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Critical-current and magnetization measurements are performed on a large number of ceramic
superconductors of the YBa2Cu307 family. The results show that critical currents in present
ceramics depend strongly on sample geometry and are, in fact, completely determined by self-field
limitation. The strong magnetic field dependence leads to a general relation between critical
current and magnetization which is experimentally found to be satisfied. A quantitative critical-
state model based on an extension of Bean's theory is outlined which is able to predict transport
and magnetic properties using microscopic current vs magnetic field relations. The underlying mi-

croscopic parameters are extracted from a comparison of the model calculation with measured
transport and magnetization data.

I. INTRODUCTION

A vast amount of experimental data on the new oxide
superconductors and many of their potential applications
deal with polycrystalline material whose macroscopic
properties are only indirectly related to microscopic prop-
erties like the actual mechanism producing superconduc-
tivity. The current transport and the magnetization of a
bulk sintered sample are governed by the interplay of su-

perconducting crystalline particles and their interconnec-
tions which establish the coherence within the sample.
Many of the relevant effects of granularity have been
studied for a long time on conventional superconductors'
as well as, more recently, 2 on high-T, superconductors
(HTSC) and are by now fairly well established and under-
stood. 3 However, the results of the theories are often
local quantities which are valid on the (microscopic) scale
of the grains, as for example the magnetic-field depen-
dence of the critical current between two adjacent grains
or the pinning force of intergrain vortices. In order to
predict or analyze quantities of macroscopic samples or
devices, it is necessary to calculate critical currents, mag-
netization, ac losses, etc. , from local critical parameters.
For conventional superconductors, this is usually done via
Bean's critical-state model which is used both as a design
tool and, on the other hand, to determine microscopic
quantities from macroscopic measurements. In the case
of the oxide superconductors, many researchers explicitly
or implicitly use again Bean's model to analyze their
data. ' It turns out, however, that the relation between
local and global quantities is more complex in the oxide
superconductors. In this paper, we will present critical
current measurements and ac magnetization data ob-
tained at 77 K which show that Bean's original model is
inadequate for the new polycrystalline superconductors,
and, in fact, has to be substantially modi6ed and extend-
ed. The reason for its failure is the strong magnetic-6eld
dependence of the critical current which leads to current
limitation in a macroscopic wire caused by the magnetic
self-6eld. Our results show that transport in ceramic ma-
terial with dimensions larger than 0.05 cm is always limit-
ed by this effect and never displays the underlying local

critical current density j,. Similarly, the magnetization
displays a complex behavior and the extraction of the un-

derlying microscopic parameters (e.g., the critical-current
density) from magnetization experiments (inductively
measured" j,) has to be done more carefully than usual.

The paper is organized as follows: In Sec. II, we

present the experimental results on the critical-current
density and on the magnetic properties of our samples. In
Sec. III, we will derive the phenomenological theory of
granular superconductors and show how Bean's original
model can be extended to the case of ceramic samples
characterized by a strong field dependence of the critical
current. Both magnetization and critical-current data are
calculated within this extended model and good agree-
ment with experimental results is obtained. In Sec. IV, we
summarize our results and discuss the local relation be-
tween the critical current density j, and the magnetic in-
duction 8 as deduced from the experimental data. The
calculation of the magnetic hysteresis is described in the
Appendix.

II. EXPERIMENTS

The samples used in the present study are a large num-
ber of sintered ceramic pellets with the composition
R|Ba2Cu307 s, where R Y, Gd, Ho, and b 0-0.2.
The preparation conditions are different in each case and
reflect an ongoing effort to optimize the material. Sam-
ples are single phased to 95% as judged from x-ray
diffraction measurements. A variety of starting materials
is used: (i) mixed, ground, reacted, and reground powders
of the metal oxides, oxalates, or carbonates; (ii) coprecipi-
tated powders of oxalates and tartrates. The highest
critical-current density j„;t 900 Acm at 77 K is ob-
tained on a sample made from the tartrates by sintering at
a temperature of 925'C in oxygen atmosphere twe denote
the macroscopic critical current density by j„;t whereas
we use j,(8) for the microscopic (local) current-field rela-
tion]. The density of this sample is 97% of the theoretical
density and the average grain size is well below 10 pm.
Oxygen annealing at 450'C is required to obtain the op-
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timum stoichiometry.
The present study deals with common trends in the

transport and magnetic characteristics of these samples.
The most extensively studied material parameter, the crit-
ical temperature T„ turns out to be rather insensitive to
variations in sample preparation. We obtain T, 92+ 5
K with a resistive transition width (90%-10%) smaller
than 2 K for all samples. The measurements described in
the following are performed at 77 K with the sample im-
mersed in liquid nitrogen.
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A. Critical current

Current-voltage characteristics are measured in a four-
point arrangement on pellet-shaped samples with a diame-
ter of 1.2 cm and a thickness of 0.1 cm. The current is
forced through a O. l-cm constriction which is sawed into
the round sample (see Fig. 1). Electric contacts are
formed by scraping the sample and applying conductive
silver paint. No burn-in is required as is with several
methods described in the literature' ' which would
make the test sample differ from the rest of the batch.
The contact resistance is typically less than 10 mQ cm2.
The voltage drop which develops at the inner contacts is
monitored as the current through the outer contacts is in-
creased from 0 to 20 A. External magnetic fields can be
varied between 0 T (i.e., earth magnetic field) and1. 5 T.

A typical result obtained on a medium-j«, t sample is
shown in Fig. 2. The zero-field curve shows a notable
voltage developing above 4 A. The nonlinear upturn in

voltage finally goes over into a constant slope with a
differential resistance about 10% of the normal resistance
above T, . Most samples exhibit this linear regime but
there are some exceptions, most notably among the high-

j,„;t materials. The critical current is defined arbitrarily
as the current where the voltage drop is 1 pV. It turns out
that the j-V characteristic is rather steep and the critical
current depends only weakly on this particular choice.
For instance, requiring 0.1 pV voltage drop changes the
critical current by at most 5%. The critical current de-
creases substantially upon application of rather weak
magnetic fields: As can be seen from Fig. 2, j„;t is re-
duced by a factor of 10 at a field of only 1000e. Chang-

0
current (A)

ing the field direction has only a minor influence on the
current-voltage characteristic. This finding is typical for
granular superconductivity. ' In this as well as in the fol-
lowing measurements we always choose the perpendicular
arrangement of current and magnetic field direction. Fig-
ure 3 exhibits the field dependence of the critical-current
density for medium- and high-j„;t samples. A steep de-
crease at low fields followed by a leveling off at higher
fields (& 100 Oe) is found. This behavior has been de-
scribed in the literature. "' The steep decrease is be-
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FIG. 2. Voltage drop across the constriction as a function of
current density for different values of the applied magnetic field.
The critical current is defined at the voltage drop of 1 pV. A
weak magnetic field of the order of 100 Oe suppresses the criti-
cal current by one order of magnitude.
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FIG. 1. Four-point arrangement and constriction on a sample
for the determination of the critical-current density jg~t.

FIG. 3. Critical-current density as a function of applied mag-
netic field. The steep decrease of the current density with ap-
plied field is due to the weakly coupled grains. The saturation
current may be due to a few percolating paths of strongly linked
grains in the sample.



38 NEW CRITICAL-STATE MODEL FOR CRITICAL CURRENTS. . . 11 393

lieved to be due to weakly coupled grains and reflects the
strong magnetic-field dependence of the dc Josephson
effect. '6 Two important additional observations can be
made: (i) The higher the critical current, the higher is the
field of the initial drop in j„;t. (ii) The self-field at zero
external field (see arrows in Fig. 3), i.e., the magnetic field
due to the current at the edge of the constriction, is of the
same order of magnitude as the field at which the critical
current starts to decrease substantially. These findings
give the first strong evidence for the hypothesis that the
self field is in fact limiting the current carrying capabili
ty of the present samples via a local j, vs 8 relation '.To
understand this effect we consider a simplified model:
Suppose the material satisfies a local relation between the
critical-current density j, and the magnetic induction 8
such that

jp, R& c8
2zjp

c8* c82' '
2xjp

For large radii, specifically R )c8 /2njo, j,„;t does not
depend on the local critical current jo but solely on the
cutoff field 8 . As we will see below, the present samples
are in this regime down to radii of 0.05 cm.

An important consequence and proof of this hypothesis
is the dependence of j„;ton sample size: Equation (2) in-
dicates an inverse relationship between current density
and radius. Such behavior is indeed found in all of our
samples; Fig. 4 gives a survey of the critical current ob-
served in several samples as a function of the size of the
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FIG. 4. Critical-current density as a function of the area of

the constriction. Each curve represents one sample, the con-
striction being reduced after each measurement.

jp, 8&8
,0, 8&8'.

For a cylinder with radius R we obtain a total critical
current which after normalizing to the cross section of the
cylinder yields an apparent critical current density

constriction (see Fig. 1). We would like to emphasize that
each curve represents one sample, the constriction being
reduced after each measurement. Experimentally, we ob-
serve an increase in critical-current density with decreas-
ing radius, in agreement with the predicted functional
dependence [Eq. (2)). No saturation at small radii can be
seen. We conclude that the macroscopic critical current
density is not a useful material parameter since it is not a
geometry-independent property. In comparing results
from different laboratories, effects due to sample size and
shape have to be taken into account appropriately. In
fact, some astonishingly high j,„;t values found in the
literature have been obtained on geometries giving favor-
able conditions. Favorable means that the macroscopic
critical-current approaches the local critical-current den-
sity jo [Eq. (I)]. From basic electrodynamics it follows
that an advantageous geometry is characterized by a large
ratio of circumference to cross section. The worst situa-
tion is obviously a circular shape as is (roughly) used in
the present study. Much larger critical-current densities
are expected for thin filaments or thin films. Indeed, the
highest reported j„;,values are found in such samples.
We do not suggest that high j„;tvalues in epitaxial films
are due to this self-field effect. This would be impossible
since the magnetic field dependence of j„;t reported for
epitaxial thin films is much weaker than in bulk ceramics.
However, it may well be possible that some thin high-jap t

polycrystalline films perform well on the basis of the sug-
gested mechanism.

A more detailed model calculation will be presented in

Sec. III. In the following paragraph, ac magnetization
measurements are presented which directly confirm our
hypothesis and which can be understood within the same
framework.

B. ac magnetization

ac magnetization measurements at 77 K are used as an
independent second routine material characterization.
The usual pick-up coil assembly is used, i.e., the sample is
placed inside a pick-up coil which, in turn, is situated in
the homogeneous field of a larger solenoid. A sine-wave
or triangular-shaped ac field is created by driving the
outer solenoid with an appropriate power supply. The in-
duced voltage in the pickup coil is monitored. For con-
venience, an identical, empty and adjustable pick-up coil
is connected in series to compensate for induced signals
without sample. By additionally connecting an integrator,
we directly record the magnetization M as a function of
the external magnetic field H, . We should mention at
that point that the actual H field within the sample is
different (larger) from the applied field by an amount
—4n2)M where S is the demagnetization factor (-0.8).
This effect will be most noticeable in the regime of large
Meissner-Ochsenfeld eff'ect (i.e., low fields). In the fol-
lowing figures no correction for demagnetization is done,
i.e., we always use the external field strength H, far from
the sample. The ac frequency is chosen to be 20 Hz.
Frequency-dependent measurements reveal only slight
changes in signal shape (within 10%) between 1 and 500
Hz. The amplitude of the applied field can be varied be-
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tween 0 and 1000 Oe.
Depending on the amplitude of the applied field the M

vs H, hysteresis loop displays different shapes which can
be divided into four regimes. Typical results for the
ceramic sample are illustrated in the left part of Fig. 5.
Each sample shows qualitatively similar shapes, the de-
tails, however, may vary as will be discussed later in this
section. At very small fields (~ 1 Oe) all samples display
Meissner shielding, i.e., the 4irM vs H, curve is a straight
line. This is depicted in Fig. 5(a). Only very bad samples
(i.e., j,„;&(50 Acm ) exhibit hysteretic behavior but
will also expel the flux at even lower external fields. Fig-
ure 5(b) shows the magnetization at a field of -20 Oe.
All samples display pronounced hysteretic behavior with
flux penetrating the samples and remaining trapped at
zero external field. Interestingly, the loop closes again at
higher fields and goes over into a straight line with smaller
slope compared to complete Meissner shielding. This re-
duced diamagnetic behavior is attributed to the dia-
magnetism of the disconnected grains. At even higher

-4mM
(orb. unit

'IO

fields [Fig. 5(c)l the loop opens up again and more flux is
able to penetrate the sample. Finally [Fig. 5(d)] the mag-
netization of the sample decreases strongly at fields above
200 Oe.

The observed magnetization data show a behavior
which is typical for granular superconductor s. The
different contributions of superconducting grains and in-
tergrain couplings can be clearly distinguished. This be-
comes obvious and can be unambiguously demonstrated
by grinding the sample into powder with a grain size
smaller than 20 pm and embedding the powder in epoxy
resin: The grinding destroys most of the intergrain con-
nections but the bulk of the material is still present. Mag-
netization data for the powder sample are shown in Figs.
5(e)-5(h). It can be clearly seen that the hysteresis loop
at low fields is absent while the high-field signal looks
rather similar to the data for the ceramic sample. Obvi-
ously, the Meissner shielding and the hysteresis develop-
ing at low fields are due to the coupling of the grains while
the signal at higher fields, which is present in both bulk
and powdered materials, is due to grain properties.

In the following, we will concentrate on this two-step
behavior and collect additional justification for dividing
the sample into two subsystems, i.e., grains and grain con-
nections. Figure 6 is a plot of the trapped magnetization
[i.e., —4'(H, 0)l as a function of the field amplitude
of the loop. This can be visualized by taking a hysteresis
loop of Fig. 5; the trapped flux is half the vertical opening
in the middle whereas the field amplitude is given by half
the horizontal width. This measurement can be con-
sidered sensitive to the magnetic field strength at which
flux starts to penetrate the sample. Figure 6 shows that
flux starts to penetrate at rather low fields. The regime of
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FIG. 5. (a)-(d) Magnetization versus applied magnetic field
for the ceramic sample and for (e)-(h) the powdered sample.
At low magnetic fields [~ l Oe, (a)] the sample displays Meiss-
ner shielding. A first hysteresis loop opens as the field is in-
creased beyond I Oe (b) and closes again at higher fields. The
reversible behavior at elevated fields is attributed to the dia-
magnetism of the individual grains. As the external field is fur-
ther increased (c) a second hysteresis loop opens which is at-
tributed to the penetration of vortices into the grains themselves.
Finally, the magnetic moment decreases strongly at high fields
[& 200 Oe, (d)]. The powder sample shows only the second
hysteresis loop (e)- (h).
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FIG. 6. Trapped magnetization I,
—4+M(0, 0)] as a func-

tion of the field amplitude of the loop. The regime of first
penetration is attributed to flux trapping in the voids and be-
tween the grains and relies on the presence of intergrain
currents. A reduction of the intergrain currents (lower j, t)
renders the sample weaker to the penetration of magnetic flux.
The second rise of the trapped flux with increasing field ampli-
tude is due to flux penetration into the grains themselves (vor-
tices). In the powdered sample only the second penetration step
is present.
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first penetration saturates above -10 Oe. At higher
fields, a second penetration path becomes available and
saturation does not occur below 1000 Oe. The powdered
sample just exhibits the second penetration step. We con-
clude that in a first step flux penetrates through the grain
boundaries and occupies the space in between grains and
in cavities. We should mention that the magnetic field
will also penetrate between the grains in the powdered
sample. However, the flux will not be trapped there and
thus will not show up as an additional source of hysteresis.
The field at which penetration starts is a function of the
coupling strength of the grains (see Sec. III) and we ex-
pect to see a correlation with the critical current. This
correlation is indeed observed (Fig. 6): The first penetra-
tion of the lower-quality sample with a smaller j„;,takes
place at a low magnetic field, where the high-j„;t sample
still expels the magnetic field. The second rise in trapped
flux occurs due to the penetration of the field into the indi-
vidual grains. The associated lower critical field of the
grains H, ~ can be estimated using the magnetization data
of Umezawa eral .At 77 K the lower critical fields
[corrected for the temperature dependence of the Ginz-
burg-Landau parameter x' (Refs. 19 and 20)] are -40 Oe
for H, I and -260 Oe for H, ~. The value H, I (37+' 3)
Oe has been quoted by Solin, Garcia, Vieira, and Hor-
tal. i' This value agrees reasonably well with the second
upturn in trapped flux for the ceramic sample.

In the next experiment we measure the ac susceptibility
as detected by a lock-in technique while varying the field
amplitude. A typical curve is shown in Fig. 7. The result
is reminiscent of experiments performed by Rosenblatt,
Peyral, and Raboutou'5 on granular Nb superconductors
and, more recently, on YBa2cus07. Again, a two-step
process is observed reflecting the flux penetration between
and into the grains. We would like to point out two obser-
vations: (i) The penetration starts at higher fields than in

published experiments. ' Although this may partly be
due to different experimental arrangements (X —I/4z
means maximum signal in our setup, whereas it means
minimum signal in Refs. 1 and 2) we think that our sam-
ples do in fact exhibit higher resistance to flux penetra-
tion. (ii) The penetration into the grains starts at rather
low fields (&40 Oe). Both observations together show
that the coupling between the grains is, in fact, rather
strong: Typically, the critical-current density between the
grains is reduced only by a factor of 10 as compared to
the intragrain current density.

The present samples, however, are still limited by grain
boundary effects. Therefore, the magnetization signal due
to grain connections should be related to the critical
current density of the samples. In deducing a meaningful
quantity from the magnetization loop to correlate with

j„;&,we notice that we have to avoid any quantity that de-
pends on the amount of trapped flux which turns out to be
completely unrelated to j„;&. This can be easily under-
stood by considering the role of a few cavities and voids
which will effectively increase the trapped flux without
affecting the critical current or even decreasing it. On the
other hand, we expect that the magnetization due to inter-
grain currents disappears simultaneously with the
suppression of the critical current by a magnetic field,
suggesting that the horizontal width of the inner hys-
teresis loop should correlate with the critical current den-
sity in the sample. We therefore define the "critical"
magnetic field H, as half the horizontal width of the
inner hysteresis loop. To be more specific, we choose H,
at the intersection of the tangent in the point of inflection
with the straight line describing the reduced diamagnetic
behavior of the disconnected grains (see inset in Fig. 8).
This quantity will give the horizontal extension of the hys-
teresis loop without being affected by either the amount of
trapped flux nor the grain diamagnetism. For a number
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FIG. 7 ac susceptibility vs magnetic field amplitude. The
magnetic field starts to penetrate into the sample at a field of
=1 Oe. From this we estimate the penetration depth into the
ceramic A, ,=2 pm and the maximal intergrain current density
to be of the order of 10 A cm . Again the penetration of the
ceramic can be clearly distinguished from the penetration of Aux

into the grains.
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FIG. S. Critical field H,* vs critical-current density. The
linear relationship can be understood on the basis of the self-
field limitation of the critical-current density in the ceramic
sample; see Eq. (3). The inset illustrates the determination of
H, .
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of samples we have plotted this quantity as a function of
the critical-current density determined by the resistive
technique described above (see Fig. 8). A linear relation-
ship is observed over nearly two decades, indicating a very
close relationship between the two quantities. In fact, oth-
er properties of the magnetization loop (i.e., Meissner
shielding, trapped flux, maximum magnetic moment, Geld
at maximum moment, etc.) are found to show no or very
weak correlation with the critical current.

The relation between j«;& and H, can be understood
qualitatively by considering the simple model which we
discussed in Sec. IIA. Assuming that the decrease of the
magnetization at H, is due to the destruction of the
shielding currents by the magnetic field, we can, to a first
approximation, identify H, and 8 in the local j, vs 8 re-
lation [Eq. (1)]. Since we found earlier that j,„;, is com-
pletely determined by 8, we can calculate 8 (or H, )
using j«,& and the known constriction radius R according
to the formula

2X o

Ha jcrit& ~

C
(3)

III. CRITICAL STATE MODEL

We start with a discussion of the magnetic properties
of a granular superconductor which is characterized by

This quantity is also plotted in Fig. 8. Surprisingly good
agreement between the experimental data and the predic-
tion of Eq. (3) is found, relating data from a transport ex-
periment with a measurement of the magnetization. We
would like to emphasize that no adjustment of the data is
performed at any point in the analysis and that the curve
represents a true zero-parameter fit. Demagnetization
effects and corrections due to the grain diamagnetism will

only slightly modify this result as will be discussed in Sec.
III.

Such a behavior is not observed in conventional super-
conductors and requires a careful reinterpretation of
many experimental results obtained on oxide supercon-
ductors. Contrary to conventional superconductivity, the
macroscopic j„;&is no real material property but is rather
determined by 0,* via a geometry factor. The true local
jo which can be considered a material property is still un-
known at present, but certainly well above 1000 Acm
in the best ceramics. On the other hand, we expect H, to
be a universal and size-independent quantity which actu-
ally characterizes the material and which can be easily
determined.

At this point, we have established that the macroscopic
critical currents and magnetization can be traced to a lo-
cal j, vs 8 relation, where j, decreases steeply on a scale
H, . H,* is the most relevant quantity for the present ma-
terials and geometries. The experimental results can be
understood on a semiquantitative basis using the simple
step function approach [Eq. (1)]. In the following, we will
deduce and outline a quantitative model which can be
used for modeling and calculating actual sample (and de-
vice) properties. For a given geometry and j, vs 8 rela-
tion, an analytical solution is derived and compared with
experimental results.

the diamagnetic behavior of the grains and a strong
magnetic-field dependence of the critical-current density
limiting the transport between the grains. The magnetiza-
tion and transport properties are then calculated using a
specific model for the critical-current density j,(8).

A. Granular superconductors

We consider a granular material with weakly coupled
superconducting grains of mean size a. The coupling en-

ergy is EJ (40/2')IJ where 40 hc/2e is the flux unit
and IJ is the maximal Josephson current flowing between
adjacent grains. The grains themselves are considered su-
perconducting with a condensation energy Eg H,~a /8z
which is much larger than the coupling energy EJ between
the grains. (H,g is the thermodynamic critical field of the
grains. ) In this limit, which applies well to the oxide su-
perconductors, the current in the ceramic is limited by the
coupling EJ and not by the suppression of the order pa-
rameter in the grains.

Applying a magnetic field to such a granular supercon-
ductor has two effects: First, the grains themselves behave
as diamagnets, expelling the field from their interior.
Second, Josephson currents flowing between the grains
lead to the expulsion of flux from the interior of the
ceramic sample.

Let us first consider a sample with zero coupling be-
tween the grains. Assuming a fraction f„ofthe volume to
be permeable (p 1) and the remaining fraction f, 1
—f„ to be superconducting, we can characterize the mag-
netic response of the sample by the effective permeability
of the ceramic, p„, f„+f,ps. Here ps is the effective
permeability of the superconducting grains defined by

ps @,/@„, @, and @, being the flux penetrating into the
grain under superconducting and normal conditions, re-
spectively. The magnetic field 8 inside the sample is then
approximated by the average (b) p„,H of the micro-
scopic field b taken over a volume which is large compared
to the average grain size. Here H is the external applied
field. Assuming a cylindrical shape for the individual
grains the permeability pg becomes

4g I~(a/2X)
a Io(a/2X)

a and X denote the size and the penetration depth of the
grains, respectively, and I„ is the modified Bessei func-
tion. For our best ceramic samples the grain size a lies
in the range 1-10 pm and at 77 K the mean penetration
depth k is estimated to be —1 pm. With a supercon-
ducting fraction f, =0.95 we obtain an effective permea-
bility p„,=0.5 for our ceramics. The expected magnetic
response then is given by a reduced diamagnetic behavior
—4aM (1 p„,)H. —

As the coupling EJ between the grains is turned on,
coherence between the grains is established and screening
currents start to flow through the sample. In the following
we will briefly derive the phenomenology of a ceramic su-
perconductor. This discussion will lead us to a modified
critical state model which describes well the magnetic and
transport properties of the ceramic samples.
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The free-energy density of the coherent state is given by
the expression

f, (T,B) es(T)+e (B)+e,(T,B) .

es(T) 'denotes the condensation energy density of the
grains and e (B) B /8'„, is the magnetic energy den-
sity of the uncoupled superconducting sample. " A simple
approximation for the coupling energy density is

e, (T,B) 1
—cos a Vp — A

EJ 2X

a @p

where p is the phase of the superconducting order parame-
ter and a is the vector connecting two adjacent grains.
Equation (4) applies to the situation where the current
enters and leaves the grain through a single adjacent
grain, respectively. The temperature dependence of e,
arises from the temperature dependence of the coupling
EJ.

The vector potential A generates the total induction

V x A B H+4+Mg+4zM J,
which is due to the external field H, the screening currents
flowing in the grains generating Ms, and the Josephson
screening currents flowing through the whole sample and
generating MJ. The magnetization Ms depends on the to-
tal field applied to the grains which is H+4xMJ, thus

and, therefore, a London penetration depth
&/2

caco
87f PeerIJ

2~cer

The penetration depth increases with increasing quality
(p„, 0) of the material. This result can be understood
in the following way (see Fig. 9): The Josephson current

jJ generates a field 1/cVX jJ opposing the external field H.
The diamagnetic currents in the grains then consist of two
contributions; a first contribution shields the interior of
the ceramic from the applied external field and therefore
supports jj. This current flows within a depth 2, from the
sample surface. A second contribution to M~ arises from
the diamagnetic field MJ which induces currents in the
grains opposing MJ. The net effect is a reduction of the
external field H to p„,H and a reduction of the screening
current jJ by a term (1 —p„,)jJ due to the diamagnetic
grains. As a consequence, the magnetic field penetrates a
longer distance into the sample, explaining the rise of X,„„

Peer
The critical field H, of the ceramic is the largest field

which can be screened to zero asymptotically. The
Josephson currents have to screen the remaining field

p„,H since a fraction (1 —p„,)H is screened by the dia-
magnetism of the grains (see Fig. 9). Using Eq. (7), the

Ms Z, (H+4zMg), p„, I +4'„,. (6)

The magnetization MJ is generated by the Josephson
currents jJ,

l.VxMJ —jJ,
C

and therefore, using (5) and (6), we obtain

4zVxg pcerJJ
C

telling us that the magnetization due to the Josephson
currents is reduced (p„„(1) by the diamagnetism of the
grains.

The second equation relating the Josephson current
density jj and the magnetic field is found by minimizing
the free energy of the coherent state with respect to A,

4& IJ-
VXV&A p„, @sin(a &),

@=Vy— A.
@0

In the expression for the Josephson current density jJ the
permeability p„,drops out

IJ-jJ- &sin(a @).
a
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&cer

8z PcerIJ
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(7)

This is not the case, however, for the penetration depth
A.„, of the ceramic: Applying twice the curl on the
gauge-invariant phase gradient 4 we obtain (in the ab-
sence of vortices)

distance from surface =-.

FIG. 9. Screening currents and magnetization vs position
near the surface of a granular superconductor. The combined
eÃects of intragrain (dotted line) and intergrain (dashed line)
screening currents lead to a rapid decay of the external field 0
to p,H within a length X followed by a smoother decay to zero
on the scale k, .
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J, (8)-JO 1 — e(8' —)8)),8 (8)

result for H, is

a,*-
&gcer~cer+

With increasing quality of the ceramic (p„, 0) the crit-
ical field H, and A. , simultaneously increase, showing
that the diamagnetic screening of the sample is more and
more due to the grain diamagnetism.

For our ceramic oxide superconductors, we estimate
a maximal intergrain current density of the order of
jj Ijla =10 Acm, resulting in a penetration depth
X„„which is of the order of the grain size a (1t,„„=1 —5
pm). The critical field H, is a few oersteds. For the case
of A, , & a intergranular vortices will penetrate the sample
at the lower critical field H, i=@0/4irp„P. , which is
about 1 Oe in our samples. This estimate agrees well with
the field of first fiux penetration found experimentally (see
Figs. 6 and 7). Qn the other hand, for large grain size
a & A, , the field penetrates into the sample in the form of
Josephson vortices which are characterized by the length
scale AJ (c@0/8n jyd)'~. Here d 2K+co , is the total
penetration depth of the field into the junction and the ad-
jacent grains, ro being the width of the junction. When
discussing the permeability we have used an average value
of the anisotropic penetration depth A, . For the intergrain
transport properties, we consider the good junctions re-
sulting from grains with their CuO planes parallel to the
junction normal. The relevant penetration depth A, then
is of the order of 0.2 pm at 77 K. 's'2s' 6 Neglecting the
width co of the junction, we obtain a Josephson penetra-
tion depth A,J=5-10 pm and a lower critical field

H, i 2@0/z A,Jd again of the order of 1 Oe. Thus, for the
case of large grains the role of intergrain vortices is taken
over by the Josephson vortices. Note that in both cases of
small and large grains it is essential to distinguish between
two types of vortices in the ceramic material: intragrain
vortices which are based on the large intragrain current
densities, and intergrain or Josephson vortices which rely
on the reduced intergrain current densities jj. The two
different scales of current densities present in the ceramic
material constitute the basis for the observed transport
and magnetic properties.

The above discussion shows that the ceramic material
will essentially behave like a type-II superconductor
where the current and the magnetic field penetrate the
whole sample. This allows us to model the transport and
magnetic properties of the ceramic sample using a
critical-state model which assumes that the current densi-
ty in the sample is always at its critical value. Contrary to
Bean's original model7 it is important to take the strong
dependence of the critical-current density on the magnetic
field 8 into account. This strong dependence on 8 is ob-
served experimentally and can be understood theoretically
on the basis of the strong magnetic-field dependence of the
grain coupling typical for Josephson junctions.

In the following, we calculate the ac magnetization and
the effective critical current within the critical-state mod-
el. The microscopic current-field relation is approximated
by

where 8 is the local magnetic induction and 8(x) denotes
the Heaviside step function. This model for j,(8) de-
scribes well the sharp drop of the critical current on a
scale of —100 Oe found experimentally. The tail extend-
ing to higher fields (& 100 Oe) is neglected within this
approximation.

r

dB ~ 4x'Peer . )
8 )

jp I—
ctr c

(10)

Here the + (—) sign applies to screening currents in-

duced by rising (decreasing) external fields H. The
boundary condition which fixes the solution of Eq. (10) is

8 (R ) pgglH ~

i.e., only the remaining fraction p,H has to be screened

by the Josephson currents, the rest being screened by the
diamagnetic grains as discussed above. The calculation of
the magnetic hysteresis M(H) is somewhat tedious be-
cause of the memory effects. As an example, we consider
here only the simplest case of a zero-field-cooled sample in

a rising external field, deferring the full description of the
hysteresis to the Appendix.

The solution of Eq. (10) subject to the boundary condi-
tion (11) is

0, 0&r &r
8(r) -'

,8 (1 e' '—)+p,He' " r &r &R

with (see Fig. 10)

—ln ~, 0&H& (1 —e ' ),
Peer~ Peer

R, (1 —e ' )&H&
Peer

(12)

Peer

Here we have set H,*~ equal to zero, the corrections due to
a finite value being small (p,H, i «8*). 8* is the maxi-
mal local field which can be screened by the Josephson
currents [see Eq. (8)] and the parameter 1/a cB*/

B. Magnetization

The magnetization M of the sample is given by

]4zM —d'x [B(x)—Hl,
V aJ

with B(x) and H denoting the local induction and the
external magnetic field, respectively (we will discuss
demagnetization effects later). The induction B(x) is
determined by Maxwell's equation

&x B "'j,(B) .4' cer

c

For a cylindrical sample (with the axis parallel to z and
radius R) these equations reduce to [B(x) [0,0,8(r)]]

i R
4irM dr r [8(r) —H],R'~o

and
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2
'

rm8 1—
R

PceIH, (8 .
Peer

2
(8*—p«,H)[(1+ar~)e —(I+aR)], 0 & H &

aR Peer

4'«, jo determines the length scale on which the Josephson screening currents flow. Averaging the induction over the
volume of the cylinder [Eq. (9)] we find

r

5.0—
B(r}-

8"

~ ~~
~e

~ ~
~ ~ - jc (B}

jo

From this result, we immediately obtain the magnetiza-
tion M(H) using Eq. (9). The result for a field H & 0 ap-
plied to a virgin sample is obtained by substituting —8
for 8 in the above formulas.

The above derivation applies to the case of a virgin sam-

ple in a rising external field H Assu. me the field is re-
versed at a value H &8 /Jt, . For all field values

(H ~
& H the sample will remember this maximal field:

with decreasing external field H the screening currents are
gradually reversed. In Fig. 10 a situation is shown where
the external field H was reversed after reaching a max-
imum H . As a consequence the screening currents have
been reversed up to a depth R —r; from the sample sur-
face. Obviously, these screening currents differ a lot from
the case of a virgin sample subject to the same external
field H. This memory effect leads to the magnetic hys-
teresis loop for fields (H ( &8 /p, . Such a hysteresis
loop is shown in Fig. 11 (no demagnetization effects are
taken into account here, therefore H H, ). The arrows
mark the fields H and H used in Fig. 10 and illustrate
how the external field initially penetrates the sample very

slowly. Only as H approaches the maximal field 8 /p«,
very closely does the field penetrate rapidly towards the
center of the sample [see also Eq. (12)], leading to the
steep decrease of the magnetization as H~ 8 /p„, . For
fields ( H ( )8 /p, no Josephson screening currents can
circulate in the cylinder and the sample behaves reversible
and diamagnetic.

We briefly discuss the hysteresis loop resulting for the
truncated Bean model characterized by Eq. (1): Instead
of a continuous transition to the reversible diamagnetic
behavior —4irM (1 —p«, )H, the truncated Bean model
leads to a discontinuity of M(H) at (H( 8 /p«, .
Whereas the Josephson screening currents decay continu-

ously as ( H ) approaches 8 /p«, in the above model, the
screening currents collapse from their value jo to zero for
the model of Eq. (1). The discontinuity in the hysteresis
loop is removed by introducing a smooth decay in the
current-field relation j,(8). A sharp drop in the M(H)
relation will remain, however, indicating the sharp drop in

j,(8) at the corresponding field 8 p,H. A further
difficulty, apart from the discontinuity in M(H), is the
ambiguity in fitting an experimental j„;t(H,) relation
with Eq. (1): an "equal area" fit and a fit of jo and H~
("double area") will lead to very different hysteresis

loops, neither of which fit the experimental data welL We
thus conclude that the truncated Bean model is less ap-
propriate for an accurate analysis of the magnetization
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-1.0—

0

--- -1.0

C9

I

40
0.48

-40
I

0
I

R/2
r

I

R -80
-80

I

-40 40 80
FIG. 10. Screening currents and magnetic induction as a

function of position for a linear current-field relation j,(B). The
parameters used are j() 650 Acm, B 22.5 G, and R 0.4
cm. The Josephson currents decay on a length scale 1/a 0.057
cm. The external field H was first increased to H 46 (46.85)
Oe and reduced afterwards to H 10 ( —46.5) Oe. For H

46.85 Oe the field has penetrated to the center of the sample
(r 0). The radii r~ and ro denote the positions of current re-
versal and maximal screening current, respectively.

Ho = H(0e}

FIG. 11. Magnetic hysteresis loop without demagnetization
eN'ects. The external field H H, is alternately increased and
decreased, reversing the field at H, +'2.5, + 7.6, +'15, +'23,
+'30, + 45, +'61, and ~76 Oe. The hysteresis loop closes at a
value H B /p, 46.88 Oe. The arrows indicate the applied
fields H and H used in Fig. 10 for the illustration of the screen-
ing currents and the magnetic induction.
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data.
Before we can compare our model calculations with ex-

perimental results we have to discuss demagnetization
effects. For a sample in the form of an ellipsoid of revolu-
tion (with d and R the lengths of the semiaxis) the mag-
netic field H and the applied asymptotic field H, are relat-
ed by the equation'

H-H. 4zS—M -H. —g)(8 —H) . (i4)

The samples used in our experiments are flat disks of ra-
dius R=0.6 cm and height 2d=0. 1 cm, implying a
demagnetization coefficient S 1 —(z/2) d/R =O.SS.
Substituting 8 in Eq. (14) by (8) [Eq. (13)]we obtain an
implicit equation for H. The quantities H, (8},and 4irM
must therefore be calculated self-consistently for each
value of the applied field H, . Figure 12 shows the mag-
netic hysteresis loop calculated with the same parameters
as used in Fig. 11 before, but including demagnetization
effects. The actual internal field H is enhanced over the
applied field H„ leading to the narrowing of the hysteresis
loop. Again we have marked the fields H, and H, corre-
sponding to the field and current patterns of Fig. 10. The
demagnetization effects lead to a spreading of the regime
where the external field sweeps rapidly into the sample.

Particularly simple are the two limits H 0 and
H &8 /p„, :

0, 8&H, ),1

1 —(1 —p„,)2) ' p,

An analysis of the two slopes of M(H, ) at low and high
values of H, provides additional information (S,p„,) on

80
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FIG. 13. Magnetic hysteresis loop measured on a sample of
radius R 0.59 cm and thickness 2d 0.1 cm. The critical
current through a constriction of 0.01 cm is 420 Acm . The
external field H, is gradually increased up to 76 Oe with field

reversals as in Figs. 11 and 12. From the slopes at low and high

fields one finds S 0.8 and p, 0.48, respectively. The "criti-
cal" magnetic field is H,*=27 Oe from which we deduce
8 22.5 G. The wings at large values of ~H, ~

(&27 0e) are
due to the finite tail in the current-field relation j,(8).

the ceramic sample. The hysteresis loop closes at a value

1 —(1 —p, )S (is)
Peer

Solving for 8, the magnetization data can be used to
determine the parameter 8 in the local current-field re-
lation j,(8).

Finally, we compare our model calculations with exper-
imental results. In Fig. 13 we show a magnetic hysteresis

80

40-
4Q-

-40-

-80
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I
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l
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40 80

He (Oe}

FIG. 12. Magnetic hysteresis loop based on a self-consistent
calculation of H, (8), and M, including demagnetization effects.
The same parameters as for Fig. 11 are used. The demagnetiza-
tion enhances the internal field H, leading to a narrowing of the
hysteresis loop. Again the arrows mark the applied fields H
and H used in Fig. 10.
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FIG. 14. Magnetic hysteresis loop before and after the sub-

traction of the wings at high fields [ H, ) & 27 Oe. The subtrac-
tion is done by linear extrapolation of the high field data to
lower fields. The result is compared to model calculations and a
va1ue jo 650 Acm is found to reproduce well the data. The
whole magnetization loop is then calculated with the parameters
found from the analysis of Figs. 13 and 14 and the result is

shown in Fig. 12.
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loop where the external field has been alternately in-
creased and decreased up to H, 76 Oe with field rever-
sals at 0, +2.5, +7.6, +'15, +'23, ~30, ~45,
~61, and + 760e. From the two slopes at H &H,*i and
H&8*/p~, we find a demagnetization factor S 0.80
and a permeability p„„0.48, respectively. The expected
value for the demagnetization factor is 0.81. This value
has been calculated for the sample with a constriction as
shown in Fig. 1 by using a radius corresponding to a disk
with half the sample area. The sample radius is R 0.59
cm and the effective radius becomes R,s 0.42 cm. The
thickness of the cylinder is 0.1 cm. The magnetization
shows a local minimum at H, 27.0 Qe. This value is
converted to a critical field 8 22.5 G using Eq. (15).
The last parameter to determine is jo. In our simplified
model, we neglect the tail at large fields in the current-
field relation j,(8). This tail contributes to the magneti-
zation and leads to the narrow wings in the magnetization
loop at fields ~H, ) & H, . In order to obtain a correct
value for jo, we first have to subtract this contribution
from our data. Figure 14 shows the experimental data be-
fore and after subtraction of the wings (only the maximal
open loop is shown). The parameter jo is found by a com-
parison of the loop height with model calculations. A
value jo 650(+' 50) Acm agrees well with the experi-
mental results. The dependence of the hysteresis loop on

jo is, however, much weaker than the dependence on 8,
showing again that large samples of dimension & I/a are
characterized by 8 rather than the maximal critical
current jo. Finally the whole hysteresis loop with the
gradually increased field is shown in Fig. 12. All the
structure and the size of the loops are well reproduced by
the model calculation.

The apparent critical current density then is

j„;,-, -jo 1 — (1 —e )
Icrit . 2 1

gR ~ aR aR

jp1—,R 0,aR

2 cB*
Jp ~ R~ oo

aR 2$pcerR

Using Eq. (15), we recover Eq. (3) up to a factor
1 —(1 —p, )S which introduces a correcting factor
=0.6 in Eq. (3). The self-limitation of the critical
current by the magnetic field becomes effective at a radius
R=l/a which is 0.057 cm in our test sample with

jp 650 Acm and B 22.5 Oe. Using the above for-
mula to calculate the expected current density through the
constriction in the sample (area =0.01 cm, see Fig. 1),
we obtain a value j„;i 480(~ 30) Acm 2. This com-
pares reasonably well with the measured value j„;, 420
Acm

The same calculation can be done for a (thin) film and
the result is

(1 e ad/2)2
a

where d is the film thickness. With the parameters de-
duced above thin films of thickness less than 100 pm do
not suffer from self-field limitation.

We note that the self-limitation effects depend on the
local current-field relation j,(8). To provide an idea for
this dependence we quote our results for the case of the
smoothly decaying Anderson-Kim2 2 relation

C. Critical current

d [rB(r)] rjo 1—4&Peer

dr C

B

The effective critical current density j„;icarried by a
wire of cylindrical shape (radius R) can be calculated
along the same lines. Using again the linear current-field
relation Eq. (8) we have to solve the differential equation
[8(x) 8(r)e&]

1
Jo

Jcrit

R » —,cylindrical wire,a'

j,(8)- (16)1+8 8
The current j, initially decays with a slope —jo/8 in

both expressions Eq. (S) and (16), however, an additional
tail is present in Eq. (16) at high fields 8 & 8 . Due to
this tail the magnetic field is no longer limited to values
8 & 8 and the critical-current density decays only with
the square root of the sample diameter:

' 1/2

with the boundary condition 8(r 0) 0. The magnetic
induction B(r) is limited by 8,

4
jo

1
d » —,thin film.a'

8(r) 8 1 — (1 —e ") & 8*,1

IV. SUMMARY AND DISCUSSION

such that the total current I„;tcarried by the wire grows
only linearly in R as the radius becomes large, aR &) 1:

I„;i(R) 8(R) .
2gcer

In this paper, we have presented experimental results
demonstrating that the transport and magnetic properties
of bulk ceramic high-T, superconductors are dominated
by the strong dependence of the local current density on
the magnetic field. Based on a local current-field relation
which decays on the scale of a critical field 8*, we could



11 402 H. DERSCH AND G. BLATTER 38

explain the decay of the critical current density j„;,-8 /R with increasing radius R of the macroscopic wire.
Furthermore, the critical current scales with the critical
field 8* at large radii and only for very thin wires (at
least R & 0.05 cm for the present material) one can expect
to observe the maximal current density jo.

The magnetization of the ceramic sample is character-
ized by two field scales: For applied fields H, & H,* a first
hysteresis loop opens which is due to the trapping of inter-
grain vortices in the ceramic sample. For intermediate
fields H, & H, & H, & the hysteresis loop closes and opens
again at large fields H, )H, i, where vortices start to
enter the grains themselves. The inner and the outer hys-
teresis loop can be analyzed to obtain information on the
granular superconductor and on the superconducting
grains, respectively. We have presented a model calcula-
tion of the inner hysteresis loop based on an improved crit-
ical state model which takes the strong decay of the
critical-current density with increasing magnetic induc-
tion into account. Accounting for the diamagnetism of
the grains and for demagnetization effects by a self-
consistent determination of the external field H„ the
internal magnetic field H, and the magnetic moment M,
we could compare the theoretical results with the mea-
sured hysteresis loop. The analysis allows for the deter-
mination of the relevant microscopic parameters p „jQ,
and 8 . The parameters obtained in this way from the
magnetization data are compatible with the transport
data, thus, giving us a consistent description of the granu-
lar superconductor.

Finally, we discuss the mechanism which possibly limits
the critical-current density in the present ceramic materi-
al. Within the model presented above two mechanisms
can put an upper limit on the current density: (i) depin-
ning of intergrain vortices, and (ii) suppression of the
effective grain coupling by the magnetic field. The pin-
ning force for the intergrain vortices depends on the
amount of disorder in the coupling strengths between the
grains, however, nothing definite can be said about its ac-
tual size yet. First results on the pinning potential in a
square array of identical Josephson junctions have been
given by Lobb, Abraham, and Tinkham. On the other
hand, we can estimate the suppression of the grain cou-
pling by the magnetic field: The average flux 4 penetrat-
ing a Josephson junction is @=2k aB)r/4p „where the
factor )r/4 is due to the average over the angle enclosed
between the magnetic induction and the normal to the
junction. The factor p„,enters the expression because the
field within the junction is enhanced over the average field
8 in the ceramic. Here we use again the penetration
depth k =0.2 pm since we consider only the good junc-
tions resulting from grains with their CuO planes parallel
to the junction normal in the discussion of the transport
properties. For the grain size we estimate a=1-5 pm.
The sharp drop in the coupling constant will take place on
a scale @* Np resulting in an estimate for the critical
Geld 8* of the order of 10 G. This result agrees well with
the critical field found in our analysis above. We thus
conclude that the limiting factor for intergrain current
transport in our samples are the Josephson junctions and
not the intergrain vortex pinning force. In addition our

analysis is consistent with Josephson junctions at the grain
boundaries and not at the twinning boundaries, in agree-
ment with results reported by Peterson and Ekin and
Kwak, Venturini, Nigrey, and Ginley.

Note added. In Fig. 1, the differential resistance at
high bias does not increase with increasing external field
H, . The field-independent differential resistance can then
be interpreted as the normal junction resistance. On the
other hand, a linear increase of the differential resistance
with increasing applied field H, is expected for a critical
current limited by vortex depinning ' (flux-flow resis-
tance). This gives additional support for our conclusion
that the intergrain current transport in our samples is lim-
ited by the Josephson junctions. We thank J. Rhyner for
pointing this observation out to us.

ACKNOWLEDGMENT

We wish to thank R. Marsolais, J. Rhyner, and H. J.
Wiesmann for helpful discussions and appreciate the
technical assistance of P. Unternahrer, R. Weder, and
R. Krieg. Part of this work was supported by the Swiss
National Science Foundation.

APPENDIX

In this appendix, we calculate the full hysteresis loop
M(H) for the situation where the magnetic field H is
varied between the extremes —H and H . We have to
determine the field for the two situations shown in Fig. 10;
all other cases can be treated by minor modifications of
the following results.

For O~H &H and decreasing field H we have to
solve the equations

dB 4)rp, 8
jp 1—,r~&r~r;,ar c

dB(' 4)rpgep 8('
jp 1—,r; &r~R,

dr c

together with the boundary conditions

Bm(R) ucerHm,

8 (R) @~H,
8 (r )-0,
8 (r;) 8;(r;).

The parameters r and r; describe the penetration depth
of the magnetic field and the position of current reversal,
respectively (see Fig. 10). The solution of the differential
equation is

8 (1 —e' " )+p„,H e' ', r &r~r;,
84 (1 e

—a(R —r)) + He
—a(R -r)
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with

1R —rm —ln
pcerHm

1 ~ ~ gcerHR I'I = ln

For Hm —& H &0 and decreasing field H the differ-
ential equations to solve are

In addition to the penetration depth r and the inversion
radius r;, a third radius ro describes the position of the
maximal current density in the sample (see Fig. 10). The
solution for the magnetic induction is

8'(1 e—' " )+p„,Hme' ', rm & r ~r;,
B(r) ='8 (1 —e ' "' '

), r &r ~ro,
8*(e ' —1)+p eHe ', ro&r~R

dBm 4rrpcer
jp 1—

r c
~m

~m+~

dBp 4xpcer . &O
jo 1+, roar «R,

c

and the boundary conditions read

dB( 4np„, 8;
jo 1—,r; &r~ro,

dr c

with

R —r; ln
1

2a f

pcerHm ~ +gcerH

a*
R —ro —ln ~*+pcerH

a*
R —r —lnPf

pcerHm

8 (R) p„,H, 8;(rp) 0 Bo(R) p«rH

8 (r ) 0, 8 (r;) 8;(r;), Bo(ro) 0.

The magnetization 4' is obtained by averaging the
field 8(r) over the sample volume, Eq. (9). The result is
for0~ J&H:

r
2

(8& 8 1 — + (8 —p«, Hm)[(1+ar;)e' "' —(1+arm)e'R' (aR)'

+ (8~ —p«,H) [(1—aR) —(1 —ar; )e ' "' ],
aR

for —H &H&0:

(8) 8 — —
1 + (8 —p«, Hm)[(1+ar;)e ' —(I+arm)e ](aR)'

(aR)' (8 +p«H)[(1+aR) —(1+urn)e' "' ] + 8 [(1—are) —(1 —ar;)e ' " ' ] .
(aR)'

We make two final remarks: (i) As the field penetrates
further into the sample, r (and thus also r; and ro) be-
comes 0. The penetration depth R —r is, therefore, al-

ways meant to rea~

1R —r min R,—ln &*—
pcerHm

and similar expressions apply to R —r; and R —ro. With

I

this proviso the obtained formulas apply to all field
strengths H &8 /p„, . Increasing the maximal field
beyond 8 /p„, the sample behaves again reversible and is
diamagnetic, 4'= —(1 —p„,)H. As H drops back
below 8 /p«r the above results can be applied with
H 8 /p„, . (ii) When the magnetic field H is in
creased from a value H, H & 0, all—the above formu-
lae apply with 8* and H substituted by —8 and
—H, respectively.
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