
PHYSICAL REVIE%' 8 VOLUME 38, NUMBER 16

Cellular growth near absolute stability

1 DECEMBER 1988

K. Brattkus and S. H. Davis
Department of Engineering Sciences and Applied Mathematics, The Technological Institute,

Northwestern University, Evanston, Illinois 60208
(Received 1S April 1988)

We derive a strongly nonlinear evolution equation for the interface of a directionally solidified

binary alloy when surface energies are large. This equation includes interfacial acceleration and the

nonlinear effects of surface tension. Bifurcation analysis on this equation reveals that planar inter-

faces immediately develop three-dimensional structure, and, when the segregation coeScient is near

unity, stable hexagonal solutions are found.

I. INTRODUCTION

Three-dimensional free-surface problems often become
analytically tractable under a separation of scales. If sur-
face deflection is known to vary slowly along the surface,
an evolution equation for the interface may be derived
which governs the dynamics of long waves. This ap-
proach can also be used to describe surface instabilities if
critical disturbances are known to have asymptotically
large wavelengths.

Recently, several evolution equations of this type have
been derived for solid/liquid interfaces established during
the directional solidification of a binary alloy. ' Here, a
planar surface of phase change, which advances uniform-
ly through a fixed temperature gradient, is subject to a
cellular instability due to solute rejection. The amount of
solute rejected at the freezing interface is governed by the
segregation coefficient, k =Cs/CL, which relates the
concentration of solute on either side of the interface.
From the linear theory, Sivashinsky' recognized that as
k diminishes, instabilities first develop to disturbances
with very large wavelengths. The resulting evolution
equation has since then been modified to include the
effects of latent heat, solute bouyancy, and anisotropic
attachment kinetics.

A local theory on the two-dimensional version of this
evolution equation reveals that the bifurcation to unsta-
ble cells is subcritical in nature. Numerical integration
also shows subcritical bifurcation and suggests that solu-
tions to the evolution equation develop cusp singularities
in finite time. The development of finite-time cusp singu-
larities in solutions to the evolution equation has now
been proved for specific boundary conditions. The fact
that bifurcation is subcritical for small segregation
coeScients explains why the small k evolution equation
does not give stabilization to cellular structures.

As an alternative to attempting ad hoc procedures for
the inclusion of higher-order terrors into this evolution
equation for small k, ' one can consider other limits
which also produce long-wave instabilities. The limit of
small temperature gradients has been investigated by
Novick-Cohen, who requires attachment kinetics to sta-
bihze against the runaway. The resulting evolution equa-
tion is the familiar Kuramoto-Sivashinsky equation.

In the present paper we also consider the limit of small
temperature gradients but find that we can stabilize with
surface energy. Specifically, we restrict our attention to
systems near the absolute stability limit; higher surface
energies than the critical value result in the planar inter-
face being stable to small disturbances. In this limit we
were able to derive a new, strongly nonlinear evolution
equation which contains supercritical bifurcation, in-

teresting three-dimensional cellular pattern selection, and
might even contain the onset of time-variable states.

II. FORMULATION

The unidirectional solidification of a dilute binary alloy
involves the pulling of an alloy with a constant speed V
through two fixed temperature sources. One of these
melts the alloy while the other freezes it. At some point
between the two sources, a solid-liquid interface is estab-
lished at a mean position fixed with respect to both tem-
perature sources. The melt is continually solidified at a
constant rate V and if V is small enough, the interface be-
tween the solid and liquid phase remains planar.

The concentration of the secondary component in the
binary alloy, c*, has a value of co in the static melt, far
from the interface. We consider an infinite one-sided
model and neglect the diffusion of solute in the solid.
We also adopt the "frozen temperature" approximation"
and assume that (i) the thermal conductivities of both the
solid and the liquid are equal, (ii) the thermal diffusivity,
~, is much larger than D, the diffusivity of solute in the
liquid, and (iii) the latent heat is negligible. Under these
assumptions, the temperature field is fixed independent of
the solute concentration, and is given by

T=TO+Gz* .

Here z * is the coordinate in the direction of growth, fixed
on the interface, G is the imposed temperature gradient,
and To is the temperature of a planar interface (Fig. 1).
The temperature field now decouples from the problem
and the solidification process is completely governed by
the distribution of solute. Since latent heat production is
enhanced as pulling velocities increase, the linear temper-
ature profile is quite often a poor approximation for rapid
solidification processes. Realistic models in this case re-
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FIG. 1. Directional solidification into a binary alloy of solute

concentration co with a constant velocity V.

quire a complete description of both the thermal and
solute fields.

If lengths are scaled on the diffusional scale, D/V, and
a nondirnensional solute, c, is defined by

c"=[1+(k—1)c]co /k, (2.2)

a2

a2~ (I,k) a2s (I,k)

FIG. 2. Typical marginal stability diagram for planar
growth. Infinitesimal disturbances with wave number a, grow
exponentially in time when M &M, . A11 disturbances with
a )a, are absolutely stable and decay for any M & 0.

then in the frame of reference moving with the interface,
the scaled equations determining the solute concentration
and the interface position, h (x,y, t), are as follows:

V c +cgz +cz

The linear instability of this solution is examined by al-

lowing infinitesimal disturbances to the basic state and
expanding them in normal modes as follows:

[1+(k—1)c](1+h,)=c,—V'h Vc, z =h, (2.4a)

'h +&'7.[&h/(1+ i%hi )' ]=0, z =h,
(2.4b)

where

0 0
—.+ ot+ia r

1 —e ' c(z) (3.2)

c =1, z=00, (2.5)

where V and V are the two-dimensional gradient and La-
placian operators, respectively. The boundary condition
(2.4a) governs conservation of solute across the interface
and condition (2.4b) is a scaled version of the Gibbs-
Thomson relation. The three nondimensional parameters
are the segregation coefficient k, a morphological pararn-
eter M,

m(1 —k)co V

kGD

and the scaled surface energy I,
k'rw V(r/&v)r=
corn (1—k)D

(2.6)

(2.7)

Here m is the slope of the liquidus, y is the surface ener-

gy per unit area, and L~ is the latent heat per unit
volume.

a=(a„,a ), r=(x,y) . (3.3)

IV. ABSOLUTE STABILITY

When we linearize (2.3)—(2.5) about (3.1) and (3.2) and
solve the resulting eigenvalue problem for the growth
rate 0., we find a simplified version of the characteristic
equation derived by Mullins and Sekerka, viz. ,

cr=(1 —M ' —a I )[(—,'+o.+a )'i +k —
—,']—k, (3.4)

where a = ia~.
If we treat M as the control parameter, then a typical

marginal stability curve separating regions of instability
(Reo (0) from regions of instability (Reo &0), is shown
in Fig. 2. When M&M, (I,k), the planar interface is
linearly unstable to an annulus of wave vectors, including
the circle of wave vectors with a =a,(I,k). This mor-
phological instability evolves to a cellular pattern in the
solidification front as we shall show in Sec. VI for a limit-
ing case. (See also Refs. 8 and 12).

III. BASIC STATE AND LINEAR STABILITY

h =ho=0,
c =co= 1 —e

(3.1a)

(3.1b)

As mentioned previously, when pulling velocities are
low, the interface is a planar, uniformly translating front.
This behavior is represented by the basic state solution to
the system (2.3)—(2.5) as follows:

An interesting feature of Fig. 2 is the presence of a
short-wavelength cutoff. For disturbances with large
enough wave numbers a & a, (I,k), the stabilizing action
of surface energy overcomes the destabilizing influence of
the solute gradients. These disturbances are stable for all
values of M (all pulling velocities) and are described as
being absolutely stable.

The critical parameters derived from (3.4) vary with
both the surface energy 1 and the segregation coefficient
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and

lim a, (l, k) =0,
r-r,

lim M, '(I', k)=0.
r-r,

(4.1)

(4.2)

k. It has long been recognized that there exists a critical
value of the surface energy, which turns out to be
I,= 1/k, such that when I ) I „a,(I,k) =0 and the sys-
tern is stable to all infinitesimal disturbances for all pul-
ling velocities. If I is slightly less than 1/k, the planar
solution loses stability but only at very large values of M;
large solute gradients are required. It is not difficult to
show that

4/a 2-
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a,' = k2 (1+k) ~2(p ~ -1

Therefore, as the surface energy approaches the value of
1/k from below, the wave numbers of the most unstable
modes are very small. When M & M, »1, the planar in-
terface loses stability to modes which vary slowly in the
horizontal directions, and a long-wavelength instability
results.

We noted that a, (I,k) =0 when I is larger than 1/k.
The expected result that

FIG. 4. Marginal stability given by Eq. (4.5) when I,—I is
small. As I tends to I, both a, and a, are O(I, —I ) while M,
is O(~r, —r)-').

small parameter e, we find that the following scalings are
appropriate near marginal conditions:

lim a, (l,k) =0, (4.3)

is also easily established. If we remember that distur-
bances with wave numbers larger than a, are always
stable, the conclusion is much stronger. As I approaches
1/k from below, all unstable disturbances have small
wave numbers and thus vary slowly in space. We show in
Sec. V that this observation has important implications in
the nonlinear development of the instability.

The stability boundaries can be summarized clearly by
plotting M, ' versus I for fixed k as shown in Fig. 3.
When I"=0, M, '=1, and M, '=0 for I =I,. Along
the curve separating stability from instability, a, de-
creases from infinity monotonically to zero as I tends
from zero to I, .

If the difference between I and 1/k is defined as a

1I=——e,
k

M =M E

a =e'"a,
O' =E'V

(4.4a)

(4.4b)

(4.4c)

(4.4d}

—2+ 2+ a 2—
k

where all barred quantities and k are assumed unit order
as @~0. These scaled variables lead to an approximate
characteristic equation for the linear stability problem of
the planar interface as follows:

+ kM ' —ka +a 1+—
k

=0 . (4.5)

The marginal stability curve for (4.5) is presented in Fig.
4. Notice that Eq. (4.5) is quadratic in o.

V. STRONGLY NONLINEAR ANALYSIS

To examine the nonlinear development of the unstable
long waves near the absolute stability limit, again define

I =1/k —e (5.1)

I =1/k and rescale the full system (2.3}—(2.5) on those scalings
motivated by the linear theory of Sec. IV as follows:

FIG. 3. The stability of planar growth as a function of sur-
face energy. If I =0, then M, =1 and the most critical distur-
bance has zero wavelength. As I increases to I,=1/k, both
the wavelength of the critical disturbance and M, increase
monotonically to infinity. When I )I, planar growth is abso-
lutely stable and there is no instability.

(x,y, z)=(e ' X e ' 1;Z),

t=e 'T,

M =M/e

(5.2a)

(5.2b)

(5.2c)
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where k, M, and derivatives in uppercase variables are as-

sumed unit order as @~0. Note that although the mor-

phological parameter M is large, we have not restricted it
to be near its critical value M, . Since M —M, may be

large, the interface deflection is not necessarily small and

we retain unit-order deflections and concentrations:

h (x,y, t)=H(X, Y, T), c(x,y, z, t)=C(X, Y,Z, T) . (5.3)

Since the interface may have large amplitude
deflections, we simplify the problem by introducing the
coordinate transformation, g=Z H—(X, Y, T), and write
the rescaled governing equations as follows:

e(cr Hr—ct)=e(V C 2VC—
~ VH CtV—H+Cg. IVHI )+Cg+Cg, g&0,

[1+(k—1)C](1+eHz ) =C( e(V—'C VH C(IV—HI )

=0,
C —e'M 'H+e ——e V' [VH/(1+eIVHI')' ']=0

k

(5.4)

(5.5)

(5.6)

Although the diffusion equation (5.4) appears to be more

complicated, the application of the boundary conditions
on (=0 instead of Z =H substantially simplifies the
analysis. We now seek solutions to (5.4) —(5.6) in powers
of e as follows:

Co= 1 —e (5.10)

Note that this solution is the basic state when H =0. At
the next order in e the problem for C, becomes

C =Co+&C, +e Cz+ .

H =Ho+@Hi+ ' ' '

The problem for Co at leading order in e becomes

(5.7a)

(5.7b) C,~+ (1+k)c,(=H, —
I
VHI'

C = ——VH1
1 k 0

(=0, (5.12)

Ci~(+Ci(=(V Ho+ IVHoi Hor)e ~ g&0 (5 ~ 11)

Cog+Cog=0 g&0

Cog+ (1—k) Co = 1

Co =0 (=0,

(5.8) Ci =0,

and has the solution

(5.13)

Co =1

which has the solution

(5.9b) Ci = — V Ho+(Hor VHo IVH—oi )ge —~ . (5.14)

proceeding to the next highest order we must solve

C~g+Cq(= C)T —HoTCI( —
H&TCO(

—V C)+2VCi( VHo+Co(V HI+CD(V Hp

Ci((IVHoI 2C()g—VHo VHi, — (5.15)

C„+(1—k)C, =H»+(k —1)C,H»+C„IVHoI'+C«IVHiI' —VCi VHo

C =Q 'H V'H +V'H —+—V (VHIVHI )

(5.16)

C2 =0, (5.17)

The existence of a solution to (5.15)—(5.17) places a restriction on Ho. Solutions exist only if the system satisfies an

orthogonality condition, which forces Ho to obey the following long-wave evolution equation:

Horr 2+ —V'Hor+ —1+—V Ho+ kV'Ho+ kM 'Ho = Hog V'Ho+ IVHo I r V'( IVHo I')—
——V (V HoVHo) ——'V (VHoiVHoi ) . (5.18)
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At this point we have significantly simplified the original
free-boundary problem (2.3}—(2.5) and can locate the po-
sition of the boundary at any time T by an appropriate
integration of (5.18).

There are several features which distinguish the evolu-
tion equation (5.18) from all others' previously derived
for directional solidification. First, the equation is strong-
ly nonlinear; both quadratic and cubic nonlinearities ap-
pear. Their appearance is a reflection of possible large
amplitude variations in the interface. The derivation of a
strongly nonlinear evolution equation is only possible
when all unstable disturbances have wave numbers that
are asymptotically small; such is the case near the abso-
lute stability limit.

A second important difference is that (5.18) includes
the effects of interfacial acceleration. As can be observed
from (5.4) and (5.5), the derivatives, which are second or-
der in time, were foreshadowed by Eq. (4.5) being quadra-
tic in P and reflects a lack of quasistationarity in the
solute field. The moving front simultaneously affects the
solute flux at the front [Eq. (5.5a}] and the rate of
diffusion of solute away from the front [Eq. (5.4)]. This
should be contrasted to the weakly nonlinear analyses
which produce evolution equations that are first order in
time and have quasistatic solute fields; interface velocities
affect the solute flux at the front which must then steadily
diffuse into the melt.

Finally we see that the evolution equation (5.18) gives a
long-wave theory for directional solidification which con-
sistently includes the nonlinear effects of surface tension;
these effects are responsible for the cubic terms.

Before continuing with an analysis on the evolution
equation, we rescale to a more appropriate form as fol-
lows:

The solidification of a planar front is represented by
F =0. If we investigate the stability of this solution to
infinitesimal disturbances as was done in Sec. III, we find
a rescaled version of the characteristic equation (4.5).
The critical parameters which correspond to an onset of
instability are given by p, = 1 —v and a, =2p, '.

If critical conditions are slightly exceeded, the two-
dimensional, weakly nonlinear development of the insta-
bility may be followed using a variety of techniques. '

The results of such analyses on the g-independent evolu-
tion equation show supercritical bifurcation to cellular
solutions. Such behavior is consistent with the con-
clusions of Wollkind and Segel who perform similar
computations on the full system (2.3)—(2.5).

When p ~p„weexpect that an initially flat interface
will stabilize into a two-dimensional steady cellular pat-
tern. The effects of nonlinearity on this solution are in-
vestigated by numerical integration of the steady, g-
independent version of the evolution equation, the results
of which are shown in Fig. 5. Here we have imposed

06

0.3-

F o.o

-0.3-

F=
(2k+1) '

(2k +1)
k

(2k +1)
Equation (5.18) then takes the following form:

F„VF,+ ,' ( 1 v—)V F +V—F—+p 'F

(5.19)

-0.6
0.0

80

40-

0,2 04 0.6 o'.e I.o

= F,V F+IVFI', ', (1 v)V'(IVF—
I
-} —vV (VFV F)

where

,'V (VFIVFI'»—— (5.20)

1 i (2k +1)
]+2k ' (5.21)

In Sec. VI we study the transition from planar to cellular
states using the two parameter equation (5.20).

-40
0.0 0.2 0.4 0.6 0.8 l.0

VI. TRANSITION AND PATTERN

Near absolute stability, the solidification process
evolves on the long spatial and slow time scales given in
(5.2) The nonlinear dynamics of the interface is then
governed by Eq. (5.20), which can be used to describe the
nonlinear features of the transition from planar to cellu-
lar states, i.e., the morphological instability.

FIG. 5. (a) Position of the steady, solid-liquid interface found
by integrating the g- and ~-independent version of Eq. (5.20)
with periodic boundary conditions for v= 1/&2. (b) The distri-
bution of solute along the interface is given by

c,'/co =1+@[(1—k)(1+2k)/k']F(~+O(e') .

Even though the analysis is strongly nonlinear and I' is of unit
order, solute varies by only an O(e) amount over the interface.
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periodic boundary conditions and fixed the wavelength at
2m/a, . The value of v is taken as —,

'v'2 (k =0.2) which

gives p, =
—,'. As p increases past p„the initially

sinusoidal interface develops asymmetries which corre-
spond to the root and tip regions of a cell as shown in
Fig. 5(a). The corresponding concentration of solute at
the interface is found directly from Eq. (5.14) and is
shown in Fig. 5(b). It is interesting to note that although
the interface defiection may be large, solute variations
along the interface are not; they are proportional to e.

The development of these nonlinear cells is qualitative-
ly similar to that found in numerical models of the full
two-dimensional solidification problem' ' and should
give quantitative agreement when such models are run
near the absolute stability limit. The numerical treat-
ments involve marching forward in time, and except for
certain special cases, converge to steady cells. Time
dependence is an expected feature of the solidification
process, dendritic growth is an example, and the inability
of these two-dimensional numerical models to predict
time-dependence lead Ungar and Brown' to postulate
the existence of a precursory bifurcation to three-
dimensional solutions from which time dependence may
emerge. At this point, no three-dimensional and time-
dependent numerical simulations have been accom-
plished, although three-dimensional, steady cells have re-
cently been calculated by McFadden, Coriell, and
Boisvert. '

The evolution equation (5.20) represents a time-
dependent, three-dimensional theory and appears to be
an attractive way to study possible transitions to three
dimensionality and time dependence. A local theory on
the ri-independent version of (5.20) shows transition to
steady cells which we have followed numerically for
larger values of IM. We have no information on the stabil-
ity of these solutions far away from p =p, although this
would come from a consideration of the time-dependent
form of (5.20). Instead of focusing on the stability of
these two-dimensional solutions against two-dimensional
disturbances, we turn to the question of whether these
solutions are stable to disturbances that vary in the per-
pendicular direction. Is there bifurcation to three-
dimensional structure?

[X(p)+JR,jf, =0, (7.1a)

where

and

&(p, ) =8„—V'a, + -,'(1 —v') V'+ V'+&-', (7.1b)

5 =p, , ' —
IM '«1,

then

25/a,fo-. . .cosa, g(8o 3)
9 & 2

and we take

f i
=~'i%0(k r))+ &4i(C rj )+ ' ' ' le"

with

(7.2a)

(7.2b)

(7.2c)

o =cro+5o, +5 o,+ (7.2d)

After equating coefficients of like powers of 5, we are left
to solve the consecutive problems

(7.3)

where

$2+ ~(1—v2)~~+P2+ju (7.4)

in order to determine whether f, grows or decays in
time.

The homogeneous problem L(p, )$ o0 has constant
coefficients so we represent solutions in terms of normal
modes as follows:

(7.1c)

The operator X is just the linear part of (5.20) and Jg is
an operator with spatially periodic coefficients. The sta-
bility problem requires a Floquet analysis of (7.1). This is
greatly simplified by restricting our attention to a region
near p, =p, where the magnitude of fo is small and a lo-
cal analysis give a simple asymptotic representation of
fo. If we define

VII. INSTABILITIES OF TWO-DIMENSIONAL CELLS
e (a/+ pg)i (7.5)

To address this issue we set F=f (og) +f, (g, g, r)

where fo(g) satisfies the steady, g-independent form of
(5.20) and is g periodic with period P. We assume that
~f ] ~

&& ~fp ~
and linearize the evolution equation about

fo. This procedure gives linearized disturbances equa-
tions of the form

As expected, we find 0.0(0 unless the wave number is
critical and a +p =a, in which case era=0 The re-.
quirement that f, be periodic implies that at the next or-
der we must take cr

&

=0 unless there is a resonant interac-
tion between the disturbance and the basic state f0, i.e., if
p=+Q —,'a, . Excluding resonant interactions for the mo-

ment, we proceed to the third order and find that

(7
0

C

(a, +2P v)(a +P v)(a + —,'a, )+o,a p2v
3a

4

3Q
1 (3a2+p2) p2
2 4

2 2
3 2

p2 ( so2 3 )1/2
4 9 & 2 (7.6)
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0.25 0.50
@'/oI

I

0.75 I.OO FIG. 7. The wave vectors for the six modes which are al-

lowed to interact nonlinearly in Eq. (5.20). Here

FIG. 6. The growth rate of three-dimensional disturbances to
the steady, g-independent solutions of Eq. (5.20) when p is near

p, . %'hen v& —,
' (or k&1), there is a band of disturbances cen-

tered on P'= 4a, that are unstable. Here P is the wave number

in the g direction.

Figure 6 shows the dependence of o2 on /3 for various
values of the parameter v. It is apparent from Fig. 6 that
when v& —,', which means that k&1, the two-dimensional

solution fo(g) is unstable to three-dimensional distur-
bances with wave numbers centered around the resonant
wave numbers, (a,p)=(+ —,', +Q—', )a, . If the system is

near absolute stability and k&1, the morphological insta-
bility immediately produces a three-dimensional struc-
ture when p) p, . The case where k is nearly 1 is special
and will be investigated now.

a = (a cos
3

m (m —1), P sin —,
' n(m —1))

and la. I
=a, .

3

fo= g [z (r)e +z'(F)e ], (8.4)

Note from Eq. (5.21) that —,
' —v= —', (k —I)/(1+2k) so

that n )0 (n (0) refers to k larger (smaller) than unity.
We expand F as follows:

F =5fo+5 f, +5 f3+
At leading order in 5, fo satisfies the linearized and

steady version of (5.20). In reference to the preceding
discussion we write,

VIII. PATTERN SELECTION NEAR k =1

The resonant modes represent in some sense the most
unstable disturbances. We return to the bifurcation
analysis and assume that the bifurcating solutions at
JM

=p, are three dimensional and consist of a combination
of these six modes (Fig. 7). The amplitude of all are com-
parable and near bifurcation, all are assumed small. This
resonant interaction approach is standard but only sug-
gestive. We can see from Fig. 6 that the two-dimensional
cells are actually unstable to a whole band of wave num-
bers centered around the resonant ones.

We adopt a two-timing procedure near the bifurcation
point and define the small parameter 5,

p, ' —p '=s62, s =+1, (8.1)

and define by n the degree of closeness to unity of k:

(8.3)

where s is + 1 (or —1) depending upon whether the bifur-
cation is supercritical (or subcritical). We introduce the
slow time F,

(8.2)

where z is a complex coefficient that depends on the
slow time ~, asterisks denote complex conjugation, and
wave numbers a are those associated with resonant in-
teractions (Fig. 6). By continuing the perturbation ex-
pansion to third order we find that requirements of spa-
tial boundedness restrict the complex z to satisfy the
following amplitude equations:

zl
z& =sz, + ', nzzz3 —

2
[lz, I'+-', (IZ3I'+lz3I')],

z2
z, =sz, + ,'nz&Z3 ——[lz2I'+-,'(lz~ I'+ lz3I')]

(8.5a)

(8.5b)

'3
z3 sz3 + 2nz~zz ——[ Iz3 I

+ —,'( Izj I
+ lz2 I )] (8.5c)

Amplitude equations of this form are familiar in Benard
convection' where n arises from vertical asymmetries
such as thermal variations of fluid properties, distributed
heat sources, or thermal modulation of the layer. Here n

measures the degree of solute rejection. If our coordi-
nates are chosen so that z, is real while z2 and z3 are con-
jugates, we find here, as in those convection problems,
that there is subcritical bifurcation to hexagonal solutions
which satisfy
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2)=—n+ —n +3 9 2
8 64 2

1/2

s =+1, (8.6)

(8.7)

There is also supercritical bifurcation to rolls,

(8.8)

(n)o)

(n&o)

Again, s =+1 (or —1) determines whether the solutions
exist in the supercritical (or subcritical) range. The bifur-
cating sheet of hexagons is initially unstable but stabilizes
at the limit point when p=p, as shown in Fig. 8. The
upper sheet remains stable until it loses stability at some

p2& p, . Both bifurcating sheets of two-dimensional rolls
are also initially unstable but stabilizes at some p, (p2
and remain stable as p increases further. If conditions
are near absolute stability and k is suScieatly near 1,
then there exist stable, hexagonal interfaces when p & p, .
When n &0 (i.e.. k & 1) z, is positive on the stable por-
tion of the branch representing hexagonal solutions. In
this case, the hexagons bulge outward into the melt. If,
on the other hand, n &0 (k & 1) then z, is negative and
the stable hexagons are concave in the center. By calcu-
lating the solute distribution on the interface using (5.14),
we find that solute concentrations are always maximum
in the center of each hexagon. Therefore, these solutions
represent hexagonal nodes' bulging into the melt when
k & 1 and dipping into the solid when k & 1 but always
with solute concentrations highest in the center of each
hexagonal node. Finally, we note that the range of stable
hexagons increases as n increases and the stabilization of
the two-dimensional cellular solutions is postponed. As k
varies from k =1, the transition at bifurcation is dom-
inated by the appearance of hexagonal nodes.

IX. CONCLUSION

A linear stability analysis on the planar growth of a
directionally solidified binary alloy reveals a short wave-
length cutoff produced by surface tension; short wave dis-
turbances are stable for all pulling velocities. As surface
tension increases, longer waves are stabilized until a criti-
cal value is reached where the system is absolutely stable.
We have shown that just below the limit of absolute sta-
bility, not only does the critical disturbance have a small
wave number but so does every linearly unstable distur-
bance. As a result, our derivation of a long-wave evolu-
tion equation does not require pulling velocities to be
near the critical value, and in this sense, the nonlinear
evolution equation is strongly nonlinear. This property
produces two interesting features. First, there is the ap-
pearance in the evolution equation of both quadratic
terms, arising from solute rejection, and cubic terms due
to the nonlinear effects of surface tension. Secondly, this
equation has second-order time derivatives and time
derivatives appearing in the nonlinear terms.

In Secs. VI-VIII, we studied features of the initial
transition from planar to cellular states. We found from
the evolution equation that two-dimensional supercritical
stable cells are predicted. However, further analysis
shows that these two-dimensional cells are unstable to
three-dimensional instabilities. When the segregation
coefficient k is near unity, these instabilities have hexago-
nal symmetries. When k & 1, we find subcritical bifurca-
tion to three-dimensional solutions with convex interfaces
that correspond to hexagonal nodes. When k ( 1, we find
subcritical bifurcation to three-dimensional solutions
with concave interfaces that also correspond to hexago-
nal nodes. If k is near unity, this bifurcation has a limit
point and a region of stable hexagonal solutions is found.

The onset of time dependence in directional
solidification can arise through the development of side-
branching cells. There has also been experimental evi-
dence that other interesting time-dependent behavior
may appear near absolute stability; cellular growth rates
have been observed which are modulated in time. We
would hope that the evolution equation, which is valid
away from critical pulling rates, and has time derivatives
that enter in a complicated way, might reveal a transition
to these time-dependent states. This wi11 be the object of
future work.

Parameter regimes that allow a long-wave theory are
especially attractive because the effects of additional
physics are easily included. For example, the present
theory may be modified to include the effects of attach-
ment kinetics, anisotropy, and solutal convection, all of
which may have an important role in the nonlinear devel-
opment of cells near the limit of absolute stabi1ity. La-
tent heat, which may produce a considerable effect for
large pulling velocities, can also be included using a
long-wave approach.

FIG. g. Bifurcation diagram for the amplitude Eqs. (8.5). If
n )0 (and k ) 1), the bifurcating hexagonal solutions bulge into
the melt, and if n (0 (k (1), they dip into the solid. Hatched
regions represent unstable solutions.
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