Metallic doping sites in Y₁Ba₂Cu₃O₇ – δ

P. Boolchand, Chuck Blue, Khaled Elgaid, and Ivan Zitkovsky Department of Electrical and Computer Engineering and Physics, University of Cincinnati, Cincinnati, Ohio 45221-0030

Darl McDaniel Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0030

Warren Huff

Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221-0030

B. Goodman

Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221-0030

G. Lemon

Laboratory for Materials Behavior, Loveland, Ohio 45140

D. E. Farrell and B. S. Chandrasekhar Department of Physics, Case-Western Reserve University, Cleveland, Ohio 44106 (Received 13 June 1988)

Using aligned iron-doped 1:2:3 crystallites, the sign, direction, and asymmetry parameter of the electric-field-gradient tensor for the four quadrupole components of the Mossbauer spectrum have been established. Our results confirm that iron enters the 1:2:3 structure at multiple sites and specific assignments are suggested.

Metallic dopants directed at Cu sites in Cu oxide superconductors are known^{1,2} to systematically alter crystallographic, magnetic, and superconducting properties. However, to understand these changes, it is crucial to establish the site occupancy and oxygen stoichiometry of the doped materials. Several workers³⁻⁶ have reported the 57 Fe hyperfine structure in $YBa_2(Cu_1 - xFe_x)3O_7 - \delta$. The Mössbauer spectra are unexpectedly rich, suggesting contributions from multiple sites, but disentangling the possibilities has proved to be difficult.⁷ A useful step was the discovery⁸ that the hyperfine structure is very sensitive to oxygen stoichiometry. Blue and co-workers⁸ showed that these (reversible) effects can be traced to a systematic redistribution between four chemically distinct sites upon oxygen desorption (or absorption). These oxygen stoichiometry effects in the Y-based material appear to have close parallels in other rare-earth Cu oxide⁹ superconductors.

The present work places severe restrictions on the possible site configurations by establishing for the first time the sign, spatial orientation, and asymmetry parameter $[\eta = | (V_{xx} - V_{yy})/V_{zz} |]$ of the electric-field-gradient (EFG) tensor. This was made possible by use of aligned crystallites with γ rays transmitted at various tilt angles (β) relative to the aligned axis (c axis).

Alignment of YBa₂Cu₃O₇ – δ crystallites along the c axis using a magnetic field was demonstrated by Farrell et al. 10 With the same procedure, we have now aligned $YBa_2(Cu_{0.985}Fe_{0.015})_3O_7-\delta$ samples in epoxy and have confirmed their c-axis alignment by x-ray diffraction. In Mössbauer experiments, the use of single crystals¹¹ leads

to a quadrupolar doublet intensity asymmetry (I_+/I_-) , i.e., the ratio of the integrated area under the positive to the negative velocity resonance of a quadrupole doublet is no longer unity as it is in polycrystalline specimens. Room-temperature spectra of the aligned samples were taken as a function of tilt angle β in order to extract the site-specific β variation of $I_+/I_-(\beta)$. As noted previously,⁸ spectra of virgin samples (δ =0.05, possessing A, B, C , and D sites) simplify considerably upon some oxygen desorption ($\delta = 0.17$) since the C and D sites are largely eliminated [compare Figs. $1(a)$ and $1(b)$]. Taking advantage of this fact, we first obtained the behavior of sites A and B from spectra of oxygen-desorbed samples [Fig. $1(a)$] and then proceeded to sites C and D from spectra [Fig. 1(b)] of the more complex virgin samples. Using this sequence to fit the spectra, we obtained $I_+/I_-(\beta)$ trends for various sites and these are summarized in Figs. 2(a) and 2(b). Perhaps most striking is the close similarity of the behavior of sites A and C . Both start out with an I_{+}/I_{-} near 0.60 at $\beta = 0$ increasing monotonically to about 1.2 at $\beta = \pi/2$. In sharp contrast, site D displays a smaller β dependence, while the weakly populated site β displays just the reverse of the behavior of sites A and C .

Theoretically, the intensity asymmetry of a quadrupole doublet in an aligned sample derives¹¹ from angular distributions (P_{π} and P_{σ}) of the π ($\pm \frac{3}{2} \rightarrow \pm \frac{1}{2}$) and σ $(\pm \frac{1}{2} \rightarrow \pm \frac{1}{2})$ quadrupole components, the nature of the crystalline alignment, 10 and the direction of propagatic of γ rays relative to the crystal axis. Because of the small effective thickness of our aligned absorbers,¹² finite thickness effects can be ignored and the observed intensity

FIG. 1. Spectra of sintered YBa₂(Cu_{0.985}Fe_{0.015})₃O₇-₈ samples (random) in (a) an oxygen desorbed state (δ =0.17) and (b) virgin state ($\delta \approx 0.05$). Each vertical panel displays spectra of the same sample in an aligned state and examined at indicated tilt angles β in Mössbauer experiments at 300 K using ⁵⁷Co in Pd as an emitter.

asymmetries I_+/I_- are a direct manifestation of the $P_{\pi}(\theta, \phi)$ angular distributions, which are given¹¹ by

$$
P_{\pi}(\theta \phi) = \frac{1}{2} \pm \frac{1}{8(1 + \eta^2/3)^{1/2}} [3 \cos^2 \theta - 1 + \eta \sin^2 \theta \cos 2\phi],
$$
 (1)

where θ , ϕ define the γ -ray direction in the principal axis system of the EFG tensor.

Consider an Fe site which has a square-planar coordination that would result if Fe replaced a $Cu(1)$ chain site in the orthorhombic structure. Symmetry requires the principle EFG axis V_{zz} at such a site to be the local fourfold axis (i.e., the *a* axis) with V_{xx} and V_{yy} lying along the *c* and *b* axes. The EFG should be axially symmetric, i.e., $\eta = 0$. For γ rays propagating along the c axis ($\beta = 0$) at such a site, θ is always $\pi/2$ and the ratio P_{π}/P_{σ} is 0.6 from

Eq. (1). At a nonzero tilt angle β , the crystallite random orientation in the basal plane leads to $\langle \cos^2 \theta \rangle = \sin^2 \beta / 2$ and $\langle \sin^2 \theta \cos 2\phi \rangle = (3 \cos^2 \beta - 1)/2$, so that

$$
P_{\pi}(\beta) = \frac{1}{2} \mp \frac{1}{16(1 + \eta^2/3)^{1/2}} \{ (1 - \eta) [3 \cos^2 \beta - 1] \}.
$$
\n(2)

The continuous lines drawn in Fig. $2(a)$ show the ratio $P_n/P_{\sigma}(\beta)$ from Eq. (2) for several η values. A characteristic feature of the plots is their increase with β and asymmetry when $\eta = 0$, but complete symmetry when $\eta = 1$.

Consider next an EFG having its V_{zz} component directed along the c axis, as it would be for Fe replacing $Cu(2)$ layer sites that possess a square pyramidal coordination. When γ rays propagate at a tilt angle β , then, $\theta = \beta$ and

FIG. 2. Tilt-angle (β) variation of observed quadrupolar doublet intensity asymmetry I_+/I_- . (a) for sites A (O), C (\triangle), and D (\Box); (b) for site B; The smooth curves show plots of $P_{\pi}/P_{\sigma}(\beta)$ calculated from Eq. (2) in (a) and Eq. (3) in (b) for indicated η values. The broken line curves for site D and site B are merely a guide to the eye. The insets show suggested configurations of sites A, B, C , and D .

 $\langle \cos 2\phi \rangle = 0$ so that Eq. (1) gives

$$
P_{\pi}(\beta) = \frac{1}{2} \pm \frac{1}{8(1 + \eta^2/3)^{1/2}} (3 \cos^2 \beta - 1) \,. \tag{3}
$$

Figure 2(b) shows the decreasing behavior of $P_{\pi}/P_{\sigma}(\beta)$ according to Eq. (3) for the two extreme values, $\eta = 0$ and 1; note that $P_{\pi}/P_{\sigma}(0) = 3$ and $P_{\pi}/P_{\sigma}(\pi/2) = 0.6$. With these results in hand, we now consider site assignments suggested by our data.

Sites A and C. The $I_{+}/I_{-}(\beta)$ trends for sites A and C uniquely¹³ correspond to $P_{\tau}/P_{\sigma}(\beta)$ plots for $\eta \lesssim 0.20$ in Fig. 2(a), identifying the positive velocity resonance of the quadrupole doublet pairs with the π component, and implying a positive sign for both e^2QV_{zz} coupling and eV_{zz} (Ref. 14) at sites A and C . We conclude that, at both these sites, V_{zz} is positive, perpendicular to the c axis and the EFG tensor is nearly axially symmetric $(V_{xx} \simeq V_{yy})$. As discussed above, these restrictions on the EFG are compatible with Fe entering a $Cu(1)$ chain site. The positive sign of V_{zz} is readily traced to the negative oblate charge distribution of the four O^{2-} anions (in xy plane). The sharp and reversible transfer of population strength from C to A site upon oxygen desorption,⁸ is strongly suggestive that these sites represent two distinct charge states at the same location; site A : Fe³⁺ and site C: Fe⁴⁺ [see inset of Fig. 2(b)]. The isomer shift⁸ of site A is characteristic of Fe^{3+} while that of site C is similar to that of Fe^{$4+$} in SrFeO₃ (Ref. 15) and, furthermore, the sharp O stoichiometry dependence⁸ of the ratio of I_C/I_A resemble the ξ dependence of $[Fe^{4+}]/[Fe^{3+}]$ ratio¹⁵ in SrFeO₃ Since the ionic radii of Fe³⁺ and Cu²⁺ are nearly identical, the finite η value reported here for this site may reflect the inequality of $Cu-O(1)$ and $Cu-O(4)$ bond lengths. On the other hand, for $Fe⁴⁺$ which has a smaller ionic radius than $Fe³⁺$, some rearrangement of the square-planar coordination around $Fe⁴⁺$ takes place towards more symmetry as suggested by $\eta = 0$.

Site B. The $I_+/I_-(\beta)$ trend of this site [Fig. 2(b)] coupled with the rather small value of e^2QV_{zz} , suggests either a Cu(2) layer or possibly even a distorted octahedral site. a Cu(2) layer or possibly even a distorted octahedral site
The fact that $I_+/I_- > 1$ at $\beta = 0$ argues that the positiv velocity resonance be identified with the π component, so that V_{zz} is directed along the c axis and is positive linset of Fig. 2(b)]. A square pyramidal or octahedral Fe configuration can also be realized at a $Cu(1)$ chain site if the normally vacant $O(5)$ oxygen sites (along *a* axis) are populated. We label such a site as a B' site. Because the B' sites have their V_{zz} directed perpendicular to the c axis, their presence will lower the net I_{+}/I_{-} asymmetry as observed.

Site D. Two striking features of the $I_+/I_-(\beta)$ trend for this site are the smaller overall change in I_+/I_- with β and the displacement of the crossover point (where $I_{+}/I_{-} = 1$) to a smaller tilt angle in relation to site A or C trend. The former feature is the signature of a large $\eta \approx 0.6$ and the latter of a spatially anisotropic Debye-Waller factor, a point discussed elsewhere. The large η is a significant result, for it rules out symmetric cation configurations with 1, 2, 4, 5, or 6 oxygen neighbors, all of which have $\eta \approx 0$, namely, a linear (1 or 2), square planar (2 or 4), square pyramidal (5), or octahedral (6) arrangement. A threefold-coordinated Fe chain site having two $O(4)$ and one $O(1)$ oxygen neighbors will give rise to an EFG having $\eta \approx 1$. However, this particular site cannot be understood as freely forming in a chain by having an $O(1)$ or an $O(4)$ oxygen site vacant in the vicinity of site A because experiments show⁸ that site D is absent in oxygen-deficient $(\delta > 0.5)$ tetragonal samples but reversioxygen-deficient ($\delta > 0.5$) tetragonal samples but reversi-
bly appears in oxygen-rich ($\delta < 0.5$) orthorhombic samples. A natural explanation is that this site is associated with chains at (110) twin boundaries. In sintered samples twinning planes proliferate¹⁶ in the orthorhombic phase and disappear in the tetragonal phase, behavior that is also displayed⁸ by the site D integrated strength (I_D/I) . Normally, a $Cu(1)$ chain site at a (110) twinning plane is fourfold coordinated. A threefold-coordinated Fe chain site (with $\eta \approx 1$) in such a plane will result if one of the two possible $O(1)$ oxygen neighbors of the dopant is vacant, as shown in inset of Fig. 2(b). The role of twinning planes for high- T_c superconductors is of intense current interest¹⁶ and site D might serve as a twinning plane probe in bulk samples.

As with recent neutron diffraction work, 17 our result emphasize the extra information available from aligned samples and confirm that at least four distinct sites are involved for iron in the 1:2:3 structure. Since all the metal-

- 'Y. Maeno, M. Kato, Y. Aoki, and T. Fujita, Jpn. J. Appl. Phys. 26, L1982 (1987); also see Y. Maeno et al., Nature 328, 512 (1987).
- ²G. Xiao, M. Z. Cieplak, A. Gavrin, F. H. Streitz, A. Bakhshai, and C. L. Chien, Phys. Rev. B 35, 8782 (1987).
- ³C. W. Kimball, J. L. Matykiewicz, J. Giapintzakis, A. E. Dwight, M. B. Brodsky, M. Slaski, B. D. Dunlap, and F. Y. Fradin, Physica B 14\$, 309 (1987).
- 4K. Moorjani, J. Bohandy, B. F. Kim, F. J. Adrian, Y. W. Du, H. Tang, Z. Q. Qiu, and J. C. Walker, J. Appl. Phys. (to be published).
- 5E. R. Bauminger, M. Kowitt, I. Feiner, and I. Nowik, Solid State Commun. 65, 123 (1988); also see T. Tamaki, T. Komsi, A. Ito, Y. Maeno, and T. Fujita, *ibid.* 65, 43 (1987).
- M. Takano and Y. Takeda, Jpn. J. Appl. Phys. 26, L1984 (1987); also see Q. A. Pankhurst et al., J. Phys. C 21, L7 (1988).
- 757 Fe hyperfine structure in the Y-based 1:2:3 material reported in Refs. 5 and 6, analyzed in terms of three sites, requires sizeable quadrupole doublet intensity asymmetries which are unusual in randomly oriented sintered samples.
- ⁸C. Blue, K. Elgaid, I. Zitkovsky, P. Boolchand, D. McDaniel, W. C. H. Joiner, J. Oostens, and W. Huff, Phys. Rev. B 37, 5905 (1988). 57 Fe spectra analyzed in terms of four sites do not require invoking quadrupole doublet intensity asymmetries for any site. None of these sites are easily identified with the possible impurity phases Y_2BaCuO_5 and $BaCuO_2$.
- 9K. Elgaid, C. Blue, I. Zitkovsky, P. Boolchand, D. McDaniel,

lic dopants studied^{$1,2$} so far have a similar effect on the superconducting properties, it is likely that multiple sites will prove to be a ubiquitous feature of doping in the 1:2:3 system.

This work was supported by National Science Foundation Grant No. DMR 85-21005.

and W. Huff (unpublished).

- 10D. Farrell, B. S. Chandrasekhar, M. R. McGuire, M. M. Fang, V. G. Kogan, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 36, 4025 (1987); the crystallites align with their c axis along the applied magnetic field with the a and b axis randomly oriented in the basal plane.
- ¹¹P. Boolchand, B. L. Robinson, and S. Jha, Phys. Rev. B 2, 3463 (1970).
- ²The effective absorber thickness $T = n\sigma_o f$ of our aligned samples is estimated at 0.25 using the known σ_o (maximum reso-
nant cross section), the measured Debye-Waller factor $f=0.92$ at RT and n, the area density of ⁵⁷Fe in the absorbers.
- ¹³The positive sign of e^2QV_{zz} derives from the fact that for $\eta = 0$ and $\beta = 0$, $I_+/I_- = P_{\rm g}/P_{\rm g} = 0.6$. The negative sign of $e^2QV_{\rm zz}$ would require $I_+/I_- = P_{\sigma}/P_{\pi}$ which is clearly ruled out at $\beta = \pi/2$, since $I_+/I_- = 1.28$ but $P_o/P_g = 0.78$.
- ⁴The nuclear quadrupole moment *eQ* of the 14.4 keV $\frac{3}{2}$ state in 57 Fe is known to be +0.187(5) barns; R. R. Sharma, Phys. Rev. Lett. 26, 563 (1971).
- ¹⁵P. K. Gallagher, J. B. MacChesney, and D. N. E. Buchanar J. Chem. Phys. 41, 2429 (1964).
- ¹⁶M. M. Fang, V. G. Kogan, D. K. Finnemore, J. R. Clem, L. S. Chumbley, and D. E. Farrell, Phys. Rev. B 37, 2334 (1988).
- ¹⁷J. M. Tranquada, D. E. Cox, W. Kunnmann, H. Moudden, G. Shirane, M. Suenaga, P. Zolliker, D. Vaknin, S. K. Sinha, M. S. Alvarez, A. J. Jacobson, and D. C. Johnston, Phys. Rev. Lett. 60, 156 (1988).