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Mechanical twinning in crystals
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In mechanical twinning of crystals, compound twins are examined for symmetry and found that

by necessity the plane of shear is a mirror plane to enable the twins of the first and second kind to
exist simultaneously.

In mechanical twinning, shear stress acts along a shear
direction g& which lies in an invariant plane referred to as
the twin plane with Miller indices E&, see Fig. 1. Due to
the action of the mechanical deformation, the envelope of
planes and directions of the parent crystal are deformed
from a reference sphere to an ellipsoid of revolution and a
twin crystal is formed. In this modified reference system,
two planes remain invariant as follows: the twin plane re-
ferred to above and the invariant plane which carries the
Miller indices E2. Additionally, the fact that two planes
remain invariant prescribes that a set of vectors in those
two planes remain invariant. The two invariant vectors
of experimental interest are the shear direction referred
to above and a second invariant direction g2 which lies as
the intersection of the second invariant plane E2 and this
plane's intersection with still a third plane often referred
to as the plane of shear. The plane of shear is perpendic-
ular to the twin plane, contains the shear direction vector
g&, and will be referred to as having Miller indices A

below. Since the plane of shear contains both invariant
directions q& and qz, and since the plane of shear is per-
pendicular to both invariant planes, the plane of shear
also contains the vectors normal to each of the invariant
planes. In what follows, these two vectors are the vectors
in reciprocal space with the same indices as E& and E2.
Reciprocal-space vectors for directions will be denoted by
the addition of an asterisk; hence K& and K2 refer to
planes E, and Ez. In the same sense, the normal to the
plane of shear A is a vector A*.

Cahn' has made a detailed study of the deformation of
o.-uranium including the twinning modes. Based upon
his assessment of uranium being a low-symmetry materi-
al, he found that twins of both the first and second kinds
were present. He also found that he could identify a
compound twin and named the phenomena. His
identification is based upon the Miller indices of both in-
variant planes to have rational indices. This basis au-
tomatically assures that the two invariant twinning direc-
tions are also rational. Briefly stated, in a twin of type 1,
the twin plane with Miller indices E& and the direction
gz, which lies as the line of intersection of the invariant
plane, with Miller indices Ez, and the plane of shear;
both have rational indices. In a twin of type 2, the invari-
ant plane, Miller indices E2, and the shear direction q,
have rational indices.

In a twin of type 1, the parent and twin crystals are re-

lated to one another by a mirror image of the unit cells
across the twin plane. A suitable point-group operator
which accomplishes the generation of the twin along with
its interface is a mirror operator on the twin plane mj, .

l

Note that the subscript denotes the plane or direction
upon which the operator is based. In a twin of type 2, the
parent and twin crystals are related by a twofold rotation
along the shear direction. The point-group operator for
this twin type is 2„. Thus, the four vectors K*, , K2, g, ,

I

and g2 which all lie in the plane of shear are related to
each other geometrically by the fact that the shear direc-
tion g& must lie in the shear plane, E, , and the second in-
variant direction g2 must lie in the second invariant plane
E2.

Data on various deformation twinning observations are
compiled in Refs. 2 and 3. One may identify the various
operators which carry the parent crystal in to its twin fol-
lowing the Seitz notation for space groups. For a twin
of type 1, Cahn suggests that the two crystals are related
by a mirror across the twin plane. This would imply that
the operator for a type-1 twin is the following:

t i=l~k, I
til ~

For a type-2 twin, Cahn suggests that the twin operator is
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FIG. 1. Geometry of parent crystal.
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Crystal

Cubic metals
Si,Ge

GaSb, InSb, ZnS
Pbs

TABLE I. Summary of compound twins.

Group

Im 3m, Fm 3m
Fd3m
F43m
F43m

Plane of shear as a mirror

{110)
(110)
(110)
(110)

Hexagonal-trigonal
As, Sb,Bi

Hg
a-Zr, Zn, Mg

CaCO3, NaNO3, FeCO3

R3C
R3m

P6» mc
R3c

(1210)'
(1210)
(1210)
(1210)'

Tetragonal
KAlSi206

BSn
In

Mn304
Ti02,Sn02

I4) /a
I4/a md

I4/m mm

I4&/a md
P42/m nm

(001)'
(010)
(010)
(010)
(010)'

Orth orhombic
a-U

KNO3
CaSO4
BaSO4

Cmcm
Pbnm
Pbnm
Pnma

(001)
(001)'
(010)'
(001)'

Monoclinic
Pb4As2S7

CaMgSiz06
(NH4) 3H(SO4) 2

'Glide or displaced mirror.

P2) /m
C2/c
C2/c

(010)'
(001)'
(001)'

a 180' rotation about the shear direction as follows:

(2)

TABLE II. Glide or displacement vectors, (m„~ r) EG, .

Crystal

In these equations, the subscript on the point-group
operator denotes the plane or direction upon which the
operator is based.

To have a compound twin, both of these operators
should be altering the symmetry of the parent crystal
simultaneously. That is, the homologous points r2 and r,
between the two twinned crystals for a type-1 twin are re-
lated by

rz ——(m& ~t, )r,
I

and the analogous relation for twins of type 2 is as fol-
lows:

(4)

With the compound twin, both of these operators must
be restricting the symmetry of the twin.

Now point-group operators generally require an or-
thogonal coordinate system for easy expression. It is
indeed fortunate that a natural orthogonal coordinate
system is available herein. Namely, the vector K& associ-
ated with the twin plane is perpendicular with a vector
describing the shear direction g&. The cross product of
those two vectors defines the third direction of a logical

Hexagonal- Trigonal

As, Sb,Bi

CaCO3, NaNO3, FaCO3

Tetragonal

KAlSi206

Ti02,Sn02

Orthorhombic

KNO3

CaSO4

BaSO4

Monoclinic

Pb4As2S7

CaMgSi206

(NH4) 3H(SO4) q

(0,0,0, 2 )

(0,0,0, 2 )

(0, 2,0)

(0,0 2)
(0,0~ )
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orthogonal coordinate system denoted here as
A*=g&&(K&. The vector A' is perpendicular to the
plane of shear with Miller indices A.

Now following the operations denoted in Eqs. (3) or (4),
the two crystals, the parent and twin, are related to one
another by the space groups relating their structures. G~
is the group of the parent crystal and Gz that of the twin.

For every point deduced from r&, in the parent crystal
by the operation of the group element (g

~

r) EG, , an
analogous point in the twin is generated by the operation
of the twin operator. The relation follows:

r2 ——(a
I
t}(g

I
r)r&

(5)

If we now consider a compound twin where Eqs. (1)
and (2} describe an appropriate relation between the
parent and twin simultaneously, it seems obvious that a
compound twin must have a twin operator where rota-
tion about the shear direction and a mirror across the
twin plane both occur. This is only possible if the plane
of shear is a mirror plane. Thus, the twin operator for a
compound twin should be expressible as the following:

(a
~

t)=(2$
~
t2)

=(m„~ t2 —mt, r}(m„~r} . (6)

Now considering Eqs. (5) and (6), it is apparent that the
only way in which a compound twin is possible is when
the mirror associated with the plane of shear, Miller in-
dices A, is a member of the space group of the parent
crystal. That is, (m„~ r)CG&.

Such a hypothesis has been tested and the results are
given in Tables I and II. The twinning data, E&, K2, g&,
and qz, taken for these results appear in Refs. 2 and 3 and
are summarized in Table III; the plane of shear A is de-
duced from these results. A necessary condition for the
data to be represented is that the twin plane with
reciprocal-space vector K; is perpendicular to the shear
direction g, . The space groups of the crystals were found
in Wykoff. In some cases illustrated in Table I, it was
immediately obvious that the plane of shear was a sym-
metry plane. In others, the glide mirror needed to be
worked out as given in Table II.

Based upon the above, the following rule must be true:
The plane of shear in compound mechanical twinning

System

Cubic

TABLE III. Twinning results.

Cu and fcc alloys

W,Cr,a-Fe,Mo, Na

Gc,Si

(111)
(112)

(111)

[112]
[ill]
[112]

(111)
(112)
(111)

[112]
[111]
[112]

Hexagonal-Trigonal

As, Sb,Bi,Hg

a-Zr, Mg, Zn

CaGO&, NaNO&

FeCOg

(1012)
(1012)
(1012)

[1011]
[1011]
[1011]

(1011)
(1012)
(1011)

[1012]
[1011]
[1012]

Tetragonal

KAlS1206

P-Sn

In

Mng04

SnOz, TiOz

(110)
(301)

(101)
(101)
(101)

[110]
[103]
[101]
[101]
[101]

(110)
(101)
(101)
(101)
(101)

[110]
[101]
[101]
[101]
[101]

Orthorhombic

a-U

KNOg

CaSO,
BaSO4

(130)

(110)
(101)
(110)

[310]
[110]
[101]
[110]

(110)
(130)
(101)
(110)

[110]
[310]
[101]
[110]

Monoclinic

Pb4As2S7

CaMgSi206

(NH4) q(HISO4) 2

(101)

(100)

(001)

(310)

[101]
[001]
[100]
[130]

(301)
(001)

(100)

(110)

[301]
[100]
[001]
[110]
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APPENDIX

Some authors have adopted the idea that the genera-
tors of the twin types i, y, , for i = 1,2 are the following:

y) =2k
1

y2 ~2 ~

(A 1)

This approach leads to logical inconsistencies with exper-
imental results as follows.

We take as our basis the following well-accepted idea
that any crystal boundary generator y; fK G (G is the crys-

crystals is a mirror plane.
Other twin generators have been suggested for

mechanical twinning types 1 and 2 and are twofold rota-
tion operators. These operators lead to erroneous con-
clusions as is discussed in the Appendix. Based upon that
discussion, the above rule is unique in identifying com-
pound twinning.

=y2G =2 G =m~ m„G .
~l (A2)

The only way that m m&G =mk m„G is for
~1 1

m„,m|, EG. Then since ) &, y2EG, mz EG. This is in-
~1 I

consistent with the data in Table I. Also, the twin plane
E, is now a mirror, and this violates the known crystal
symmetry tabulated in Table III. For example, in the fcc
metals, the (111) is not a mirror plane; in Si and Ge dia-
mond cubic, the (111) is not a mirror plane; in the bcc
metals, the (112) is not a mirror plane; and so forth for all
the twin planes mentioned in Table III.

tal point group here for brevity); otherwise, no boundary
is generated and a single crystal results when y, G =G.
That y; generates a twin boundary is no exception.

Hence we must have for compound twins y, G
=y2G&G since the action of both of the twin generators
on the parent crystal must be the same. Now

y, G=2& G =mz m„G
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