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Classical Hall effect in two-dimensional composites:
A characterization of the set of realizable effective conductivity tensors
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After Dykhne, the classical conductivity problem in any two-dimensional inhomogeneous medi-
um is shown to be isomorphic to the conductivity problem in a family of associated inhomogeneous
media. The transformation generating this isomorphism generalizes Keller s duality transforma-
tion. For conduction in two-component media in a magnetic field, there is a transformation to a
conductivity problem with the magnetic field absent. This implies a linear relation between the
determinant and skew part of the effective conductivity tensor which, in the low-field limit, reduces
to Shklovskii s formula. A complete characterization is given of the set of all effective conductivity
tensors that are obtained as the composite geometry is varied over all possib1e configurations.

I. INTRODUCTION

In a material composed of insulating and conducting
phases the macroscopic conductivity is intimately corre-
lated with the composite geometry; it clearly depends on
whether the conducting phase is connected or not. Most
effective parameters are similarly structure dependent.
Of particular interest, however, are structure-indepen-
dent equalities or inequalities (bounds) between effective
parameters.

One well-known and illustrative example is Levin's ex-
act relation' between the effective bulk modulus and
effective thermal expansion coeScient of an isotropic
composite of two and only two isotropic phases. More
recently Hashin and Schulgasser have found a similar
type of relation for various types of polycrystalline aggre-
gates. Such relations are due to an underlying isomor-
phism between the diff'erent problems of hydrostatic
compression and thermal expansion.

Many exact microstructure independent relations are
known for conduction in two-dimensional composites or
equivalently for conduction in thin films. Keller ob-
tained an expression for the conductivity of a two-phase
composite in terms of the conductivity when the phases
are interchanged. Dykhne independently derived an ex-
act microstructure-independent expression for the con-
ductivity of an isotropic polycrystalline film formed from
a single anisotropic material. Schulgasser had the clever
idea of replacing each crystallite in the polycrystal by a
laminate of equal portions of two appropriate isotropic
phases and obtained the same result as Dykhne using
Keller's phase-interchange equality. Mendelsohn ob-
tained a more general relation which unified these results.
This relation was based on an isomorphism between any
two-dimensional conductivity problem and its dual. Oth-
er proofs of Mendelsohn's relation in a rigorous
mathematical setting were given by Kohler and Papan-
icolaou, Nevard and Keller, and Tartar. '

Separate progress was made by Dykhne" and
Shklovskii' who obtained an expression for the low-field
Hall constant of a two-phase composite in terms of the
effective conductivity in the absence of a magnetic field

and in terms of the Hall constants and conductivities of
the two isotropic phases. Later Stroud and Bergman'
noted that a uniform antisymmetric part of the conduc-
tivity tensor field could be incorporated trivially into the
general theory of conduction in an inhomogeneous medi-
um.

By enlarging upon the work of Dykhne, " we will es-
tablish an isomorphism between any given two-
dimensional conductivity problem and a whole family of
associated conductivity problems. These associated prob-
lems are each generated from the original problem by ap-
plying a special fractional linear matrix transformation to
the local conductivity tensor. Within a single framework
the isomorphism accounts for all known exact micros-
tructure independent relations for conductivity in two-
dimensional composites. In particular since the family of
associated conductivity problems includes the dual prob-
lem as a member, the isomorphism accounts for the re-
sults of Keller, Dykhne, ' and Mendelsohn. The trans-
formation is based on the simple observation that any
two-dimensional divergence-free field when rotated local-

ly at each point by 90' produces a curl-free field and vice
versa.

For composites of two anisotropic phases we use the
isomorphism to transform a problem in which the con-
ductivity tensors of the two phases are not symmetric
into a problem with symmetric conductivity tensors.
This generalizes what Stroud and Bergman' accom-
plished for the special case where the two phases have
equal skew parts of their conductivity tensors. Since an
asymmetric conductivity tensor physically corresponds to
a material in an applied magnetic field (the Hall effect
generates the skew part of the tensor) we effectively trans-
form to a problem in which the magnetic field is absent.
In the absence of the magnetic field the effective conduc-
tivity tensor must be symmetric. This applies a linear,
experimentally testable, microstructure independent rela-
tion between the determinant of the effective conductivity
tensor (with the magnetic-field present) and the skew part
of that tensor. In the low-magnetic-field limit the rela-
tion reduces to Shklovskii's formula' for the effective
Hall constant.
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The transformation leads to another important result,
namely a complete characterization of the set of all
effective conductivity tensors that are generated as the
microstructure of the two-dimensional, two-component
composite is varied over all possible configurations while
keeping the (possibly asymmetric) conductivity tensors of
the components fixed. The characterization follows
directly from the characterization obtained by Lurie and
Cherkaev' ' and Francfort and Murat' for the case
where the conductivity tensors of the components are
symmetric. Such characterizations are needed for the
solution of general optimal design problems. "

Throughout the paper we neglect quantum effects.
The conduction in each phase is modeled by the classical
continuum equations [see (2.7} and (2.8}]with continuity
of potential and flux at the interfaces between phases.
For this treatment to be justified the mean free path of
the electrons must be much smaller than the typical inho-
mogeneities in the composite.

II. A FAMILY OF SIMILAR
CONDUCTIVITY PROBLEMS

This duality transformation is a well-known result due to
Keller, Dykhne, and Mendelsohn. The same ideas
which underlie their proof of (2.5) are helpful in establish-
ing (2.3}.

To simplify the subsequent analysis, we restrict our at-
tention to periodic two-dimensional composite media,
i.e., to materials with conductivity tensors o (x) satisfying

cr(x) =cr(x+ v, ) =cr(x+ v2), Vx C }R (2.6)

where v, and v2 are primitive lattice vectors. The argu-
ments we give can be reformulated for wider classes of
composite materials such as statistical ensembles of ma-
terials or for limits of sequences of materials with succes-
sively finer microstructure' ' without altering the con-
clusions. And although composites produced in a labora-
tory are seldom periodic, the effective conductivity tensor
is perturbed only slightly if we take a suSciently large
square sample (larger than the relevant correlation
lengths in the material) and extend it periodically
throughout space.

For periodic composites the effective conductivity ten-
sor o, is calculated from solutions to the equation

j(x)=cr(x)e(x) (2.7)

cr'(x) =[acr(x)+bRj][cI+dRicr(x)]

for any choice of constants a, b, c, and d, where

(2. 1)

Two different conductivity problems, for conduction in
a medium with tensor o (x) and for conduction in a medi-
um with tensor cr'(x) can be said to be "similar" if the
electric and current fields that solve one problem can be
used to obtain a solution for the fields in the other prob-
lem and vice versa.

Here we establish that conduction in a two-
dimensional medium with a possibly asymmetric tensor
cr(x), is similar to conduction in a medium with tensor

over the set of periodic current fields j(x) and electric
fields e(x) satisfying

VXe(x)=0, V j(x)=0.
By computing the averages of these fields,

e, = ex x, j,= jx x

(2.8)

(2.9)

for at least two independent solutions, where the integral
is taken over the unit cell 0 of the composite, we obtain
the effective tensor cr, via its defining relation

(2.10}

(2.2)

is the matrix for a 90' rotation. Furthermore, assuming
that the media are macroscopically homogeneous, we will
prove their effective conductivity tensors are related via

cr', =(acr»+bRi)(cI+dR~cr, ) (2.3)

o'(x) = [R,o (x)R, ]

and its effective conductivity is

(2.4)

These results for the case where cr(x) and cr» are isotro-
pic are implicit in the work of Dykhne" and the proof
given here follows Dykhne's approach: see also the re-
marks at the end of this section.

In general transformation (2.1) will map a symmetric
tensor field cr(x) into a tensor field cr'(x) which is not
symmetric. However, if we take a =0, b =1, c =0, and
d =1 the symmetry of cr(x) will be preserved. Then a
problem with conductivity tensor o (x) and effective con-
ductivity tensor a, gets mapped to a problem with con-
ductivity

k I&[o(x)+cr (x)]/2&k+I (2.11)

for some constants k+ &k &0, the uniqueness and ex-
istence of the solutions j(x) and e(x) for a given applied
average field e, or j„and the linearity of Eqs. (2.7}—(2.9)
guarantee that the tensor cr, is well defined and unique.

The key to proving (2.3) is a simple observation ' '

that the fields

ei(x}=Rij(x), ji(x)—=Rie(x)

are periodic and satisfy

V Xei(x) =0, V.ji(x)=0 .

(2.12)

(2.13)

It immediately follows that electric and current fields

e'(x) =—ce(x)+dej(x) = [cI+dRicr(x) ]e(x),
(2.14)

j'(x) =a j(x)+bj &( )=x[ ra(xc)+bR ]e(jx)

are periodic and satisfy

When the symmetric part of the conductivity tensor is
bounded,

o', =(R,cr,Ri) (2.5) VXe'(x)=0, V j'(x)=0, (2.15)
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and are related via

j'{x)=cr'(x)e'(x), (2.16)

e', =I e'(x)d x =ce'+d Rij' =(cI+dRio, )e, ,

j', = j' x dx=a j,+bRje, = aa, +bRj e,
(2.17)

where cr'(x) is the tensor (2.1). Similarly the average
fields

While I was studying this general transformation, us-
ing the idea of successive dilations and translations of the
conductivity and inverse conductivity tensor, Tartar told
me he had independently derived this same result with
Murat. I liked their approach and have followed it in the
treatment given in (2.7)—(2.12): later I becaine aware of
Dykhne s earlier discovery of this transformation for iso-
tropic composites of isotropic conductors.

satisfy

(2.18)

III. THE TRANSFORMATION TO A PROBLEM
WITH A SYMMETRIC CONDUCTIVITY-TENSOR FIELD

where cr', is the tensor (2.3).
In summary from the electric and current fields that

solve the conduction problem with tensor cr(x) we gen-
erate via (2.14) a new set of fields that solve the conduc-
tion problem with tensor cr'(x) given by (2.1). The con-
verse is also true: the relations (2.14) can be inverted to
give e(x) and j(x) in terms of e'(x) and j'(x). Specifically
we find

e(x) =c'e'(x)+d'ei(x), j(x)=a'j'(x)+b'ji(x),

(2.19)

where

cr(x) =R(x)[X,(x)cr, +Xz(x)oz]R~(x), (3.1)

where R(x) is a field of rotation matrices giving the
orientation of the material at any point, 7& and X2 are the
characteristic functions

Consider a two-component two-dimensional composite
(or thin film) in the presence of a uniform magnetic field
of magnitude H (applied perpendicular to the film). We
assume the magnetic field generated by currents in the
composite is small in comparison with H: otherwise it is
unrealistic to assume the magnetic field is uniform. The
conductivity tensor cr(x) is thus taken to have the form

and

ei(x) =Rie'(x), ji(x)=Rij'(x), (2.20) 1, if x is in component 1

0, if x is in component 2, (3.2)

c'=c/(c'+d'), d'= —d/(c'+d ),
a'=a/(a +b ), b'= b/(a +—b ) .

and cr, and o 2 are constant tensors of the form
(2.21)

ai —Ai az

p, ' z Az pz
Hence, the two conductivity problems are similar and

their effective conductivity tensors are related via (2.3).
This result could alternatively be proved by noting the

similarity of conductivity problems (i) with cr'(x)
=kcr(x) (dilation), {ii) with cr'(x)=cr(x)+sRi (transla-
tion in the direction of Ri), (iii) with
(a'(x)) '=(o(x)) '+tRi (translation of the inverse
tensor in the direction of Ri).

The similarity property (i) is obvious and follows
directly from the linearity of the field equations, (ii) was
noted by Stroud and Bergman' and follows from the ob-
servation that V jr=0, and (iii) can similarly be proved
once it is recognized that VXei=O. Now (ii) implies
conduction with conductivity o(x) is similar to conduc-
tion with conductivity cr(x)+(b/a)Ri and from (i) this is

similar to conduction with conductivity [acr(x)+bRi]/
(c+db/a), which from (iii) is equivalent to conduction
with conductivity cr'(x) given by

(3.3)

(cr'(x)) '=(c+db/a)[acr(x)+bRi] '+(d/a)Ri

=[cI+dRio(x)][ao (x)+bRi] (2.22)

By Onsager's theorem ' a„az, P„and Pz are even func-
tions of H, while the constants A, i and A, z representing the
antisymmetric part of the conductivity tensor of each
component are odd functions of H. We will assume
A, ,&A,z. The special case where A, , =k,z is easily treated:
as shown by Stroud and Bergmann' a uniform antisym-
metric part of the conductivity tensor field can be incor-
porated trivially into the conductivity problem. Since
problems with conductivity tensor fields that difFer only
by a proportionality constant are obviously similar it
suffices to consider transformations of the form (2.1) with
a =d =1. Our aim is to adjust the two remaining con-
stants b and c so that the transformed tensor field cr'(x)
becomes symmetric. This is why it is crucial to assume
only two components are present: for composites with
more than two components it is usually impossible to find
a transformation of the form (2.1) that makes o'(x) sym-
metric. Recalling that Ri and R(x) are two-dimensional
rotations, which therefore commute, the transformed ten-
sor cr'(x) takes the form

Thus the transformation (2.1) can be regarded as a com-
position of a translation and a dilation fallowed by a
translation of the inverse canductivity tensor. Subse-
quent translations or dilations do not change the form of
the overall transformation (2.1).

cr'(x) =R(x)[1',(x)crI+Xz(x)o z]R (x),

where for i = 1 and 2,

(3.4)
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a,' —A, ,'

o,'=, , =(cr, +bR])(cI+R~o; )
i I

a, (c +b) a;P, (—b +A, ; }( c—A,;)

(c g )2+a p (b+A, , )(c —ll, ;)—a;P; P, (c+b) (3.5)

If b and c are to be chosen so cr], crz, and hence o'(x) are symmetric then clearly

a]P]=(b +A, ])(c—A]) =bc +A, ](c —b) —A,

a+2=(b +A2)(c —A2) =bc +f2(c —b) —Az .

This implies

bc =(A2h] —A]h2)/(A2 —)],] ), c b=(—h2 —d] )/(A2 —A, ] ),

(3.6)

(3.7)

where d] and d2 are the determinants of o] and o 2, i.e.,

dl all I+~] d2 a2I2+~2 '
2 2

Hence c must be a root of the equation

[(d2 h])/(~2 ~1)l [(~2hl ~lh2)/(~2 ~1)]

which has two solutions

(3.8)

(3.9)

C = (h2 —d])k[(d2 —h]) +4(A2 —A, ])(l]2h]—A]h2)]'

2(A,2
—l(, ] )

(3.10)

and the associated solutions for b are, respectively,

(d] —h2)k[(h2 —d, ) +4(A2 —l(, ])(l(,2d] —A]h2)]'b=
2(li, 2

—lI, ] )

We need to check these solution for c and b are real. To do this note that

(y —x )(y h, —x d2) & —x 2(h2 —h, ) /4h,

(3.11)

(3.12)

for any x,y, CIR and d, , h2&0. (The inequality is easily established by taking the minimum of the left-hand side over
y. ) This implies, with x =A.] andy =A,2, that

(d2 —h, ) +4(A2 —ll])(A2h] —A]d2) & (h2 —h, ) (h, —A])/h] & (h2 —h, ) a]p]/d], (3.13)

which is positive provided a] and p] are both positive.
Physical considerations imply that a;, P;, and hence h; must be non-negative for i = 1 and 2 since otherwise the com-

ponents will generate energy rather than dissipating it. Hence there exit real constants c and b given by (3.10) and (3.11)
such that ]r'(x) is symmetric, i.e., that transform to a problem in which the magnetic field is effectively absent.

When o'(x) is symmetric, the relations (3.6) imply

(c —l(,;) +a,P, =(c —A,;) +(b+A, ;)(c —A,;)=(b+c)(c—A,;),
and hence the tensors cr'] and crz given by (3.5}simplify to

a] 0
1

a2 0
I I

c —Z] o P] ' ' c-Z2 o P2

(3.14)

(3.15)

It does not matter which sign of the square root we take in the expression (3.10) for c. As could be expected the two
possible transformed problems are duals of each other. To prove this we need to show there exists a scaling constant k
such that

o '(x)=k[R]cr'(x)R1 ] (3.16}

where o '(x) is the transformed problem obtained by choosing the other root c of the quadratic (3.10). Equivalently
from (3.15) we need to show that for i = 1 and 2.
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a; 0
=k(c —A, , )

{.—g l

1/P;

1/a, (3.17)

which clearly holds if and only if

=k.
cc —A,;(c +c )+A,;

From the formulas for the sum and products of the roots of the quadratic (3.9) we have

cc A;—(c+, c ) = [(A]lk2 —A2b ] ) —A, ;(h2 —6])]/(A2 —A])= —6;= —a;P; —A,

C—
I

and assuming that a;,p; are non-negative we have

(52—g]) +4($2 —A])(A2iI]] —g]/2) —[]I]2—5]+2/, (A] —A2)] =4(A2 —g]) (g,. —g, )=4(g2 —g]) a,.p,. &0 .

Hence, (3.18) is satisfied with k = —1. Thus, the two possible transformed problems are duals.
The two prefactors 1/(c —A, ] ) and 1/(c —A,2) in (3.15) necessarily have the same sign. To see this note that

~2 ~1+ ~i(~l ~2)—[(~2 ~1) + (~2 ~1)(~2~] ~1~2)]
A,

2(A, 2
—A, ] }

(3.18)

(3.19)

(3.20)

(3.21)

a, —A.,
tr, =R, TR, , (3.22}

where R, is a rotation matrix determined by the orienta-
tion of cr, . Since the effective tensor

Hence, in the above expression for c —A, ; the term with
the square root will be larger in magnitude than the
preceding term. Therefore, c —A, ] and c —A,2 will both be
positive or both negative depending on whether A2 —A, ] is
positive or negative and on whether we take the positive
of negative square root. By if necessary multiplying both
cr

&
and crz by a negative scale factor, say k = —1, we ob-

tain a conductivity problem in which the components
have positive semidefinite conductivity tensors. Thus the
transformed problem is physically realistic whenever the
original conductivity problem is physically realistic. In
practice this means we could design experiments to mea-
sure the effective tensor cr', of the transformed problem
and then use cr', to compute cr, .

We will now prove that u* satisfies a microstructure
independent identity. Let us represent cr, in the form

a, /(c —A, „)
0

I Tcr, =R, p, /(c —A,„)
Let us suppose cr', is known from experiment or numeri-
cal calculations and that we want to determine cr, . The
eigenvectors of a', obviously determine R, . Now let

(3.27)

a', =a, /(c —k, ),
p', =p, /(c —A, „)

(3.28)

(3.29)

denote the eigenvalues of cr~. From (3.24) and (3.29) we
have

a, = ( b +A,, ) Ip', , (3.30)

pure component 1 to pure component 2 at fixed magnetic
field (h„A., ) should trace out a straight line in the (h„A, )

planejoining (d],A]) with (52,A2). When only one com-
ponent, say component 1, is present in the composite
then clearly 6'=h, „and A, '=A, ] irrespective of the mi-
crostructure of the polycrystal.

By analogy with (3.15) the effective tensor o', is given

by

g ', =(tr „+bR])(cI+R~o') (3.23)

must be symmetric because cr& and crz are both sym-
metric, it follows by analogy with (3.6) that

which when substituted in (3.28) implies

A,,=(a',P', c b)l(1+a', P', ) .—

Substituting this back in (3.28}and (3.29) gives

(3.31)

a,p, =(b +A,, )(c —A,, ) =bc +A, „(c b)—
From (3.7) this relation has the equivalent form

h, (A,2
—A, ] ) =h](A2 —A,, ) —b 2(A, ]—A,,),

where

h„=a,p, +A.,

(3.24)

(3.25)

(3.26)

a, =a', (b +c)l(1+a'„p'„),

p, =p', (b +c)/(1+a', p', ) .

(3.32)

(3.33)

These three equations (3.31)—(3.33) together with a
knowledge of R, completely determine cr, once cr~ is
given.

is the determinant of cr, . Presumably it should be possi-
ble to experimentally test (3.25) over a range of micros-
tructures and applied magnetic fields. As the volume
fractions of the components are varied continuously from

IV. A COMPLETE CHARACTERIZATION
OF THE SET OF POSSIBLE EFFECTIVE TENSORS

Our goal is to determine the set of all effective tensors
o, that can be obtained as the microstructure of the
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two-dimensional, two-component composite is varied
over all possible configurations while keeping the tensors
cr& and ez fixed. Actually we have nearly achieved this
objective. The results of Sec. III imply cr, is a realizable
effective tensor amongst composites of cr, and crz if and

only if cr', is a realizable effective tensor amongst compos-
ites of o', and crz. Hence, from the characterization, ob-
tained by Lurie and Cherkaev' ' and Francfort and Mu-
rat, ' of the set of all possible tensors cr', of composites
built from two phases that have symmetric tensors a'] and
o 2 we can easily obtain the set of all possible tensors cr, .

To describe the set of possible effective tensors cr', let
us assume, without loss of generality, that

a', &P', )0, az)P2&0, a', &P', )0,
a2p2 & aIpI

(4.1)

(4.2)

where the a'; and p,' for i =1, 2, and e are the eigenval-
ues of the o,'. (This may necessitate relabeling of the ei-

genvalues and of the components. } With these assump-
tions cr', is an effective tensor of some microgeometry if
and only if

a,'=a;/(c —A,;), p,'=p;/(c —A,;), (4.8)

where c is given by (3.10). Since we are free to choose ei-
ther root of the quadratic (3.9) as a solution for c let us
for concreteness take c as the largest root; this ensures
that both c —A, ] and c —A2 are positive as established in

the paragraph following (3.21). We suppose the eigenval-
ue of the symmetric part of cr,

' for i =1, 2, and + have
been labeled so that

layers and the volume fractions of the components are
adjusted according to the value of the product a', p', .
Similarly the bound (4.5) is realized when the crystal
eigenvectors that have largest eigenvalue, i.e., a', or a2,
are aligned normal to the layers. All other tensors cr',

compatible with (4.3}and (4.4) or (4.5) can be realized by
forming a polycrystal from this lancinate that attains the
bound (4.4) or (4.5) and that has the same product
a', p', =deter', : see Lurie and Cherkaev' ' and Francfort
and Murat. '

From (3.15) and (3.27) the eigenvalues of o,' for i =1,2,
and e are related to the invariants of cr; via the equations

a',p', & a',p', & a2p2, (4.3) a, &P»0, a2&P2&0, a„&P,&0, (4.9)

and at least one of the inequalities

p (p2 pl }& a]p](p2 p } a2p2(p] p

a', p', (a2 —a', ) & a',p', (a2 —a', ) —a2p~(aI —a', )

is satisfied. In the well-ordered case,

(4.4)

(4.5)

a2p2/(c —A.2) & a,p, /(c —A, ]) (4.10)

where we have assumed on the basis of physical con-
siderations that these eigenvalues are positive (or at least
non-negative}. Further let us suppose that components
have been labeled so that

(a]—a~)(P'] —P~) & 0, (4.6)

it suffices to check if (4.3) and (4.4) hold since (4.4) is
weaker than (4.5), while in the badly-ordered case

(a', —a2)(p', —p2) &0, (4.7)

it suffices to check if (4.3) and (4.5) hold since (4.5) is
weaker than (4.4).

For any fixed a~P', in the range (4.3) the lower bound
(4.4) on p'„ is realized when the two components are lay-
ered together. The crystal eigenvectors that have small-
est eigenvalue, i.e., p'] or p2, are aligned normal to the

I

h, (A2 —A, ] ) =h](A, 2
—A, , ) —62(A, ]—A, ,), (4.11}

a,p, /(c —A, ]) &a,p, /(c —A,, ) &a2p2/(c —kz)

(4.12}

and at least is one of the inequalities

Under these assumptions the eigenvalues of the
transformed tensors rrI, o 2, and o', satisfy (4.1) and (4.2).

Hence, by substituting the relations (4.8} in (4.3)-(4.5)
we deduce that cr, is an effective tensor of some micro-
geometry if and only if

a,p, [p2(c —A, ] ) —p](c —A2)]/(c —A, , ) & a]p][p2(c —A., ) —p„(c —A2)]/(c —A, ] )

a2p~[p](c —A,, )—p, (c —A, ] )]/—(c —A2),

a,p, [az(c —A])—a, (c —Az)]/(c —A, , ) & a]p][a2(c —A,, ) —a, (c —Az)]/(c —A])

—a2p2[a](c —A., ) —a, (c —A] ) ]/(c —A2),

(4.13)

is satisfied where c given by (3.10) is the largest root of
(3.9). Of course the same laminate microgeometries that
realize the bounds (4.3)—(4.5) also attain these
transformed bounds (4.11)—(4.13).

When the volume fractions f, and fz
——1 f, of the-

components are prescribed the set of possible symmetric
effective tensors cr', is reduced. The resulting set has not
been characterized except when both components are iso- & 2(a2 —a', ) '+f, /a', , (4.14)

l

tropic, i.e., when p', =a', and pz ——az. In this case Lurie
and Cherkaev and Tartar and Murat have established
that u', is an effective tensor of some microgeometry if
and only if a', and p', satisfy both the lower bound
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V. SOME RESULTS FOR ISOTROPIC COMPOSITES
OF TWO ISOTROPIC CONDUCTORS

When the components and the composite are isotropic,
i.e., p, =a, , p2

——az, and p, =a„ the tensors cr], o z, and
cr, can be represented by points

o, =a, +i A„cr2
——, a2+i A, 2, cr „=a, +iA,(5.1)

in the complex plane. The idea of this representation is
due to Tartar and Murat (private communication) who
noted it is particularly appropriate b-cause Rz has the
same algebraic properties as i, satisfying Rz ———1. The
transformation (2.1) from the isotropic rr tensors to the
isotropic cr' tensors is thus equivalent to the fractional
linear transformation

o'=(atr+ib)/(c +ido ) (5.2)

in the complex plane, where a, b, c, and d are real. These
fractional linear transformations clearly map the imagi-
nary axis onto itself. [Conversely any fractional linear
transformation mapping the imaginary axis onto itself
can be expressed in the form (5.2) with real constants a, b,
c, and d].

Any pair of points that are symmetrically placed about
the imaginary axis remain symmetrically placed after the
transformation. Hence, the preimage of the real axis is a
circle centered on the imaginary axis, intersecting it at
the two points cr= —ib/a and cr=ic/d. (These points
get mapped, respectively, to tr'=0 and cr'= oo. ) When
a =d = 1 the equation of this circle is clearly

a +(A, +b)(A, —c)=0. (5.3)

and the upper bound

f][(a2 a—', ) '+(a', —p', ) ']

& 2(a& —a', )
' f—, /a2, (4.15)

where we have assumed that az) a', . The bounds are at-
tained when the composite is an assemblage of coated el-
lipses when confocal inner and outer surfaces: the coated
ellipses are aligned and identical to one another up to a
scale factor and must range to the infinitesimally small to
fit all space. The lower (upper) bound is attained when
we take ellipses with a core of component 2 (component
1) surrounded up a coating of the other component. By
varying their eccentricity we obtain composites of vari-
ous degrees of anisotropy. For isotropic composites with
a', =p', the bounds (4.14) and (4.15) correspond to the
Hashin-Shtrikman bounds and the microgeometries that
achieve them are the Hashin-Shtrikman coated circle as-
semblages. Lurie and Cher kaev and Braidy and
Pouilloux found that simple second rank laminate
geometries also suf5ce to attain the bounds.

Hence, cr, is an effective tensor of some composite
with prescribed proportions f, and f2

= 1 f, of the tw—o
isotropic components if and only if the identity (4.11)
holds and the inequalities (4.14) and (4.15) hold where a'„,
p'„a'„and a2 are given by (4.8) and c is the largest root
of the quadratic (3.9).

From this viewpoint the determination of the constants b
and c is equivalent to finding a circle centered on the
imaginary axis that passes through cr, and cr2. Once the
circle is found any possible isotropic effective tensor o,
must lie on it because its image point cr', necessarily lies
on the real axis between cr& ——a', and crz ——az. In the
(h, A, ) plane the circle corresponds to the straight line
(3.25) which has the equivalent form

b2 6, —a2 —a„+A2—A, ,2 2 2 2

a,'—a']+ A,
',—A, ]

(5.4)

Experimental measurements are usually in terms of the
elements of the resistivity tensors p = cr ' rather than the
conductivity tensor cr. The resistivity tensors p&, p2, and

p, of the components and composite can likewise be
represented by points

P &

——y &+ t'V&H, P2 y2+ i+2» P*=y*+i~.» (5.5)

in the complex plane, in which y, (H), y2(H), and y3(H)
are the transuerse magnetoresistances and r](H), r2(H),
and r, (H) are the Hall constants. ' These measured
parameters are related to the elements of the conductivity
tensors via

y;=a;/(a;+A, ;), r, = —A, , /H(a;+A, , ) (5.6)

and this relation holds irrespective of the strength of the
magnetic field H. In the low-field limit, H~O, the Hall
constants and magnetoresistances approach constant
values, and (5.7) implies

r2(0) —r, (0) y2(0) —y, (0)

y~(0)' —y ](0)'
(5.8)

This is precisely the same result which Shklovskii' de-
rived following the work of Dykhne. " Later Bergman
gave an alternative and simpler derivation. Thus, the for-
mula (5.7), which needs to be experimentally verified,
generalizes Shklovskii's result to large magnetic fields.
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for i =1, 2, and e.
For isotropic composites the duality transformation

(2.4) reduces to the reciprocal transformation o''=o
Hence, any general result which holds for conductivity
tensors must also apply to resistivity tenors. So by analo-

gy with (5.4) we have

r2(H) —v, (H) y2(H) —y, (H) +H [r2(H) —r, (H) ]
r2(H) —r](H) y2(H) —y, (H) +H [v2(H) —r](H) ]

(5.7)
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