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Large-scale spatial inhomogeneities in a long Josephson junction, where fluxons may be trapped,
allow the existence of stable periodic dynamical regimes locked to the external frequency or twice
this frequency, and biased with a very weak external current. These regimes lead to an abrupt cutoff
located at the bottom of the zero-field step in the corresponding current-voltage characteristics.
Such an easily detectable effect strongly suggests an experimental verification of this phase-locked
soliton dynamics.

I. INTRODUCTION

The phase lock of a long Josephson junction (LJJ)
biased on zero-field steps (ZFS) to an external microwave
Seld has been extensively studied. ' Indeed, shuttling
fluxons (quanta of magnetic flux) generate a periodic leak-
age of energy resulting in emission of a very narrow
linewidth of electromagnetic radiation at the shuttling
frequency (and its harmonics) at either end of the
LJJ. " Therefore, they can be considered as potentially
interesting parametric oscillators, provided that the out-
put power of such a LJJ oscillator is not too low. Unfor-
tunately, in the case of a single device the output power
Po is of order of only a few picowatts.

Hence, the idea of building a series array of n phase-
locked LJJ's appears as a natural way to overcome this
serious limitation for practical applications, since it is
known that the total emitted power grows as n Po, while
the linewidth decreases as n '. ' Recently, eight LJJ's
locked together exhibited a 15 dB amplification while the
predicted value is 17 dB. The corresponding emitted
power exceeded 10 nW. '

The usual experimental procedure involves dc-biasing
the coupled junctions, whose coherent locking, due to
their mutual exchange of electromagnetic radiation, leads
to the observation of superradiant states. ' ' The dc
biasing may be the same for all junctions (series array) or
independent for each one. The interest of this last bias
configuration is that it allows frequency adjustment. For
example in the case of a two-junction device, both fre-
quencies may be adjusted in order to detect the coherence
between the two LJJ's in their mutual exchange of pho-
tons.

Moreover, the I-V current-voltage characteristics of

the (array of) junctions is one natural way to compare the
physical states corresponding to the locked and the un-
locked regime from an experimental point of view', by
looking at the I-V characteristics of a LJJ biased on the
second ZFS with and without an external microwave sig-
nal generating a 50 MHz interval of coherence, Cirillo
and Lloyd concluded from the very small differences be-
tween the shapes of the two characteristics that only a
tiny amount of radiation power was needed in order to
lock the junction over a frequency interval of roughly
0.7%%uo of the LJJ oscillation frequency.

Hence, the dc biasing of the array of coupled junctions
is convenient, from an experimental point of view, for
detecting basic properties of the locking processes. Is it
necessary from a theoretical point of view? In other
words, do phase-locked regimes exist where the external
dc bias is either zero or very weak (i.e., a few percent of
the critical current)? This paper addresses this question.

If the answer is affirmative, the corresponding I-V
characteristics should look like a slightly distorted one
for "high" dc values (typically more than one tenth of the
critical current), with an abrupt vertical cutoff at the
voltage values corresponding to the phase-locked regimes
at small dc bias (see Fig. l).

The main technical question that arises it the very pos-
sibility of obtaining a fluxon in such regimes. In absence
of any inhomogeneity in the LJJ able to trap the fluxon, a
fluxon in unstable with respect to a zero-bias state (it is
attracted toward either end of the LJJ and is annihilated
there because of the presence of the damping). One pos-
sible way to overcome this difhculty could be to reach the
zero-dc states starting from the intermediate part of the
I-V characteristics corresponding to roughly half of the
critical current in the chosen ZFS, and then decreasing
the bias.
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FIG. 1. Current-voltage characteristic corresponding to the
following choice of parameters [see definitions in Eq. (2)]:
L=40, a=-20, b=0.095, E=0.1, 0=0055, P, =104. The volt-

age U, defined by Eqs. (12), was found fairly uniform inside of
the junction, for —10& Y(10. The fluctuations within this re-

gion were less than 10 '. Therefore the value U plotted here is

obtained by Eq. (12a) and averaged over this central area. Actu-

ally, the voltage value (12a) found at both ends Y =+20 of the
LJJ is approximately half the above value U. The dashed curve
is the ZFS; X=(4a/ir)(U/A, }[1—U'/A~] '~i where 1 =0 157 is.

the scaling factor allowing a comparison of g( U) with the corre-
sponding unperturbed (a =b =c=a =0) ZFS.

We have first performed numerical simulations using
the following (reduced) partial difFerential equation
(PDE), which is known to describe in an acceptable way
the physics of the damped, driven fiuxon dynamics inside
of an homogeneous LJJ "s'

FIG. 2. The phase-plane trajectory of an initial antikink ob-
tained by a direct numerical simulation of the PDE (1) where:
L=40, s=0.2, 0=0.06, p, =104. This trajectory —displaying a
quasi-periodic bouncing of the antikink against the right end of
the LJJ at the frequency 20, alternatively following the internal
and to the external branch —is obtained by plotting the soliton
velocity Y vs the position Y for the time values ranging from
t=500 to t=1500.

periodic bouncing of the fluxon against the right junction
end, between the normalized time values 500 and 1500.
The thickness of the lines means a slow detuning between
the fluxon oscillations and the periodic external field,
leading to instability of this phase-locked regime.

Quite different is the situation if a large scale (com-
pared to the Josephson penetration depth) inhomogeneity
is present in the LJJ. More precisely, introducing a
"Josephson-current-density potential well" in the PDE
[Eq. (1)] (as well as the very weak constant bias), ' one
obtains

@«—4„„+sin@= s cos( Qt +8)— 1
(la) 4« —4„„+[1+—,

' V(x ) ]sin@=X+s cos( Qt +8)

with (2a)

4„(kL/2) =0, (lb)

where the external microwave field amplitude s is in units
of the maximum Josephson current density, the corre-
sponding radiation frequency 0 is in units of the LJJ
plasma frequency, P, is the McCumber number, the time
t and the position x —as well as the LJJ length I —are
respectively given in units of the reciprocal of the plasma
frequency and in units of the Josephson penetration
depth. We have not yet been able to obtain stable asymp-
totic fiuxon dynamical regimes coherently locked to (har-
monics of) the external field. Although there are indica-
tions that such regimes may develop (see Note added in
proof), the ranges of the parameters s, Q, O,P„L, are
sharply peaked on particular values. These values allow
an unstable regime phase-locked to 2Q (if one considers
the frequency of the fluxon bouncing against the LJJ
end}. In Fig. 2, the thick trajectories obtained by a direct
numerical simulation of Eq. (1) display a slowly changing

where we assume

V(x)=a [1—sech(bx}], L

(2b)

4(x, O) =4tan 'exp( —ayx),
U2) —i/2

kink: cr = —1; antikink: 0 =+1,

(2c)

(2e}

located, say, at the middle of the LJJ (or, equivalently at
the bottom of the potential well), with almost any initial
velocity v satisfying

This leads to a clear asymptotic phase-locking to half of
the external frequency Q of an initial (anti)fluxon
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0&v &1. (2f}
~ 8

The locking domain in the I Q, X) plane is approximately
0.03&0&0.07 versus 0&7&0.03. There is no doubt
that phase-locked soliton dynamics to —,'0 exist for very

weak external bias. A typical corresponding phase-
locked cycle in the fluxon phase space I Y, YI, where Y is
the fluxon position defined as 4„(Y ( t },t }=maximum
and Y =(—4, /4„)„„is the flux velocity, is shown on
Fig. 3. The thick dotted line indicates the (asymptotic)
trajectory of the fluxon performed within one period
T =2mQ ' of the external periodic field, while the thin
dotted line shows the trajectory corresponding to the
next period. Therefore, the Poincare mapping of such a
phase-locked cycle is reduced to a coupled of points. The
labeling of the cycle displayed in Fig. 3 allows under-
standing of the resonant process which leads to phase
locking. Indeed, Fig. 4 sketches the driving force that
the fluxon actually experiences (note that a reflection at
either end of the LJJ changes the sign of o and, hence,
the sign of the driving force, since the fluxon here is basi-
cally Newtonian. ' ' Figure 5 illustrates the correspond-
ing trajectory in the trapping potential. The process is
resonant because the driving force is always synchronized
with the Buxon motion.

II. A THEORETICAL MODEL

The theory which explains these results makes an ex-
tensive use of the collective-coordinate description of
reference. ' Indeed, it was shown that a sine-Gordon SG
(anti)kink trapped in a (harmonic) potential may be de-
scribed by a single degree of freedom, namely the soliton
position Y(t}

4s(x, t) =4tan ' expI —o k [x —Y(t)]],
where
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FIG. 4. The fluxon driving force, defined as the rhs of Eq. (5)
vs time, corresponding to the trajectory ABCDEFG displayed
on Fig. 3.

k =k[Y, Y]=
[1+—,

' V( Y)]

(1—Y )
(3b)

P =8kY . (4b)

Clearly, the soliton dynamics is Newtonian when relativ-
istic efFects are discarded, i.e., when k —1. Adding the
dissipative term —P, ' 4, in the PDE (2a) results in the

The corresponding equation of motion of the quasi-
soliton (3) is obtained by means of the classical Hamil-
tonian theory in the case P, = ac, and reads

~ dv
kP = — +2mo k [e cos(Qt +8}+g],

dY

where P is the canonical momentum:
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FIG. 3. The asymptotic phase-locked cycle obtained either

by a direct numerical simulation of the PDE (2) or by the nu-

merical solution of the ODE system (5,7,10,11), where L=40,
a=20, b=0095, s=0.1, 0=0045, P, =10,X=001. The cycle
was obtained for 15000& t &20000. The trajectory ABCD is

described during one period of the external field, while the tra-

jectory DEFG is described during the next period.
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FIG. 5. The trajectory ABCDEFG of Fig. 3, displayed in the

following energy diagram: soliton energy Hs [minus the rest en-

ergy equal to 8: cf., Eq. (9)] vs soliton position Y. The continu-
ous line displays the potential well (2b) where a=20 and
6=0.095. Here L=40.
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(5)

where k is given by (3b}. Note that, assuming e=X
=P, '/2=0 leads to

Y= —
—,'(1 —Y ) in[1+ —,

' V(Y)],

which emphasizes the nonlinear "potential-saturation-
effect" at high-energy values, due to the log function: for
instance, if V( Y)=~Y, the force on the soliton is pro-
portional to —Y ' for large values of Y and small veloci-
ties.

Equation (5) is a second-order ordinary difFerential
equation (ODE) which describes the dynamics of a
periodically driven and damped nonlinear oscillator. Its
configuration space t Y, Y, t I may therefore exhibit reso-
nances and chaotic regions. Actually, the cycle displayed
in Fig. 3 is an example of such a resonance in which the
frequency of the cycle and the frequency of the external
field are in a simple commensurate ratio, namely —,'.

Due to the non-Hamiltonian dynamics described by
the original PDE (2a) (P, g + ~ },the collision between a
soliton and an antisoliton —or, equivalently, the
reflection of a (anti)soliton at either end of the LJJ where
the square of the plasma frequency is approximated to
1+—,'a [cf. Eq. (2b}]—is inelastic and displays both a
"phase shift:"

1/2

Y+ =sgn( Y} —+2, ln
~

Y
~

L (1—Y}
2 1+4a

(7)

(where Y+ means the value of Y immediately after the
reflection at Y =kL /2), and an energy loss approximate-
ly equal to

dissipative term P—, '/ kP in the rhs of (4a), and leads to
the final equation of motion of the (anti)fluxon

~ - —1 VY=
8k2 dY

1 —Y
[2~o [X+E cos( Qt +8)]—8P, '/~k YI,

Moreover, differentiating (9) with respect to Y and equat-
ing the result to b,H given by Eq. (8) leads to the follow-
ing expression of the change of the soliton velocity at the
reflection

Y + = [—Y]r=+I, /2 (11)
4+P, (1+—,'a) Y

Equations (7), (10},and (11) model the inelastic boundary
conditions of the soliton PDE Eqs. (lb) and (2), when the
soliton dynamics is approximated by the ODE Eq. (5).
The numerical simulations of these PDE and ODE equa-
tions are in excellent agreement and, for instance, the
asymptotic cycle shown on Fig. 3 is recovered up to a
high accuracy by the numerical solution of the ODE sys-
tem (5), (7), (10), and (11) (see Fig. 6). Note that the
reflections occur for soliton velocities close to one, in
agreement with approximation (8).

III. ADDITIONAL COMMENTS

(1) In the "locking region, " all cycles are not locked to
2Q. Actually, some are locked to Q, and consist in a sin-

gle loop inside of the potential well, followed by a
straight return [cf. Figs. 7(b) and 7(c), for +=0.02 and,
respectively, Q=0.035 and Q=0.04]. Moreover, for a
given value of the (small} bias, I, the increase of the driv-
ing field frequency 0 allows a transition from a 0-locking
regime (simple loop) to a —,'Q-locking regime (double

loop); see Figs. 7(a)-7(f). Clearly, these single-looped cy-
cles are not as stable as the double-looped ones (consider
for instance the qualitative arguments sketched by Figs.
3—5}. This may be the reason for the relatively small
number of such cycles found in the locking domain of the
phase space.

(2) When the external bias X exceeds a certain "high"
value —typically P & 0.05 for the range of the parameters
which are considered in the present paper —the locking
to the periodic field disappears; there is no loop at all in
the configuration space and the fluxon dynamics become
trivial (perturbed} shuttling dynamics. More complicated
phenomena may then occur if geometrical resonances are

227T

[P (1+ io)]1/2
(8)

for a single soliton having a velocity close to one (which
is being checked a posteriori). ' ' ' Assuming that the
value of the potential in the neighborhood of either end
of the junction is almost constant and equal to a [cf. (2b)],
the soliton energy in these regions is

1/21+—'a
Hs I

~ r) &L,n=8
1 —Y

(9)

0-

The soliton annihilation occurs for low velocities when
the kinetic energy 4Y (1+1/4a)' is less than the ener-
gy loss hH. We obtain the following threshold reflection
velocity: 20 Y 20

p
—1/4

[2( 1+—,'a )]' (10)
FIG. 6. The comparison between the numerical solution of

the ODE system (5,7,10,11) (solid line) and the PDE system
(1b,2) (dotted line) for the same parameters as in Fig. 3.



11 288 G. REINISCH et al. 38

then made possible between the shuttling frequency—
basically determined by X and P, —and the external
periodic field frequency. However, such phenomena re-
quire higher bias values and are out of the scope of the
present paper.

(3) Comments one and two both lead to a truncated
ZFS at low bias values, which is illustrated on Fig. 1 for a
typical choice of the parameters (P, =10, 0=0.055,
a=0.1, a=20, b=0 095., and L=40). Since the original
PDE soliton dynamics is correctly modeled by the ODE
system (3,5,7,10,11), the averaged voltage U at a given
point X =X' is calculated according to the following for-
mulas:

i y=x —ix=x

=—f sech[/(X'}] —g(X') —okY dt,=2 T k
T 0 k

(12a)

where 4 is given by (3), and

g(X') =o.k (X' —Y), (12b)

k—=Y
k y2 8 1+-,'V~ 2+— (12c)

while Y is given by Eq. (5) and Vz ——d V/d Y
=ab sech (bY)sinh(bY). The results vary according to
the choice ofX'. Then a spatial average is made between
characteristic values corresponding to several X'.

The transition to a chaotic unlocked regime when the
system just leaves the locking domain is illustrated on
Fig. 8. It seems to occur via a period-doubling cascade-
bifurcation process. This important result, which has to
be compared with those of Refs. 22 and 23, is only pre-
liminary and will be detailed in a next paper.
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FIG. 7. A sequence of limit cycles for fixed bias field P and

increasing external frequency Q, which are phase locked either

to z Q [(a),(d),(e),(f)] or to Q[(b),(c)]. Note the peculiar sophisti-

cated cycle displayed on (a). The parameters are L=40, a=20,
b=0.095, e=0.1, P, =104, 7=0.02. (a) —(f), respectively, corre-

spond to the values of Q equal to 0.03, 0.035, 0.04, 0.045, 0.047,
0.049, 0.051. All cycles were obtained by the numerical simula-

tion of the ODE system (5,7,10,11) between time values 17000
and 20000. These trajectories were checked by direct numerical

simulations of the PDE system (1b,2).

FIG. 8. A sequence of limit cycles obtained by Fernandez,
Goupil, and Reinisch (Ref. 24) from the numerical solution of
the ODE system (5,7,10,11) for fixed external field frequency 0
and increasing bias values 7, clearly displaying a period-
doubling route to chaos. The parameters are L=40, a=20,
b=0095, a=0.1, P, =10, Q=0055. (a) —(f), respectively, cor-
respond to values of P equal to 0.023, 0.027, 0.0271, 0.0272,
0.0273, 0.0274. These trajectories were checked by direct nu-

merical simulations of the PDE system (1b,2). A fully chaotic
state, described by a strange attractor in the phase space I Y, Y],
is obtained for g =0.03.
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Note added in proof. By considering an ac bias current which is spatially modulated, according to a=e(x) = eocostcx,
Fernandez, Grauer, and Reinisch have obtained a single stable "c cycle" similar to the trajectory displayed in Fig. 2.
The parameter ~ was chosen according to the resonant condition for the external microwave field: v=0, while the
length L was equal to half of the wavelength 2m. /~. A11 other parameters were as indicated in Fig. 2.
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