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A model for diffusion in configuration space is proposed which combines the features of infinite

dimensionality and low connectivity thought to be important for glassy relaxation. Specifically, a

random walk amongst a set of N points, with each of the N(N —1)/2 pairs connected independently

with probability p/N (and the mean connectivity p finite for N~ ~ ), is considered. The model can

be solved exactly by the replica method, but the behavior in the long-time regime is di5cult to ex-

tract. From, instead, intuitive arguments based on the dominance for t ~~ of a particular type of
statistical fiuctuation in the network connectivity, the mean probability f (t) of return to the origin

after time t is predicted to approach its infinite-time limit according to a "stretched-exponential"

law, f (t) f( ~ —)-exp[ —(tie)'~'] for all finite p, with r- ~p
—

1~
' near the percolation threshold

p, =1.

I. INTRODUCTION

Nonexponential relaxation is ubiquitous in glassy sys-
tems, ' but so far has not really received a satisfactory
explanation. Experimental results are often well de-
scribed over many decades of time by "Kohlrausch" or
"stretched exponential" decays ' of the form
exp[ ( t lr)~]—, with 0 & P & 1. Models devised thus far to
explain such behavior usually involve putting in a
hierarchically organized set of (free) energy barriers.
While nonexponential relaxation can certainly be ob-
tained by this approach, the assumptions are somewhat
ad hoc and in a sense feed in the desired result at the
outset.

The present paper was motivated by the recent work of
Campbell and coworkers, who have proposed a general
picture for the onset of glassy relaxation and ergodicity
breaking in terms of the geometrical properties of the
configuration space. ' The general idea is that under
cooling the configuration space gradually breaks up into
mutually inaccessible pockets. The ergodicity breaking
transition is identified as a kind of "percolation transi-
tion" in the configuration space. Nonexponential relaxa-
tion sets in at higher temperatures, however, as the
different parts of the configuration space, and of the
"infinite cluster" in particular, become more and more
tenuously connected. Glassy relaxation can then be un-
derstood in terms of diffusion in an infinite-dimensional,
sparsely connected space. s

As a concrete model exhibiting the above features,
Campbell et a/. have studied numerically random walks
on site-diluted high-dimensional hypercubes, in an at-
tempt to model Ising spin glasses. ' (The 2 vertices of
an X-dimensional hypercube can represent the states of
an Ising model with N spins. ) The results have been in-
terpreted in terms of Kohlrausch relaxation with a
stretched exponent P which depends continuously on the
level of dilution, varying from P= 1 for no dilution to
P= —,

' at the percolation threshold. The authors note that
this is in good agreement with Ogielski s spin-glass

data, " for which the spin autocorrelation function can
also be fitted to a stretched exponential form, with an ex-
ponent P which depends continuously on temperature,
varying from @=1 at the "Griffiths temperature" (i.e.,
the transition temperature of the unfrustrated system) to
P= —,

' at the spin-glass transition temperature.
In the present paper we will not pursue this analogy in

detail. Rather we concentrate on the general notion that
diffusion in a sparsely connected space of infinite dimen-
sionality can be a useful, general way to model glassy dy-
namics, and we introduce and solve a simple model.
Indeed, we argue that it is the simplest such model: The
geometrical aspects are described by the mean-field
theory of percolation, but the dynamics are nontrivial.
The model has a geometrical interpretation in terms of a
random walk on a bond-diluted hypertetrahedron. The
physical quantity of interest is the probability f (t), aver-
aged over initial positions, for the particle to be back at
its initial position at time t. The model can be solved ex-
actly, in principle, by means of replicas (Sec. III). Unfor-
tunately, however, we have so far been unable to extract
the asymptotic behavior off (t) from the replica solution,
except in the limit that the mean coordination number p
is large. Instead, therefore, we appeal to intuitive argu-
ments based on the dominance for t~00 of a certain
type of statistical fluctuation in the network connectivity.
These arguments, which are expounded in Sec. IV, have
the character of I.ifshitz-like arguments for the density of
states in the tail of a random matrix, ' or the arguments
used to extract the effects of Griffiths singularities' in the
properties of random spin systems. ' They lead to the
prediction

R(t)—=[f(t)—f(~ )]I[1 f(oo )]-exp[ (t—l~)'r ], —

for the "relaxation function" R (t), for all finite p. [Here
f ( ~ ) is nonzero because of the possibility that the initial
site belongs to a finite cluster. The normalization in Eq.
(1) is such that R(0)=1.] Hence the exponent P is pre-
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dieted to be —,
' for all finite p. The asymptotic timescale

~(p), however, is small far from the percolation threshold

p, = 1, and (1) only holds for very large times where R (t)
is very small. Close to p=1, on the other hand, ~ is
large, r ~ ~p

—1~, and the form (1) should be observable
over a wide range of times.

The relevance of these results to the simulations of
Campbell et al. is discussed in Sec. V, where it is sug-
gested that the observation of a p-dependent Kohlrausch
exponent P is possibly due to crossover effects associated
with the finiteness of the systems studied.

II. THE MODEL

We consider a system consisting of N sites (or vertices)
{iI connected pairwise by N(N 1)/2—bonds (or edges)

{J; I. The sites can be regarded as the vertices of an
(N —1)-dimensional hypertetrahedron. The model is
now diluted by removing at random all but a fraction
p/N of the bonds. Thus the elements J; of the connec-
tivity matrix J are independent random variables (subject
to J;, =JJ, ) with distribution

P(J)=~5 J——+ 1 —~ 5(J) .
1

p N
(2)

The p dependence chosen for the nonzero elements

JJ = 1/p ensures that the dynamics (see below) has a sen-
sible limit for p ~ 00.

Equation (2) and related models with an Ising spin
placed at each vertex and the {J,, I regarded as exchange
interactions have received much attention recently as
suitable nontrivial mean-field models of dilute spin sys-
tems' and in the context of combinatorial optimisation
theory. We will be primarily interested in the case of in-
tensive average connectivity, where p (the average coordi-
nation number} is fixed as N ~ 00. The other possibility,
extensive average connectivity, where p ~ N, though
much simpler to solve, has rather uninteresting dynamics
characterized by simple exponential relaxation. We will,
however, consider this case also, both for completeness,
and because it may have some relevance to understanding
the diffusion problem on hypercubes in a space of high
(but finite) dimension.

To describe a random walk on this network, we let
c;(t) be the probability for the walker to occupy site i at
time t, and J, be the transition rate from site i to site j.
Then the probabilities {c,. I obey the master equation,

dc; = —g M;,.c (3)
dt

where

M// 5 (J' g J(j J(J'
k

and we have exploited the symmetry J; =J;. Equation
(3) is readily solved in terms of the eigenvalues {pI and
normalized eigenvectors { ~ p ) I of the real symmetric ma-
trix M:

If the walker starts at a particular site a, such that
cj(0)=5J, then Eq. (5) gives the site-averaged probabili-
ty of being again at site a time t, f(t)=N g c (t), as

f(t) =N ' g exp( p—t ) (6)

dp p p exp —pt

where p(p) is the eigenvalue density.
Thus computing the function f(t) is equivalent to

determining the eigenvalue spectrum of the matrix M:
p(p) is just the distribution of relaxation rates. The relat-
ed problem of determining the eigenvalue spectrum of the
matrix J was recently addressed by us using the replica
method, ' and the replica approach adopted here (Sec.
III) follows closely our earlier work.

In contrast to J, M is a non-negative definite matrix.
This is obvious on physical grounds, and easily proved by
constructing the quadratic form

Q({x;I)—=gM, x,x =
—,
' g J;,(x; —x, ) ~0 .

III. FORMAL SOLUTION WITH REPLICAS

The replica approach follows closely Ref. 16, and we
refer the reader to that paper for details of the method.
The eigenvalue density p(p), averaged over realizations of
the disorder, is obtained from the generating function

Z(p)= J g(dP;)exp (i/2) ping, —gM,

This construction also shows that M has a null eigenvec-
tor, with amplitude independent of i. If the system con-
sists of a number of disconnected clusters, there is a null
eigenvector localized on each cluster, so that the number
of null eigenvectors is equal to the number of clusters N, ~.

For intensive average connectivity, the model described
by Eq. (2) is equivalent to the mean-field theory of per-
colation, and the cluster number is extensive, yielding a
nonzero number of clusters per site, n„=N,~/N. Equa-
tion (6) then gives the nonzero large-time limit

f ( ao }=n„. In this paper we will be concerned with how

f(t) approaches this limit. For extensive average con-
nectivity there is only one cluster, and f( ~ ) vanishes in
the thermodynamic limit.

From Eq. (7) it is clear that the behavior of p(p) for
@~0determines the large t form of f(t). In particular,
the stretched exponential form f(t) f ( ~)—
-exp[ (t!r)~] requ—ires an essential singularity in the
eigenvalue density of the form p(p)-exp[ —(A/

)
p/( i —0)]

In the following section, an exact formal solution for
p(p) will be derived using the inethod of replicas.
Readers preferring a more direct, intuitive approach may
skip this section and proceed directly to Sec. IV.

c;(t)=g (i ~p)(p~ j)c (0)exp( pt) . —via

p(p) = (2/N m )ImB[lnZ ]/Bp,
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where [. ] indicates a disorder average, and p in Eq.
(8) contains implicity an infinitesimal positive imaginary
part. To compute [lnZ], we use

[lnZ) = limn 'ln[Z "] .
n~0

For integer n, Z" can be written as a multiple integral
over n sets of integration variables I P; I, (a= 1, . . . , n ).
After averaging over the disorder, the result is analytical-
ly continued to real n, and the n ~0 limit taken. The dis-
order average yields, using (2),

[Z"]=fDgexp (i/2)pgg, g 1 — + exp (i—/2p) g(P; P—)
i,a (i j) a

(10)

where DP:g; —d P;, and (i,j }indicates that each pair is to be included only once.
Consider first the case of extensiue average connectivity, p =O(N). The final exponential can be expanded in powers

of its argument, and only the zeroth- and first-order terms need be retained in the thermodynamic limit. This gives

[Z"]= fDP exp (i l2)p, g P; (i /4N—) g (P; P)— (11)

a result which is identical to that which would have been obtained by simply replacing each bond J,J by its averaged
value 1/N. For extensive average connectivity, therefore, we can replace the matrix elements M& by their mean values

[M, ]=5;,—1/N. The latter matrix has one zero eigenvalue. The remaining (N —1) eigenvalues are equal to unity.
Inserting these values into Eq. (6}gives, for N ~ oo,

f(t) =exp( —t), (12)

a simple exponential decay. We will find that this result is recovered for intensive average connectivity in the limit

p —+ 00 at fixed t (For t .~ ao at fixed p, however, the relaxation is asymptotically nonexponential. )

For intensive average connectivity (p remains finite for N ~ oo ), Eq. (10) yields

[Z"]=fDgexp (ip/2) g P; +(p/2N) g exp (i/2—p) g(P; P) ——1 (13)
t, a

The next step is to reduce the problem to a self-consistent single-site problem by the introduction of auxiliary integra-
tion variables in the standard way. The result can be expressed in terms of an order function g(P), with P an n

component vector, given by

g(P) = ( p[ —( '/2p )(P—P)'] &, ,

where for any function A (g)

( A(g))&= fdP A(g)exp[(ip/2)P +pg(f)]/f dgexp[(i p/)2g +pg(P)] .

(14)

Following Ref. 16, we investigate the solution which preserves rotational invariance in the replica space, such that
g(P }=g( ~P~ }. Then the angular integral can be evaluated, and the n ~0 limit explicitly taken to give, with x =

~P (,

g(x)=e '~ t'" 1 —(x/p)e t'f dy exp[(i/2)(p —1/p)y +pg(y)]J, (xy/p) (16)
0

where J, is the Bessel function of order one. The density of states is given by

p(p)=(l/nm)Re(fz)&=(1/n. )Ree t'f y dy exp[(ip/2)y +pg(y)) . (17)
0

Alternatively, p(p} can be obtained from the term of order x in the power series expansion of g(x). Using
J~ (z) =z/2+0 (z ) in Eq. (16) yields

g(x)=1+(i/2)a(p)x +O(x ),
where

a(p)= —1+(i/p )e &f y dy exp[(i/2)(p —1/p)y +pg(y)] .
0

Comparison with Eq. (17) yields

p(p)=(p /ir)lma(p+ I/p) . (18)

Equations (16)—(18) are the central results of this section. They determine p(p) exactly, in principle, via the solution
of the nonlinear integral equation (16). To determine the behavior of f (t) at large times, we require the solution for
small p. Unfortunately, we have been unable to solve Eq. (16) in this limit for arbitrary p. We can, however, obtain the
solution for arbitrary p in the limit p ~~. Although this is not the most interesting regime, the solution does reveal
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some general qualitative features ofp(p).
To proceed we introduce a function h(x) via

g(x)=[1+h(x)]exp( —ix /2p)

and rescale the variables as follows:

x=p' X, y=p' Y, h(p' X)=p 'H(X) .

Making these substitutions in (16), and retaining only terms of order p, &p and unity in the equation for H(X) gives

H(X)= —(X /2) f YdYexp[(i&@ /2)(p —1)Y —Y /8+H(Y)] . (19)
0

In the large-p limit, therefore, p(p) depends on p only through the combination &p (p —1). It follows that p(p) is
peaked around p= 1, with a width of order 1/&p. To reveal the structure of the peak we set

lu
= 1+e/&p

and note from (19) that we can write

H(X) = (i /2)y(e)X

with

y=i f YdYexp[(i/2)(e+y) Y —Y /8]
0

=i f YdY f [dz/(2n)' ]exp[ z /2+—(i/2)(e+y+z)Y ]

= —f [dz /(2n. )
' ]exp( z /2)(—e+ y +z ) (20)

p(p)=(&p /~)lmy(&p (p —1)) . (21)

The form of p(p) given by Eq. (21) is displayed in Fig.
1 for p=25. We would expect this result to be accurate
to within a few percent, since corrections to (21) appear
as a power series in 1/p. Also shown in Fig. 1 is the ei-
genvalue density for a Cayley tree with coordination
number p (or branching ratio p —1). (See Sec. IVC for

p (uj

0
0

FIG. 1. Eigenvalue density p(p) of the transition matrix M
for p=25. The solid curve is the large-p result of the replica
method, Eq. (21},for the random connectivity model described

by Eq. (2). The dashed-dotted curve is the corresponding result
for the Bethe lattice (infinite Cayley tree) with fixed coordina-
tion number p=25.

where the (implicit) positive imaginary part of e ensures
the convergence of the Y integral. Equation (20) has been
solved numerically for the real and imaginary parts of
y(e) The eige. nvalue density is extracted from the imagi-
nary part:

I

details. ) The comparison with a Cayley tree is relevant
because, as we shall see in the following section, the net-
work topology in the case of intensive average connectivi-
ty is essentially that of a set of randomly branching trees,
a randomly chosen site having a coordination number
given by a Poisson distribution with mean p. For a regu-
lar Cayley tree, the eigenvalue spectrum has a gap be-
tween the isolated eigenvalue at p =0 and the continuum,
which begins (see Sec. IVC) at p, =1—(2/p)+(p —1).
[The gap vanishes for a linear chain, p=2, a fact that has
important consequences for the behavior of p(p) for
p~0 in the random system —see Sec. IV.] The introduc-
tion of disorder of the type considered here has the effect
of filling in the gap. In fact, the leading large-p result,
Eq. (21), overdoes this, yielding negative eigenvalues
when none are possible. Equation (21) is readily solved in
the "tails" of the distribution, ~p

—1~/p &&1, to give
p(p)-(p/2m )' exp[ —p(p —1) /2]. Since, however, the
predicted value of p(0) is exponentially small for large p,
p(0) —(p /2n. )

' exp( —p /2), there is no contradiction
since the predicted value of p(0) [and of f dp p(p)] is

nonperturbative in 1/p.
We conclude that a power series expansion in 1/p is

unlikely to yield useful information on the limit p~0.
Since we have been unable to investigate this limit direct-
ly for arbitrary p, we resort (in Sec. IV) to heuristic argu-
ments based on the dominance for p~0 of certain topo-
logical features, namely long chainlike structures (recall
that a one-dimensional system has no gap in its eigenva1-
ue spectrum).

The calculations of the present section yield the follow-
ing qualitative picture as a function of p. For p~~,
p(p)~5(p —1), corresponding to a single relaxation rate,
i.e., one recovers the result obtained for extensive average
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connectivity, f(t) =exp( t—). For p large but finite, the 5
function broadens, with a nonzero width of order 1/&p
(and a finite height of order &p). The eigenvalue density
has weight right down to @=0, i.e., there is no gap. The
asymptotic behavior off (t) is determined by the behavior
of p(p) for p, ~O. For large p, however, nearly all the
weight in p(p) is concentrated around p, = 1. For large p,
therefore, f (t) will be essentially indistinguishable from
exp( t—), except for extremely large t. In the follow-
ing section we will argue that ultimately p(p)
-exp[ —3 (p)/&p], for p~O, with 3 (p) increasing with

p for large p, implying f(t)-exp[ (t/—r)'~ ] for t ~ 00,
for all finite p. In view of the above, however, it is easy to
see how a fit, over a finite range of t, to a numerically
generated f(t) could be interpreted in terms of a p-
dependent stretched exponent.

IV. THE ROLE OF GRIFFITHS SINGULARITIES
FOR p —+0

%e start by considering the general topological
features of the network generated by Eq. (2). Although
some of the results for these geometrical aspects of the
problem have been derived before, ' we rederive them
here since the derivations are simple and we will be mak-
ing extensive use of the results in our discussion of the
dynamics.

The first point to notice is that the system breaks up
into disconnected finite and infinite clusters of sites. Here
an infinite cluster is one which contains, in the thermo-
dynamic limit, a nonvanishing fraction of the sites. The
existence of an infinite cluster requires that p exceed the
percolation threshold p, .

After presenting a simple argument for the percolative
order parameter —the fraction P of sites in the infinite
cluster —we derive the cluster-size distribution for the
finite clusters. These results are then used to determine
the probability of forming a quasilinear section of net-
work of a given length, and to estimate its contribution to
the eigenvalue density. Since the dominant quasilinear
sections will turn out to be longer than those occurring
typically, we can make an analogy with the role played
by GriSths singularities' in the dynamics of random
magnets. '

A. The infinite cluster

P &0 appears. Hence p=1 is the percolation threshold
in this model. Equation (22) is identical to the usual
mean-field result (obtained, for example, from the q-state
Potts model with infinite-range interactions in the limit
q~1, or from the bond-diluted Bethe lattice in the limit
of large branching ratio' ).

B. The cluster-size distribution

e' pe" pe -" p'e"
2

Let w„(p) be the probability that a randomly chosen
site belongs to finite cluster of n sites. For example,

w i
= (1—p /N ) '~exp( —p)

is the fraction of sites which are isolated. Similarly

w2 =(N —1)(p/N)(1 —p/N) ' '~p exp( —2p)

is the fraction of sites which belong to isolated pairs, and
so on. The smallest few clusters are shown in Fig. 2(a),
together with their weights w. In computing the weights,
one can ignore constants of order unity relative to N in
powers of (1—p/N) and in polynomial prefactors. Note
that two types of n =3 clusters are possible, correspond-
ing to the chosen site (always shown at the bottom) being
an end site or the middle site. The two possibilities have
weights p exp( —3p) and —,'p exp( —3p ), respectively.
The factor —,

' in the latter expression derives from the
—,'(N —1)(N —2) ways of choosing a pair of sites to cou-

ple to the chosen site. It is a consequence of the two
equivalent "branches" in the cluster, as seen from the
chosen site.

There is, of course, one other type of n =3 cluster, not
shown in Fig. 2(a), namely a triangular cluster in which

Consider a set of X sites, randomly connected as de-
scribed by Eq. (2), and suppose that a fraction P of them,
i.e., XP sites, belong to the infinite cluster. Now add a
further site, and let its connections with the existing
points be also described by the distribution (2). The add-
ed site will become part of the infinite cluster with proba-
bility : + t& + + + ~ ~ ~

P= 1 —(1—p/N) ~1—exp( pP), —(22)

where the second term in the intermediate expression is
the probability that all connections to the existing infinite
cluster are absent, and the final expression follows on tak-
ing the limit 1V~ ~. For p & 1, the trivial solution P =0
is the only physically acceptable one (since one cannot
have P (0), whereas for p ) 1 a nontrivial solution with

FIG. 2. (a) The first few finite clusters, rooted to a given site,
and the corresponding probability weights: a factor exp( —p ) is

associated with each site, a factor p with each bond, and a factor
1/n! with a set of n identical branches. (b) Diagrammatic equa-
tion for the generating function G(z), represented by a shaded
blob. The graph rules are as in (a), but with an extra factor of z

per site.
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G(z) = g w„z" .
1l =1

(23)

A diagrammatic expansion in powers of z can be con-
structed by using the above rules, with an additional fac-
tor of z per site. The expansion can be resummed as in
Fig. 2(b), where a shaded blob represents G (z), to give

G=z exp( —p) g (pG)"/n!
n=0

=z exp[p(G —1)] . (24)

The total weight to belong to a finite cluster is given by
G (1), so the fraction of sites in the infinite cluster is given

by P = 1 —G ( 1 ), yielding P = 1 —exp( pP ), in agr—ce-
ment with the simple argument in Sec. IV A.

We can use Eq. (24) to compute the mean number of
finite clusters per site, n, ~

=g„",w„/n [Reca.ll that this

quantity also equals f(00).] From (23), n,&= JD(dz/
z)G (z). Differentiating (24} yields G/z =(1—pG )G', and
hence

f( ~ ) =n„=G(1)—(p/2) I G(1)I'
= 1 P (p /2 ) ( 1 P—)— —

The cluster weight w„can also be obtained from Eq.
(24), via the contour integral

w„=(2mi ) '$ c(dz/z"+')G(z), (2&)

where C is the unit circle. Consideration of Eq. (24) re-
veals that G(z) is analytic in the complex z plane, apart
from a branch cut along the positive real axis beginning
at zz =p 'exp(p —1). Deforming the contour C into the
circle at infinity plus integrals along both sides of the cut
yields

m„=m ' f (dz/z"+')ImG(z),
b

(26}

since the contribution from the circle at infinity vanishes.

all three pairs of sites are linked. The weight for this
cluster, however, vanishes in the thermodynamic limit:
w z ~(1/2N )p exp( —3p). The only clusters which have

nonvanishing weight for N~00 are those in which the
factor 1/N associated with an additional bond is compen-
sated by a free summation over the position of an addi-
tional site. Thus only treelike, or branched clusters, hav-
ing no closed loops, have nonzero weight. These have the
character of randomly branched Cayley trees. (Since
there are N sites, there will typically be a finite number of
clusters with one closed loop: However, these will not
contribute to the extensive part of the eigenvalue spec-
trum. )

These observations lead to the following rules for cora-
puting the weight of an arbitrary branched cluster. (i)
Associate a factor exp( —p ) with each site, and a factor p
with each bond. (ii} Divide by a symmetry factor
1/n, !n 2! . . , . where n, , n 2, . . . are the numbers of
equivalent branches of type 1, type 2, etc.

To proceed further, we introduce the generating func-
tion

Of particular interest is the limit n ~ 00. For n &&1, the
integral in (26) is dominated by the vicinity of z=zb,
where, from (24), G=p '[1+[—2(z/zb —1)]'~ J. In-
serting this into (26) yields

w„=(&2/vrp)zI, "I (dx/x"+')(x —1)'
1

giving

w„=(2n ) '~'p 'n '~'exp[ —n(p —1 —lnp )],
n»1 . (27)

Thus w„decreases exponentially with n, except at the
percolation threshold (p =1) where an algebraic depen-
dence is obtained. Not unexpectedly, in view of the
mean-field character of the model, these geometrical
properties are identical to those derived by Fisher and Es-
sam' for a bond-diluted Cayley tree, if in the latter mod-
el one takes the limit of large branching ratio and small-
bond-occupation probability, at fixed mean coordination
number p.

C. Eigenvalue spectrum for a Bethe lattice

In order to understand what type of statistical Auctua-
tions in the connectivity are responsible for small eigen-
values (i.e., small relaxation rates} in a randomly branch-
ing Cayley tree, it is important to first examine the prop-
erties of an infinite, regular Cayley tree (i.e., a Bethe lat-
tice) with fixed coordination number p. Since the result is
well known, ' we shall simply quote it here. Taking
J; =1/p as usual gives, for the eigenvalue spectrum of
the connectiUity matrix J,

p, (lz) =(p/2~)(1 —p') '[4(p —1)/p' —p']'",
for p &4(p —1)/p, and pj(p)=0 otherwise. The matrix
M which controls relaxation becomes M=I —J (where I
is the unit matrix), with eigenvalue spectrum
p(p) =pz(1 —p). The result for p =25 is shown in Fig. 1.
Apart from the isolated eigenvalue at @=0, the eigen-
values are continuously distributed in the interval

1 —(2/p)&(p —1) &p & 1+(2/p)&(p —1) .

Thus there is a gap in the eigenvalue spectrum, except for
p=2 which corresponds to a one-dimensional system.
This result is in stark contrast to that for a compact lat-
tice, where no gap is expected in general. It suggests that
the dominant contributions to p(p) for p~O come from
quasi-one-dimensional (in a sense to be clarified) sections
of the network. In the following subsection we attempt
to estimate such contributions semiquantitatively.

D. The eigenvalue density for p~0
To fix our ideas we consider initially a chain of bonds,

attached to the infinite cluster at both ends. The results
can be generalized to chains which have one or both ends
free, and/or are part of a finite cluster. As a first step
(the argument will be made more precise later) we consid-
er a simple chain, containing I interior sites each of which
is connected only to its two neighbors on the chain. The
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probability per site to be part of such a chain is of order
(pe ~)', where the factors p and e ~ are associated with
the chain bonds and sites, respectively. An open chain
with free or periodic boundary conditions would have an
eigenvalue spectrum pk ~ (1/p )k, for small k, where k is
the usual wave-vector index. Since the chain is connected
to the infinite cluster at both ends, the k =0 contribution
is absent. (There is a single zero eigenvalue from the
whole infiinte cluster. ) The boundary conditions, howev-
er, have little effect on the smallest nontrivial eigenvalue,
p, ;„-1/pl, which corresponds for an open chain to
k —1/l. Summing over all I with the appropriate weight
gives

p(p)-gp'exp( —Ip)5(p, —1/pl )
I

sites, and dead-end sites. On the infinite cluster, a node is
a site from which there are at least three distinct initial
steps which lead to infinity; from a chain site there are
exactly two such steps (in the two directions along the
chain), while from a dead-end site there is a unique direc-
tion for the initial step (i.e., towards the nearest chain
site). Clearly the chain terminates in nodes at either end.
The important chains are those whose length is large
compared with the typical distance between nodes, dis-
tances being measured in terms of steps on the network.
For such a chain we will show that the smallest eigenval-
ue is determined by the sizes (and not the shapes) of the
finite clusters attached to the chain. In fact only the
average cluster size matters.

To show this we use the eigenvalue equation,

-exp[ —(p —
lnp )/&(pp)] . (2g) (q;/p —p)u;=g J; u

J
(29)

This expression is already of the form p(p }
-exp[ —A(p}/&p, ], which leads to the time dependence
f(t) -exp[ (t /r)'~—], and contains the essential physics.
In the remainder of this subsection we refine these ideas
to improve our estimate for the amplitude A (p}. In par-
ticular we are interested in how A(p) vanishes (or
equivalently how r diverges) for p ~1.

The crucial point is that it is not necessary to have a
simple chain of the type described above to generate
small eigenvalues —arbitrary finite clusters can be ap-
pended to the interior sites of the chain without changing
the essential physics. A typical such quasi-one-
dimensional section is sketched in Fig. 3(a). Allowing
such appendages wi11 clearly significantly increase the
weight for forming such a structure.

It is useful to introduce the concepts of nodes, chain

where q; =pgk J;i is the coordination number of site i,
and u; is the eigenvector amplitude, to successively elimi-
nate dead-end sites, starting with the singly coordinated
sites furthest from the chain sites. As an example, con-
sider the simplest case of a single dead-end site j attached
to the chain site i, as illustrated in Fig. 3(b). Use of (29)
at sites j (with q =1) and i (with q; =3), respectively,
yields

(1—pru)u, =u;,
(30)

(3 pp)ui =uj+u; i+u;yi

Solving the first equation for u gives

uj =u; /(1 —
p p) =u;(1+pp),

to leading order in p. Substituting the result in the
second of Eqs. (30}gives

2pP)uI =ul —1+uI+1

This equation is the same as for a one-dimensional sys-
tem, but with p replaced by 2p in the equation for u;.
The factor of 2 has a simple interpretation: It is simply
the total mass of the chain site and the attached dead
end. A little thought soon convinces one that this result
has a simple generalization. For a chain with arbitrary
attachements one finds, after eliminating all dead-end
sites,

(2 —Mpp)u; =u;, +u;+, , (31)

FIG. 3. (a) Diffusion on this type of chain structure dom-
inates the asymptotic dynamics. The shaded blob represents
any of the finite clusters that can be generated by iterating the
diagrammatic equation of Fig. 2(b). (b) The simplest nontrivial
cluster. Eliminating the dead-end site j from the eigenvalue
equation (29) yields a one-dimensional problem with coeScients
which can be obtained in a simple way for small p (see text).

where M, is the total mass (i.e., total number of sites) as-

sociated with the chain site i, including the attached
dead-end sites.

At this point an analogy with a one-dimensional pho-
non problem is useful. With the identifications p:—co

and p—:1/K, Eq. (31) gives the normal frequencies co for
a chain of masses IM,. I connected by harmonic springs of
stiffness K, where I u, ] are the displacements from equi-
librium. In the long-wavelength limit (i.e., for small p),
the chain can be treated as an elastic continuum, and the
velocity of sound depends only on the mean density, i.e,
on the average mass (M ), yielding the dispersion

p-k /p(M), k~0 .
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For a finite chain of length 1, therefore, k,„—1/l yields
for the smallest eigenvalue

p;„-(p (M ) l') (32)

This result is independent of whether the chain is part of
the infinite cluster or of a finite cluster. In the latter case
the chain, including the attached dead-end sites, consti-
tutes the entire cluster, and Eq. (32) gives an estimate of
the smallest nonzero eigenvalue associated with the clus-
ter. (There is, of course, one zero eigenvalue per cluster. )

Next we have to compute the probability per site to
form a chain of length l. This is given by

prob(1) —p'(1 P)'=—exp[ —a(p)I ],
a(p) = —ln[p(1 P)],—

(33)

with P given by Eq. (22). The factor p is associated with
the bonds linking the chain sites, the factor (1 P) per-
chain site is the total probability for attaching a finite
cluster of arbitrary size, i.e., the probability that the site
is not connected to the infinite cluster other than through
its connections to the (two) neighboring chain sites.

It remains to determine (M ) in terms of p. Using the
generating function 6 (z) [Eq. (23)] gives

(M) =gnw„+to„=G'(I)/G(1)

only sets in for t -&p, when R (t) Isee Eq. (1)] is already
very small, of order exp( —const'/p), and will therefore
be difficult to observe.

(ii} For p ~0, r-p/(Inp ) . For most of its decay, how-
ever, f(t) is dominated for small p by contributions from
isolated sites and pairs of sites: a power series expansion
in p gives

f(t)=l —p/2+(p/2)exp( 2t/—p)+O(p ) .

The asymptotic behavior discussed above sets in only
when (t/r)' -t/p, i.e., when t-p~lnp~. At this time-
scale, R (t) is already small, of order exp[ —const ~lnp ~], so
the asymptotic regime will again be difficult to observe.

(iii) The limit p ~1 is the most interacting regime, be-
cause ~ diverges, making the asymptotic stretched ex-
ponential behavior more readily accessible. In addition
we can compare our results with the predictions of scal-
ing theories of the percolative critical point. ' Therefore
we devote a separate subsection to this limit.

E. The limit p —+1

For p near 1, Eq. (22) gives P =2(p —1)e(p —1), where
e(x ) is the usual step function. In the expression for r,
Eq. (37), therefore, 1 —p ( 1 P)~ ~p

——I
~

and
lnp(1 P)~ —~—p —1~. Thus

=[1—p(1 —P)] (34)
(38)

where G'(z) means dG/dz and we have used Eq. (24) to
express G'(1) in terms of G(1)=1 P. —

Combining (32) and (33) yields

p(p) —g exp[ —a(p )l ]5(p —1/p (M ) l )

I

-exp[ —a(p)/(p(M )}u)'/2]

=exp[ —A(p )/v'p] . (35)

f(t) f( oo )-exp[ (—t/r)' ], —

r- A =p(M)/[a(p)]

(36)

Hence we recover the form for p(}M) given in (28), but
with the correct p dependence for the amplitude A (p).
Note that including higher eigenvalues associated with a
given chain would not change (35), since their contribu-
tions are negligible for p~0.

The function f(t) is the Laplace transform Eq. (7) of
p(p). Evaluating the p integral by steepest descents for
large t, using (35) for p(p), yields a saddle point
p'-(A/t) and

This result can be compared with the predictions of
scaling theory. For the critical infinite cluster obtained
by dilution of a regular d-dimensional lattice, the proba-
bility of finding a particle which started at the origin at
t =0 at position r at time t should have a scaling form '

f(r, t)=A, g(r/l, ), (39)

Inserting this into (39), and making the natural generali-
zation to nonzero (but small) p —p~, yields

f(r, t)=t ' + 'g(rt ' ' + ', r~p —p, ~'), (40)

where the second arguinent of the scaling function is r /g,
where g~ ~p

—p, ~

' is the correlation length. For r &&g
and r « t ' ' + ', f ( r, t ) becomes independent of r and
equal to the usual function f(t) which gives the probabil-
ity of return to the origin. Scaling out the r dependence
from Eq. (40) yields

where D is the Haussdorf dimension of the cluster, k(t) is
the diffusion length, and g(x) is a scaling function. The
diffusion index 0 is defined by

g(t) t 1/(2+8)

=p[1—p(1 —P)] 'Iln[p(1 —P)]j . (37) f(t)=t ' + h(tip —p i

+ ') (41)

This expression for v. is correct up to numerical factors
associated with Eq. (32). Three limiting regimes are of
interest: p ~~, p ~0, and p ~p, = 1.

(i) For p~~, 1 —P~exp( —p) and r-1/p. Hence
the asymptotic decay for large p has the form
-exp[ (pt)' ]. Comparis—on with the form exp( —t)
obtained from the replica method in the large-p limit
shows that the true asymptotic behavior discussed here f(t)=t 2/3h(t~p —1~') . (42)

where h (x) is another scaling function.
To make contact with Eqs. (36} and (37) we note that

our model is equivalent to the mean field theory o-f per-
colation, ' and the exponents therefore take the mean-
field values ' v= —,', D =8=4 so that (41) becomes (with

p, = 1)
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Thus the intuitive arguments leading to (36) and (37}
reproduce the scaling form (apart from the algebraic pre-
factor), and also give explicitly the large argument form
of the scaling function, h (x)-exp( —constx '~ ).

The scaling approach suggests that the asymptotic
form (36}might be restricted to t )&r (i.e., large values of
the scaling variable) for p~l. Our intuitive arguments
confirm this. Specifically, the replacement of the masses

IM; I by the incan mass (M ) in Eq. (31), which leads to
(32), is valid only if the relative ffuctuations in the total
chain mass Mr =g,',M; are small. But

from Eq. (34), and

(M ) —(M ) =l((M ) —(M ) )

= lp (1 P) /[1——P (1—P )]',
where the final expression follows from

(M ) =g n~w„g ia„=[zG'(z)]'~, , /G(1)

I &)p(1 P)/[1 —p—(1 P)] . — (43)

Far from the percolation threshold, this condition is al-

ways satisfied since the right-hand side is small. For
p ~ 1 however the inequality becomes I )& 1/~p —1 ~.

This has a simple physical interpretation: 1/~p —
1~ is the

typical distance (measured along the bonds) between
nodes (corresponding to a Euclidean distance
g~ ~p

—
1~

' between nodes (or to the cluster size for
finite clusters) if the cluster is imbedded in a high-
dimensional hypercubic lattice with all bonds mutually
perpendicular}. The behavior of f(t) for large values of
the scaling variable is therefore dominated by chains
which are longer than typical. Equations (36) and (37)
imply that f (t) can be written as f(t) f ( ~)—
-exp[ —a(p)1], with I the chain length which dominates
at time t. Since a(p) ~ ~p

—I ), the condition I )& I/~p —
1~

is equivalent to a(p)l &)1, i.e., to t/r»1. Even for

p ~1, therefore, our derivation of stretched exponential
behavior requires R(t}«1. This restriction is, however,
much less severe than when p is large or small compared
to 1, when R (t) «exp( consti/p —) and R (t)« exp( —const ~lnp ~) are required, respectively.

V. DISCUSSION

We have studied the simplest model for diffusion in a
sparsely connected space. The geometrical aspects of the
problem are those of the mean-field theory of percolation:
the percolation clusters consist of randomly branching
trees, with mean coordination number p. The dynamics,
however, are nontrivial. Heuristic arguments lead to
asymptotic stretched-exponential decay of the relaxation
function,

and use of Eq. (24). The validity of our approach requires

(M,') —(M, )'«(M, )'

which implies

R(t)=[f(r)—f(0O )]/[1 f—( ~ )],

according to R (t)—exp[ —(t/r)'~3].
It is important to appreciate that the use of a mean-

field-like, infinite-dimensional model (i.e., a model for
which mean-field results become exact) is not, as is com-
monly the case with mean-field approaches, a first step
towards a more realistic treatment. On the contrary, the
mean-field aspects of the model are of the essence here;
only for an infinite-dimensional space does the relaxation
become exponential in the limit of high connectivity and
stretched exponential for low connectivity. Consider, for
example, diffusion on a randomly diluted regular lattice.
At the percolation threshold, one obtains (see Sec. IV E)
anomalous diffusion with f(t)-r ~' + '. For all p
different from p, however, the conventional behavior
f(t)-t is recovered at sufficiently long times. This
is because at large enough length scales (large compared
to the correlation length) the network is no longer
ramified but becomes highly connected. For the model
considered here, this is not true: The model remains
sparsely connected away from p = 1, provided p remains
finite. This sparse connectedness, together with the
infinite dimensionality of the space, are the crucial
features leading to stretched exponential relaxation. Oth-
er models which retain these features should yield similar
results.

A question of great interest concerns the range of va-
lidity of the asymptotic expressions derived. The answer
depends on the value of p. Near the percolation thresh-
old (p, = 1), r~ ~p

—
1~ and the asymptotic form holds

when R (t) is small compared to unity, i.e., for large
values of the scaling variable t ~p

—
1~ . Far from p, the

asymptotic expression holds only when R (t) is small
compared with exp( —const'/p) (for large p) or with
exp( —const~lnp~) (for small p), and will therefore be
diScult to observe.

It is interesting to compare our predictions with the
simulations by Campbell et al. of random walks on
high-dimensional site-diluted hypercubes. For an N-
dimensional hypercube the concentration of occupied
sites at the percolation threshold (which is strictly defined
only for N~ ~), is 1/X. For this model too, therefore,
one can define a regime of intensive mean coordination
number: since the coordination number of before dilu-
tion is E, the choice c=p/E for the site occupation
probability c yields mean coordination number p. In this
regime we would expect this model to be qualitatively
similar to our model, in view of the low density of closed
loops, and therefore to be described by Kohlrausch be-
havior with P= —,

' for all finite p. For c=0(1},on the
other hand, the model is highly connected, and we would
expect pure exponential relaxation. Problems arise, how-
ever, for finite X, when the distinction between
c =O(1/N) and c =O(1) becomes blurred. In their
simulations, Campbell et al. are limited to X ~ 17. We
believe that the c-dependent stretched exponent observed
in these studies might well be associated with a crossover
between two regimes which are not well separated for
finite ¹ Even for large X we have seen that the
Kohlrausch regime will be diScult to observe for p far
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from p, and this could again appear as an effective
stretched exponent in simulations. For the above
reasons, the vicinity ofp, seems the best place for numer-
ical studies, and it is reassuring that P= —,

' is recovered in

this regime. In addition, the timescale ~ gets large very
rapidly for p —+p„ in qualitative agreement with the

(p
—p, ~

prediction. As a caveat to the above, however,
we note that in a recent report Flesselles and Botet have
argued that for the hypercube problem the Kohlrausch
law with P= —,

' holds right at p„whereas we obtain a
power-law decay for our model at p, [see Eq.(42)]. If the
former result is correct (and an approximation, whose
consequences are unclear, was used in its derivation), the
two models are inequivalent even for finite average con-
nectivity. Further work is needed to clarify any common
features of, and differences between, the two models. In
addition, the relevance (if any) of these models to random
spin systems, for which direct consideration of the role
of Griffiths singularities yield quite different asymptotic
dynamics, ' also needs clarification.

In summary, we have introduced a simple model with
stretched-exponential relaxation. The results were ob-
tained without the necessity of introducing a wide distri-
bution of energy barriers. The barriers are, in fact, pure-
ly entropic in character, being a consequence of the low
connectivity of the configuration space. A distribution of
energy barriers can be included in the model, if desired,
by a simple generalization in which the term 5(J—I/p)
in Eq. (2) is replaced by a general function of J. This gen-
erates a distribution of barriers E via the relaxation
J-exp( E/—T) Th.e asymptotic relaxation might then
pend on the form of the Jdistribution for J~0.
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