable
harmonics is approximately given by ~2w,/0,4, as would
be expected if the dc motion consists of jumps of duration
~1/wy. The maximum widths of the mode-locked steps
are also seen to decrease rapidly in Fig. 15 when the fun-

1.0 NbSe, ‘T 0=t V/V,=1.5
- T=114 K fF
0.8 4+ p=p 3af
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FIG. 14. Amplitudes of the first three harmonics of the
current oscillation spectrum in NbSe; at 114 K normalized by
that of the fundamental. Significant harmonic content remains
even at very high fields. Solid lines are guides to the eye.
Reproduced from Thorne et al. (Ref. 30).
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FIG. 15. Width of the fundamental mode-locked step on the
dc I-V curve vs applied ac amplitude at several frequencies.
The periods of the oscillations with ac amplitude are roughly
proportional to the ac frequency. The maximum width of the
steps increases at low frequencies but saturates at high frequen-
cies. Solid lines are guides to the eye. Reproduced from
Thorne et al. (Ref. 30).

damental drift frequency becomes less than w,/27=5
MHz.

The same picture emerges even more vividly from the
NMR experiments of Ross, Wang, and Slichter.* We
have already discussed their result 8¢~ 2° for the average
angular displacement in a dc electric field E~=O0.75E
just below the conduction threshold for the upper NbSe,
CDW. In Sec. III, we showed that this surprisingly small
average displacement is actually in very good agreement
with our simple model for CDW polarization. The fact
that the displacement remains so small near threshold ul-
timately results from local thermal fluctuations, which
greatly reduce the magnitude of the depinning field ac-
cording to Egs. (6.10) and (6.11).

In order to characterize the CDW’s motion, Ross
et al. performed a further series of NMR experiments on
their aligned sample, composed of 30 crystals each 1 cm
in length, but this time biased above the average conduc-
tion threshold ~200 mV/cm at 77 K. These results are
more completely described by Ross,®? where the average
drift frequencies are inferred directly from narrow-band
noise measurements rather than by the calculated esti-
mate contained in the published paper.** One set of ex-
periments observed saturation in the nuclear magnetiza-
tion as a result of rapid CDW motion. This effect occurs
when significant components of the CDW motion spec-
trum reach the NMR frequency, 88 MHz in this case, in-
ducing transitions between the Zeeman levels. The satu-
ration onset was observed to occur when the fundamental
CDW noise peak reached about one-half this frequency,
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near 45 MHz. Their analysis indicates that the observed
behavior can be consistently explained by the presence of
a second harmonic in the motion spectrum with a relative
amplitude of ~5% of the fundamental. This result is
similar to, but somewhat less than, the observation in
Fig. 14 of a second harmonic of relative amplitude
~20% in the current oscillations at a higher temperature
where the CDW motion is more coherent. Analysis of
the NMR line shape yielded a similar estimate of ~4%
for the second-harmonic amplitude. Ross®? therefore
concludes that the CDW motion, while noticeably non-
sinusoidal, is relatively smooth at fields greater than ~7
times the conduction threshold.

The motional-narrowing results obtained by Ross
et al.* closer to threshold, however, paint an entirely
different picture. The random positions of the Nb nuclei
with respect to the incommensurate CDW charge distri-
bution produces a static broadening Aw /27 =30 kHz of
the NMR line shape for the chains containing the CDW,
as indicated in Fig. 16. Ordinarily, motional narrowing
would be expected when the CDW drift frequency w,
exceeds Aw, so that each nucleus rapidly samples an aver-
age charge distribution over the time scale ~1/Aw need-
ed to resolve the static broadening. Motional narrowing
is seen in Fig. 16, but not until the drift frequency (as
measured by the narrow-band noise fundamental) reaches
@y /2w=15 MHz near 0.7 V/cm. The narrowing of the
NMR linewidth seen here is rather abrupt. At 0.55
V/cm the linewidth essentially equals its static value,
while at 0.70 V/cm it is reduced by half. A Fourier
transform of the echoes obtained at 1.4 V/cm showed
complete motional narrowing, with no remaining trace of
the static line shape. Several independent NMR experi-
ments also indicate that CDW motion is reasonably uni-
form throughout their multicrystal sample. The results
shown in Fig. 16 are thus an accurate reflection of the lo-
cal motion seen by each Nb nucleus as the CDW is dep-
inned above threshold.

This remarkable increase of ~500 in the motional-
narrowing onset frequency for NbSe; was considered in

77K
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FIG. 16. (a) Spin echoes in NbSe; at 77 K illustrating
current-driven motional narrowing of the Nb NMR line for the
“yellow” chain containing the CDW. The broader echo implies
a narrower line. (b) Dependence of the linewidth on dc bias
voltage applied across the 1-cm sample. The intrinsic width is
that of the “red” and “orange” Nb sites which do not contain
the CDW. Reproduced from Ross et al. (Ref. 44).
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detail by Ross. He concluded®® that it could only be ex-
plained if, as illustrated in Fig. 17, “the CDW can be con-
sidered to move as a sequence of steps, at voltages just
above threshold. If each step advances the CDW phase
by exactly 27, then the NMR frequency shift, which is
periodic in the CDW phase, will be the same before and
after the step. During the actual step, the frequency shift
will execute one cycle through the frequency extremes of
the line shape, but between the steps the frequency shift
will be steady at a locally-defined value.” Under these
conditions, motional narrowing would not be expected
until the spacing between the steps becomes comparable
to the average step width. Since motional narrowing was
observed at w,/2m=15 MHz, Ross inferred that the
duration of a single current step must be ~0.1 us.

We now recognize this step width as essentially the
dielectric relaxation time for NbSe;. It seems to us that
motional narrowing of the NMR line shape could only be
forestalled to CDW drift frequencies ~500 times in ex-
cess of the static broadening if the effect of each step was
to displace the CDW phase by exactly 2m. This, in turn,
is only plausible if the dc motion proceeds by phase slip.
Indeed, the description of CDW motion near threshold
that Ross provides is precisely what one would expect on
this basis.

Janossy et al.®* have recently published an NMR
study of motional narrowing in Rby;MoO; for
40<T <60 K that appears to show a dramatically
different result. Their data are reproduced in Fig. 18.
The narrowing is seen to take place at a drift frequency
w,/2mw=5 kHz comparable to the static line broadening
Aw/27=10 kHz, and a factor of ~ 10° smaller than the
narrowing frequency in NbSe;. In these experiments, the
electric field E~15E, is held constant, and the CDW
drift velocity is rapidly altered by changing the tempera-
ture.

%lTS k_ II\ Tc ’{

£
[

time —

FIG. 17. The stepped motion, as proposed for small CDW
velocities. Illustrated is the NMR frequency vs time for nuclei
at two different points in the static line shape, indicated
schematically at the left of each graph. Reproduced from Ross
(Ref. 62).
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This result can be readily understood within the con-
text of our model. In the high-field limit w,; >>w,, where
the current pulses in Fig. 17 run together, the CDW
motion will become relatively smooth with a fundamental
drift frequency:*’

w;~wy(E/Ey) for E>>Er . (7.1

The behavior here is similar to that of a relaxation oscil-
lator at applied voltages far in excess of the breakdown.
The dielectric relaxation frequency as a function of tem-
perature can be estimated from the experimental results
quoted in Eq. (4.15) for the nearly identical material
K, 3M00;. Use of the resulting values together with
E/Er=15 in Eq. (7.1) then reproduces the average CDW
drift frequencies shown in Fig. 18 to within a factor of 2.
Over the temperature range 40< 7T <60 K of the ex-
periments of Janossy et al., the dielectric relaxation fre-

J'CD=N0.014 Acm—2 ¥V = 0.020 kHz

T =40.3 K —+—t

0.158 Acm2 1.64 kHz

45.9 K

0.245 Acm=2 2.81 kHz

47.4 K

0.405 Acm2 4.92 kHz

49.3 K

5.270 Acm™2 58.6 kHz

59.2 K

FIG. 18. NMR line shape in Rby;M00; as a function of
CDW current density for 40 < T <60 K. The field is fixed at
E=1.5 V/cm (=15E;) and the temperature is varied to
change jcpw. Solid lines are computer-fitted curves using a rel-
ative CDW velocity distribution inferred from the narrow-band
noise and the average drift frequencies ¥ shown at the right for
each temperature, in good agreement with their measured
values. Reproduced from Janossy et al. (Ref. 64).
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quency remains smaller than the static line broadening
Aw/2m=~10 kHz, with w,/2m=~2.6 kHz at the highest
temperature T =59.2 K shown in Fig. 18. Under these
conditions, the motional narrowing should occur when
w4~ Aw, as observed here for w,;/2m~5kHz at T =49.3
K. The very different behavior seen in Rb, ;M0O; com-
pared to NbSe; results from the tremendous reduction in
the dielectric relaxation frequency due to restricted nor-
mal carrier screening, as discussed in Sec. IV.

According to our interpretation, the motional-
narrowing frequency in Rby;MoO; should change
dramatically for slightly higher temperatures T > 65 K,
where Eq. (4.15) predicts that wy,> Aw. In this region,
Rby ;M00; is expected to display motional narrowing at
a CDW drift frequency w, ~w, that increases very rapid-
ly with temperature. Thus by simply adjusting the tem-
perature, it should be possible to show that Rb, ;M00,
can display the same remarkable behavior seen in NbSe;.

Previously published data on Rb, ;M00, by Segransan
et al.®* at T=77 K appear to confirm this prediction.
At 77 K, Eq. (4.15) yields a dielectric relaxation frequen-
cy wy/2m=67 kHz. Motional narrowing is observed at a
drift frequency w,;/2m=~70 kHz close to the expected
value, and much larger than the narrowing frequency ~$
kHz seen at 49.3 K in Fig. 18. An earlier NMR study of
Rb, ;M00; at T=77 K by Douglass et al.% failed to
produce evidence for motional narrowing at current den-
sities up to 0.45 A/cm? According to later measure-
ments by Janossy et al.®* this current density translates
into an average CDW drift frequency o, /27~ 6 kHz, too
small to observe the motional narrowing at 77 K by an
order of magnitude.

All available NMR evidence on motional narrowing in
both NbSe; and Rb, ;M00; is thus accurately and quanti-
tatively described by the present model. Further experi-
ments are needed on Rb, ;Mo0O;, however, in order to
unambiguously confirm that the narrowing frequency fol-
lows the dielectric relaxation frequency for T > 65 K. By
sampling the local CDW motion at nuclear sites
throughout the sample, NMR techniques are capable of
providing critical information on CDW dynamics that is
difficult or impossible to obtain through electrical mea-
surements alone.

Further direct experimental evidence in favor of phase
slip comes from an effect that has been called “pulse-
duration memory” by Fleming and Schneemeyer,®’ who
were the first to characterize it in K, ;M00;. Figure 19
reproduces data of Ido et al.®® illustrating this
phenomenon in a small and especially coherent NbSe;
crystal. A series of identical current pulses is applied to
the sample just above the CDW conduction threshold,
and the resulting excess conductivity o, due to CDW
motion is plotted as a function of time. Figure 19 shows
the behavior observed when the duration of the current
pulses is gradually increased. The oscillations in o, al-
ways end at the maximum value, regardless of the pulse
width, as if the phase were locked to the end of the pulse.
The number of oscillations in o, is always observed to be
integral. With increasing pulse width, the oscillation
period gradually lengthens until the number of oscilla-
tions suddenly jumps by one complete cycle. Ido et al.
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FIG. 19. (a) Extra conductance o, of a NbSe; crystal due to
periodic CDW motion as a function of time. A constant electric
field E ~1.4E7 is applied in a series of pulses, and the results
are shown here for several different values of the pulse width.
(b) Comparison between the extra CDW conductances observed
for two values of pulse width having the same number of oscilla-
tions. Reproduced from Ido et al. (Ref. 68).

show that as the pulse width is increased, the modulation
of o, also increases in a manner which yields a constant
value for the time integral of the CDW current, so long
as the total number of oscillations remains constant. By
converting the integrated current to a spatial displace-
ment, they found that the CDW moves ahead by precise-
ly mAcpw during each current pulse, where m is the
number of cycles observed in o,. They conclude that this
behavior must be associated with depinning of the CDW
by phase slip at strong pinning centers.

A very wide range of experimental evidence on current
oscillations thus supports the idea of dc CDW motion by
phase slip. Of all these results, the most compelling are
those of Ross et al.**%2 on motional narrowing of the
NbSe; NMR linewidth, which may prove impossible to
explain on any other basis. Simulations by Littlewood?®
using a one-dimensional version of the classical phase-
only model of deformable CDW’s indicate that the phase
tends to advance relatively rapidly through large frac-
tions of 27 in alternating spatial regions as time
progresses. The local jumps within this model, however,
are not nearly precise enough to account for the experi-
mental NMR data on motional narrowing. Only a
phase-slip process, we believe, can ensure the exact local
registration of the CDW over the intervals necessary to
forestall the motional narrowing to drift frequencies
~500 times in excess of the static line broadening.
Furthermore, all other experimental evidence on the
current oscillation phenomena appears to be in detailed
and consistent agreement with this point of view.

VIII. CONCLUSION

In this paper, we have presented a theory for CDW dy-
namics based on the idea that the phase is strongly
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pinned at each impurity site, and that dc motion is made
possible only by phase slip. The theory thus breaks with
the conventional wisdom of the past several years, in
which CDW dynamics was considered to result primarily
from weak impurity pinning. The present model is based
on a modified version of the three-dimensional
Ginzburg-Landau analysis of strong pinning given by Lee
and Rice!! many years ago. The major conceptual step
we have taken here is to demonstrate that strong pinning
does not limit the phase coherence in CDW systems to
the average volume of a single impurity, at least for the
relatively dilute concentrations present in nominally pure
crystals. No attempt has been made to go beyond the
Ginzburg-Landau analysis toward a more microscopic
formulation of the CDW’s interaction with individual im-
purities. Tiitto and Zawadowski® have provided an
elegant microscopic picture of CDW pinning, however,
which we believe could potentially be applied to charac-
terize the phase-slip process.

Most of the phase gradients needed to interpolate be-
tween the average ¢(r) and the pinned value ¢ at a par-
ticular impurity site are estimated to be confined to a tiny
region ~75 A in length and effectively one chain in
cross-sectional area. Because of this, the phase coherence
distance along the chain direction is expected to be com-
parable to the average impurity spacing. The average
phase @(r) is expected to be transversely correlated over a
relatively large total volume, containing up to a few hun-
dred individual impurities in good NbSe; crystals.

The minimum interaction energy between a single im-
purity and the CDW that is needed in order to strongly
pin the phase is estimated to be ~1072 eV. Thus we ex-
pect that most types of impurities will act as strong-
pinning centers, whether they are charged or not, in rela-
tively dilute concentrations. The original doping study
carried out on NbSe; by Brill et al.” indicated that the
nonisolectronic impurity Ti causes a much larger increase
in the threshold field than Ta, which is isolectronic to
Nb. On the other hand, these authors were unable to ob-
tain a smooth correlation of their dc data with the nomi-
nal amount of Ti doping. A similar and more recent dop-
ing study is reported in the paper by Ido et al.%® Here
the effects of Ti and Ta impurities on the measured
threshold fields are seen to be very comparable, although
there are some apparent differences noted in the shapes of
the dc I-V curves. Furthermore, the data of Brill et al.
which indicate that both E; and E increase approxi-
mately as the square of the Ta concentration is not in
serious conflict with the present model of strong pinning.
The theoretical estimate given in Eq. (6.9) is seen to be
proportional to n/3, but the depinning field is expected
to rise faster with impurity concentration when L <0.3
pm or n; > 1000 ppm. The nominal Ta concentration for
most of the samples measured by Brill et al. falls within
this range, so that the case for weak pinning on the basis
of these experiments is by no means clearcut. While fur-
ther doping studies will certainly be important to testing
the present theory, the currently available data appear to
be reasonably consistent with this revised view of strong
pinning.

The ideas of strong pinning and phase slip have been
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developed throughout this paper in order to characterize
most of the major aspects of CDW dynamics that have
been so intensively studied over the past ten years. Dur-
ing the course of this work, we have continually been
amazed and gratified by the close quantitative correspon-
dences that have emerged between our relatively simple
estimates and the experimental data. Having come this
far, we are now convinced that the basic concepts of this
theory must be fundamentally correct.

We have also come to understand how the behavior
that we previously considered as evidence for quantum
tunneling can emerge from the present picture. The
Zener-like form of the dc I-V curve results quite natural-
ly from strong pinning, as argued by Portis® several
years ago. The corresponding shape of the ac conductivi-
ty in overdamped systems is due to the distribution in
pinning frequencies given by Eq. (5.4), which is essential-
ly identical to a result previously obtained for strong pin-
ning in one dimension by Fukuyama and Lee.!? The non-
linear mixing experiments that we have performed'>%
were required to fit the photon-assisted tunneling predic-
tions at the lowest frequencies, since in this regime the
theoretical expressions reduce to the classical derivatives
of the dc I-V curve. At high frequencies, the nonlinear
response must vanish because the CDW no longer feels
the effects of impurity pinning. By scaling the ac and dc
responses, we were thus able to obtain an interpolation
between these two extremes that corresponded rather
well to the experimental data. Recently, Liu and Sned-
don’! have shown that qualitatively similar results can be
obtained from a classical Frenkel-Kontorova model in
which the effective pinning potential remains constant at
arbitrary dc electric fields, in contrast to the Sneddon,
Cross, and Fisher?! model of deformable CDW’s. The
internal phase shift that they predict for harmonic mix-
ing is surprisingly small within the region of experimental
interest, and roughly comparable to the uncertainty in
our measurements. This apparent lack of any internal
phase shift for harmonic mixing was previously interpret-
ed!®2% by us as strong evidence in favor of the tunneling
hypothesis.

The problem of explaining the observed behavior of
CDW systems has baffled a large number of people for a
very long time. If the present theory is correct, this long
delay in achieving a satisfactory interpretation of CDW
dynamics is the result of (1) a misunderstanding of the
large-scale phase coherence properties for a strongly
pinned system, and (2) a concentration on phase-only
models, in which the possibility of extremely strong pin-
ning and phase slip is a priori excluded.
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APPENDIX A

Mean-field theory predicts a Peierls transition tempera-
ture given by the BCS expression

T'F=A/1.76ky . (A1)

In a truly one-dimensional system, however, thermal fluc-
tuations would completely suppress the phase transition
to T=0. The data collected by Monceau’® show that
2A/kgT,~12 for most sliding CDW materials, so the
Peierls temperature T,~0.37,"F is indeed substantially
depressed below the mean-field value. The magnitude of
this depression can therefore be used to infer the anisot-
ropy of the electronic structure for these systems.

Horovitz, Gutfreund, and Weger’”® consider a model
with the following band structure:

(A2)

The Fermi surface lies at e(k)=0, and the average value
of kp along the chain direction is determined by
€,(kp)=0. The longitudinal Fermi velocity is then
ve=#"'de,(k)/dk | —k,- The energy scale g is defined

e(k)=¢,(k,)—neg[cos(k,a )+cos(k,a )] .

to be gg="fivgkg /2, which is equal to the Fermi energy if
€,(k)=#?k%/2m. The dimensionless parameter 7 is then
a measure of the anisotropy. An explicit form for €,(k)
need not be specified, since for 7 << 1 the properties of
the model depend only on the dispersion near the Fermi
surface.

Horovitz et al. express their results in terms of the pa-
rameter

kg T,in A
T=

= . (A3)
€ 1.76¢,
They find that a Peierls transition is possible only for
n<n,=3.5(r/a)'? . (A4)

Here a«d?’,/dk?|, —k» With a=1 for free-electron

propagation and a =1 /4 for a 1-filled tight-binding band.
For 7>17,, the band structure is no longer sufficiently
one dimensional to produce the phase transition.

In the regime of strong one-dimensional fluctuations,
where T <0.5T},“F, the suppression of the Peierls tem-

P
perature is predicted to be

T, =T, exp(—2.57/7) . (A5)
For the sliding CDW materials with 7,~0.37,'F, this
gives

(A6)

A
n=2T= &
The value of ¢, equals the Fermi energy ey for a free-
electron band, and gy=(7/ 16\/2)W|| for a 1-filled tight-
binding band. Mean-field theories predict that
A~4ege /2, where A is the dimensionless electron-
phonon coupling constant for Q =2k;. Equation (A6)
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therefore indicates that 7 should be roughly material in-
dependent, assuming that A is similar for all sliding CDW
crystals. We estimate its numerical value for orthorhom-
bic TaS, by taking A=0.06 eV and g,~0.4 eV (W =3
eV), so that

n=0.15 . (A7)

This estimate is nearly an order of magnitude greater
than the values 17=0.02 inferred by Carneiro’™ for the
Pt(CN), salts, reflecting the much more three-
dimensional nature of the sliding CDW materials. Note
that our estimates for TaS; imply a transverse bandwidth
W, ~0.12 eV. In this case W ~2A, and a larger value of
7 than the estimate of Eq. (A7) would probably preclude
a complete metal-insulator transition.

Horovitz et al. find that the transverse-to-longitudinal
coherence-length ratio is given by

51 1

R ——nkra, . (A8)

Using kpa~m/4 and a, /a, =2 then yields the following
result for the sliding CDW materials:

£,~0.08¢, . (A9)

APPENDIX B

The elastic energy that would be required to smoothly
interpolate the CDW phase between strong-pinning
centers may be estimated using Eq. (2.11). Constraining
the volume of the phase variation to the average volume
per impurity, AL = AOE, gives

(G—do)* . (B1)

Minimizing with respect to L then yields the optimum di-
mensions

£ 2/3
Lmin— _“ (AOZ)I/3 s

3

£ (B2)
A= [—i (A,D)27 .

&

The ratio L, /( A nin)'/>=§, /£, exactly as would be ob-
tained from the rescaled version of the Lee and Rice!!
free energy. Taking §,~0.085, and 4,=70 A2, the nu-
merical values are given by

L pin =~(500 A)[L(um)]'?,

_ (B3)
A, ~(20A4,)[L(pm)]*3 .
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Inserting the results of Eq. (B2) back into Eq. (B1) pro-
duces the following estimate for the elastic energy per im-
purity required for a smooth interpolation of the phase:

E o =~3f0 ?' (Aof WAF—o)? . (B4)

In terms of Eq. (2.13) for the energy E;, needed to indi-
vidually adjust the phase to a uniform ¢, we find

Eclast - 3\/5 §l
Ey 4 g

pin
We note that this ratio is extremely insensitive to our nu-
merical estimates for §, /£, and A4,.

/3

- ~4.9[L(um)]'”* . (BS)

0

APPENDIX C

Maki*® has proposed a model for incorporating
thermal fluctuations of the CDW phase in calculating the
dc threshold field. His basic argument can be consider-
ably simplified within the present context.

For a CDW with a periodic pinning potential of the
form V(¢)=—V,,, cosd, the equilibrium configuration
at T =0 is the state of lowest energy ¢ =0. At finite tem-
peratures, thermal fluctuations will produce a distribu-
tion
—¢%/2(¢?) ,

P(¢)= (C1)

1
(217(¢2))l/28

where
max2<¢2>_ ‘kB

The existence of a probability distribution P(¢) reduces
the maximum potential energy that the system can gain
by adjusting its average phase to {#) =0. This reduction
can be calculated according to

(C2)

<cos¢)=Re[f°° dgP(plei |=e— 72 (C3)

On this basis, the average depinning field should be re-
duced by the same factor,

e—(¢2)/2=e_T/TO , (C4)
where
T‘o=21/max /kB . (CS)

For a pinning potential of the form given in Eq. (6.1), we
make the identification

Vmax =~ —2_2Epin(1r) ’ (C6)
T

which yields the result quoted in Eq. (6.11).
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