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A theory of the longitudinal electron spin susceptibility X, for an antiferromagnetic superconduc-
tor (AFS) has been given. For the AFS, we have assumed a homogeneous superconducting order
parameter and a one-dimensional electron band that satisfies the nesting condition ei, ———ci,+&,
where Q is the wave vector characterizing the antiferromagnetic (AF) order. First we have studied
the dependence of g, on the scattering rates for the scattering of conduction electrons from the non-
magnetic, spin-orbit, and magnetic impurities by regarding H& as a parameter and neglecting the
spin-fluctuation effects (H& is the AF field). The effect of impurities is found to be significant. Then
we have investigated the temperature dependence of X, by taking TN & T, and by including the
spin-fluctuation effects and the temperature dependence of the AF field (T& is the AF ordering tem-
perature and T, is the superconducting transition temperature). The aim has been to see if g, is
enhanced or depressed by the AF ordering occurring below T&. We find that (1) P, increases with
the increase in scattering rate from spin-orbit impurities both above and below Tz, (2) keeping other
parameters fixed, the enhancement or depression of g, below T& depends on H&(0)—there is
enhancement (depression) when H()(0) is larger (smaller) [H&(0) is the zero-temperature value of
H&]; (3) nonmagnetic impurities have a dramatic effect on X, in the AF phase. For cleaner (dirtier)
superconductors, X, is enhanced (depressed) below TN, (4) in SmRh4B4, one expects a depression in
X, by the AF ordering.

I. INTRODUCTION

In the past few years, the problem of the coexistence of
superconductivity and antiferromagnetism has been ex-
tensively studied both experimentally and theoretically
(for reviews see Refs. 1-6). On the experimental side the
above coexistence has been established in the ternary
compounds RMosSs and RRh4B~ (where R denotes
a rare-earth element} and in pseudoternaries
Ho(Ir„Rh, „)~B4 and Ho(Ru„Rh, „)4B4 and several
other materials. On the theoretical side a few different
models have been proposed for antiferromagnetic super-
conductors '" (AFS), and the one given by Nasa et al. '

has been developed in most detail. In Ref. 12, a mean-
field (MF) theory of AFS was given by introducing the
antiferromagnetic (AF) molecular field into the Bardeen-
Cooper-Schrieffer' (BCS} theory of superconductivity.
Some impurity and spin-fluctuation effects in AFS using
the above model were discussed in Ref. 13. The effect of
homogeneous magnetic field on AFS was considered by
Suzumura and Nagi. ' The effect of nonmagnetic impuri-
ties was investigated by Okabe and Nagi. ' A theory of
upper critical field in AFS was given by Ro and Levin. '

Some thermodynamic properties in the presence of non-
magnetic impurities were studied by Suzumura et al. '

The MF model has been put in the Eliashberg formalism
by Prohammer and Schachinger. The tricritical curve
in an AFS with nonmagnetic impurities was discussed by
the present authors. ' Finally, the present authors used
the physical model given in Ref. 12 and by including the
impurity and spin-fluctuation effects explained the
enhancement in the Josephson tunneling current and the

superconducting order parameter by the AF ordering ob-
served in SmRh4B4 by Vaglio et al.

In the AFS, the antiferromagnetism is associated with
the f electrons of the rare-earth atoms and the supercon-
ductivity is due to the 1 conduction electrons of Mo or
Rh. The exchange interaction between the R spins and
the conduction electrons is weak, but plays a crucial role
in determining the coexistence of antiferromagnetism and
superconductivity, The coexistence phenomenon is aided
by the fact that the wave vector Q of the AF ordering is
much larger than the inverse of the superconducting
coherence length.

The study of the longitudinal electron-spin susceptibili-
ty X, for an AFS is important for understanding the coex-
istence of superconductivity and antiferromagnetism as
X, is sensitive to above both kinds of long-range orders.
X, for a BCS superconductor was calculated by Yosida.
He found that superconductivity has a drastic effect on
X, : X, vamshes exponentially as the temperature T ap-
proaches zero. The important effect of spin-orbit scatter-
ing on P, was investigated by Ferrell, Anderson, and
Abrikosov and Gor'kov. It is found that in the pres-
ence of this scattering, 7, remains finite at T=O. The
vanishing of X, at T=0 for a pure BCS superconductor is
connected with the fact that the states of such a super-
conductor are classified according to the eigenvalues of
the total spin. However, in the presence of spin-orbit
scattering centers, the state of the system can no longer
be characterized by the eigenvalues of the spin, and this
results in the nonvanishing of X, at T=0. The magnetic
impurities break the time-reversa} symmetry of the elec-
tron system and thus modify 7, significantly. This prob-
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lem was studied by Gor'kov and Rusinov and by Maki
and Fulde. The nonmagnetic impurities have no effect
on the 7, of an ordinary superconductor.

For an AFS, the creation of the AF molecular field H&
below the AF ordering temperature Tz would have a
significant effect on the longitudinal electron-spin suscep-
tibility. The 7, would also be modified by the magnetic,
spin-orbit and even the nonmagnetic impurity scattering.
Thus, it is of interest to give a theory of 7, for an AFS in-

cluding the effect of various kinds of impurities. Such a
study has been carried out in the present work. When
discussing the temperature dependence of X„we have
also included the effect of the elastic spin-fluctuations and
the temperature dependence of H&. X, for a pure AFS
has been studied in Refs. 30 and 31.

The plan of the paper is as follows: Section II gives the
formalism. In Sec. III, the general expression for 7, is
derived and its limiting cases are given. Section IV de-
scribes a model for including the effect of elastic spin fluc-
tuations. Numerical results are given in Sec. V. Section
VI is a summary.

II.FORMALISM

&&exp[i(k —k )'R}] . (2.6)

The index g refers to the nature of the impurity. For
g=1,2,3, one has nonmagnetic, magnetic, and spin-orbit
impurity, respectively. That is

0 '(k, k') = Ui (k —k'), (2.7a)

0 (k, k' ) = U3 (k —k')(g J—1 }J' rr,
k k'

0 (k, k')=U„(k —k')i .o .
F

(2.7b)

(2.7c)

Here gJ and J' refer to the case of impurity and kF is the
Fermi wave vector.

The superconducting order parameter 6 coming in Eq.
(2.2} is determined self-consistently by

characterizing the AF order. The quantity H""' de-
scribes the scattering of a conduction electron from the
spin fluctuations and will be considered later. The Harn-
iltonian describing the interaction of conduction elec-
trons with impurities is

H; =—g g 0 "(k,k')„Ci, „ci, „
k, k' q, y, v

The Hamiltonian of the system in the absence of im-
purities is given by

a=g g &c „,c„,&,
k

(2.8)

H =Hgcs +Hex

with

Hi3cs=Xeici, Ci, —~X(ci,tc-i, i+H c }
k, a k

H,„=——~gj —1
~ g J, cr„„ci,„ci,. „

k, k'

(2.1}

(2.2)

where g is the BCS coupling constant and the angular
brackets denote the thermal average. We will take b, as
real.

We introduce the finite-temperature Green's function

Gi i (r)= —&TT[ei( w'i (0)]& (2.9)

having an eight-dimensional base with

&&exp[i(k k —)R';] . (2.3)
Ck+Q t &C —k —Q i» k+Q t»c —k —Q &

) (2' 0)

HMF +Hfluc
ex (2.4)

Here H,„" represents the mean-field approximation to
H,„:

H,„"= Hg ger(ci, +Q Ci,—+H.c.),
k, cr

(2.5)

where o =+1 corresponds to the electron spin up and
down, H& is the AF molecular field, g is the wave vector

Here Hzcs is the BCS Hamiltonian, which is responsible
for the occurrence of superconductivity, and H,„de-
scribes the exchange interaction between the conduction
electrons and the rare-earth ions. Further, ck is the
single-particle energy measured from the Fermi surface,
Ck is the creation operator for the conduction electron,
a, p, and v are spin indices, 6 is the superconducting or-
der parameter, J; is the total angular momentum opera-
tor of a rare-earth ion at site R;, I is the exchange in-

teraction constant, gJ is the Lande's g factor, a is the
conduction electron spin operator.

The Hex is rewritten as

H,„=H,„"+(H,„H,„")—
with

E~ =T(E) + Ei +Q) &

4 =
2 (ei —si +Q }

(2.12}

(2.13)

where ~„ is the Matsubara frequency [i.e., co„=aT(2n
+ 1), with T as temperature and n as an integer]. Further
o;, p, , and r; (i=1,2,3) are Pauli matrices operating on
the ordinary spin states, the electron-hole states, and the
positive- and negative-momentum states, respectively.

In order to write the Green's function in the presence
of impurities, we assume that the impurities are random-
ly distributed and that their concentration is low enough
so that the impurity-impurity interaction is negligible. If
a general three-dimensional electron band is taken, the

and T, as the ordering operator for the imaginary time ~.
In the absence of impurities and within the mean-field

approximation, the Green's function is given by

egp3 e&»r3p3 ~p2rr3+HQ rip3o 3 }

(2.11)
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self-energy (averaged over the impurity positions and
their spin directions) can be evaluated only numerically.
However, the calculations can be done analytically if one
takes a one-dimensional electron band that satis6es the

nesting condition EQ — EQ+Q that is, c., =0 and c., =a&.
We make this assumption in order to bring out the essen-
tial new results of the present study. Then, within the
self-consistent Born approximation, we have

eke» ~nP2~2+I+nr»I~I++{?n IP3~3)

1 1
+( ++IPI~I )+ek(+3P3 r2P2+I)+~n+(P2+2 rlP3+3)1

n+

1+ g liI0 —(1 +IPI~I)+Ek(r3P3+ 2P2+I )+~ —(P2~2+ IP3+3)f
n—

(2.14)

+nk ~ nk+k+~ n+ &

h„~——h„kHg„.
The quantities co„+ and E„+are determined by

COn + @n-
COny =Q)n + Yy + Fg

+ 2i,

(2.15)

(2.16)

(2.17)

(2.18}

Further, N(0) is the density of single-particle states at the
Fermi level in normal metal for single spin.

Defining U„+——6„+/b, „+,one can combine Eqs. (2.18}
and (2.19) to give

1
~n =(~+H{?)Un++(X7 Un+ 7 n+ }+ 2(U„'++1}'"

1+sgn(h„)(X+ U„z —Y+ U„}
2( U2 + 1)l/2

n-
hkH{?+——X~ +X~

2k+ 2- '

(-2 +g 2 )I/2

Xa =F2+F3

~a =S&+g4

(2.19)

(2.20)

(2.21)

(2.22)

with

sgn(b, „)= '
sgn(U„) for co„)0,
—sgn( U„) for co„&0,

U„~( —co„)= —U„~(co„) .

(2.30)

(2.31a)

(2.31b)

1 1 1 1
g] + +

2
(2.23) The order-parameter equation is written by following

standard procedure. ' We have

1 1 1
g2= +

2 i
SO

1 1 1
g3= +

2 T) 37sP

1

3'

(2.24)

(2.25)

ln =mTT
Tc0

1 1

(U2 +1)1/2

sgn( U„)
( U2 + 1)I/2

1 1 1 1
g4= + +

3~so

—=2m.nil(0) f ~
U, (k —k')

~

1 dQ
+1 4m.

—,=2mn2N(0) J'(J'+ 1)(gJ—1)
1

X2

x f i U, (k —k') i',

(2.26)

(2.27)

(2.28)

(2.32)

with T,o (2ycoD/n) e——xp[ —1/gN(0)]. Here coD is the
Debye cutoff frequency, lny is Euler's constant
(=0.57721. . .), and T,o is the transition temperature of a
superconductor with H& ——0 and having no impurities.

HI. THK ELECT+ON-SPIN SUSCEPTIBILITY

=2wn, N(0) f ~
U„(())

~
sin (8),dQ

(2.29)
A. General expression

where n „n2, and n3 are the concentration of nonmag-
netic, magnetic, and spin-orbit impurities, respectively,
and 1/~, , 1/v.z, and 1/~ are the scattering rates for
scattering of conduction electrons from these impurities.

Here we calculate the general expression for the longi-
tudinal electron-spin susceptibility for an antiferromag-
netic superconductor. We have
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X, (co) =—X, (co)=X,*'(in)„) i; (3.1) m =ps g O'Ck Ck
k, a

(3.3)

X, (ice„)=f dr( T m, (r)m, (0) )e
0

with 5=0+ and m, as the magnetization given by

(3.2)
where pii is the Bohr magnetron. Using Eqs. (3.2) and
(3.3} in Eq. {3.1) we obtain

X, =X,(0)=alii dr g cro''( T,Ck (r)Ck ~(r)Ck. .(0)Ck (0)) .
1/T

k, k', e,e'
(3 4)

In order to proceed further, it is convenient to intro-
duce a 4)(4 Green's function matrix

0 '= Ul (k —k')p3,

0 =U2(k —k'}(gJ —1)J' a,
g„k (r)= —( T,[y„(r)ytk (0)]),

with

(3.5)
0 = U„(k—k')i ap3,, . (kxk')

kF~

a= —,'(1+p3)a+ ,'(1 —p,)o—2oo2 .

(3.9)

k
——(Ck },C k iCk tC k 3) . (3.6)

Now X, involves the thermal average of the product of
four electron operators. This average can be decomposed
in terms of the product of above Green's function. In the
presence of impurity scattering, one obtains

The Green's function gi,

(iaaf„)

is a subset of the Green's
function introduced in Sec. II. It is easily obtained from
Eq. (2.14) and we have

1 1
gk(i~n) (i~n++ekp3+~n+P2a2}

n+

x — 2@aT y y $ Tr[p3o 3gk{ie3 )(p3a3)„gk(i~ }] 1+ (in —+ekp3+~n —P2a2)

(3.7) (3.10)

where gk(ice„} is now the impurity averaged Green's
function and (p3o3)„represents the renormalized vertex
function given by

Now we proceed to calculate (P3o3), from Eq. (3.8).
Evaluating the right-hand side by putting (P3cr3)„=p3I73
and using Eqs. {3.9) and (3.10) we find that (pio3), has
the matrix form

(P3~3)r P3~3 X nY/ y~ {k k }gk'(i~n )(P3~3)r
k' (P3o3),=FPH3+'iEP, a, . ' (3.11)

Xgk (iso„)0"(k',k), (3.8) Substituting this form in Eq. (3.8), we obtain coupled
equations for F and E as

where r} refers to the nature of the impurity and n„ is the
corresponding impurity concentration. For g = 1,2, 3,
one has nonmagnetic, magnetic and spin-orbit impurity,
respectively. In 4)&4 notation

F=1+B)F+B2E,
E=B3E+B4F,

where

(3.12)

(3.13)

B
1
—,'(H, H2) ri++ —ri + [1+(1—U„+U„)'9'+ vl' I,„]2f) 26' Ei+p

(3.14)

B2 ———,'(Hi H2)—U„+ri+ U„ ii ( U„++U„)
2

+
2

+
Ei E,2 6]+K2

9+ 9— sn (3.15)

2E, i 2E2 6)+E2
(3.16)

0, +a,
84 —— B2

1 2

(3.17)



38 THEORY OF THE ELECTRON-SPIN SUSCEPTIBILITY IN. . . 11 263

In the above equations

1 10 =——
T1

1
H2 ——

3T2

(3.18a)

(3.18b)
~$7rT= 1 — g [D4 4(—H, +H2 }D3)P,

n CO

(3.23)

Using Eqs. (3.10) and (3.11) in Eq. (3.7) and performing
the momentum summation using the standard procedure,
we obtain

n*=(1+U'~) '

I,„=sgn(b,„),
~

(@z +g2 )i/z
)

2 +g2 }i/2~

(3.18c)

(3.18d)

(3.18e)

(3.18f)

where X„=2p&N(0) and

g+D4= +

+ [1+(1—U„+U„)r/~~ r/' I,„) .
~1+2

(3.24)

Using Eqs. (3.12)-(3.18) we obtain

2 2U„+g+ U„F= 1 —n(Hi+Hg) +
261 2E2

+ [1—(1—Un+ Un
1

81+62

The quantities e, and e2 are given by Eqs. (3.18e) and
(3.18f) and can be rewritten by using Eq. (2.19). We have

(Q+H )r/ i/2+ + X r —i/2~i/2 (3 25)

~ ~1/2~i /2I ] P e= (5 H)r/—' + X + r/'2 Q (3.26)

Un+a+E= ,'(H, +H~—} +
281 262

where

II ++ 9+ 9— snI P
1+ &2

P =[1 n(HiDi+H2Dz)+(Hi H2)D3]—
1 1 2+ +

261 2F2 61+6'2

D~ = ( U„'+ —1)+ ( U„—1)
2E1 262

n+ n-} in in
61+E2

t ( U.. U. }'n.r/-1

6461''2

+2[1—(1+U„+U„)pi+/'r/i/'I, „][ .

(3.19)

(3.20)

(3.21)

(3.22a)

(3.22b)

(3.22c)

X. =1 nT g —[D4 4(H, +H2)D3—]P .
X„ n)0

(3.27)

B. Limiting case: H ——0

In this case, U„+——U„=co„/b,„, g+ ——r/

=(U„+1) '=g, I,„=l, D, =2/s, D2 ——2r/(U„—1)le,
D3 ——0, D4 2r/le, and——

(3.28)

Further,

P= 1—1 1

2E T1 , (U„'—l)r/
3T- 3T2

(3.29)

Using these values in Eq. (3.27) we obtain

Using Eqs. (2.31), one sees that e„e2, D, , D2, D3 D4,
and P are symmetric under the interchange co„~—co„.
Then Eq. (3.23) is rewritten as

2U„+ 1

U„+1
+ (3.30}

which agrees with Eq. (132) of Ref. 32. For 1/rz ——0 and
1/T, =0, respectively, above equation was derived in
Refs. 27 and 28.

IV. MODEL FOR SPIN-FLUC:I LJATION EFFECTS

In Ref. 22 we explained the enhancement in the super-
conducting order parameter and the maximum Josephson

current by the AF ordering observed in SmRh484 by in-
cluding the spin fluctuations as described below. The
same model will be used in the present study. We take
T, & Tz and our purpose is to see if the electron spin sus-
ceptibility is enhanced or depressed by the AF ordering
occurring below TN. As the inelastic scattering from
spin fluctuations is relevant only for T far below T~, we
include only the elastic scattering with the scattering rate
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obtained as

1 T) TQ

1.0

1

;(T) 1 ((J') —(J)')
J(J+1)

In writing the above, we have

~
(J) [

=
~
(J, )

~
=[J(J—1)]'~ F(T). Further,

R=2mn N(0)(g~ —1) I J(J+1) .

(4.1)

used

(4.2)

O
&I

o 0.5
O ~
X

X
r

i I

l0 20

The function F( T) also describes the temperature depen-
dence of the staggered field with

Hg( T) =Hg(0)F( T),

Hg(0) =n~I
) gj —1

)
[J(J'+1)]'

F( T) may be modeled as

TF(T)=1-
TN

(4.4)

(4.5)

1 1 1

eff &i & (T)'r2 r2
(4.6)

The effect of spin fluctuations in the calculation of the or-
der parameter and the spin susceptibility can be easily in-
cluded by replacing 1/rz by 1/~z in the various equations
derived in Secs. II and III.

an e pad th parameter v can be obtained from the experimen-
ftal data. In above the quantity nz is the concentration o

rare-earth ions in the AFS and 1/r2 is the scattering rate
of the conduction electrons from these ions for T g T~.
For T~TN, the scattering rate becomes temperature
dependent and its value decreases with the decrease in
temperature (as the magnetic moments become more and
more frozen).

In order to also include the effect of magnetic impuri-
ties in the system we introduce the effective magnetic
scattering rate

FIG. 1. The normalized longitudinal electron spin suscept~-
1'1' X /7 (solid curve) and the normalized order parameter1 1ty, „S
d /hp (dashed curve) as a function of 1/v.

leap

for T/T p= . an
H /Ap =0.3 {1) 0.8 (2) and 2.0 (3) and with 1/T = 1 /Tp =0.
Here X„and hp, respectively, are the normal state spin suscepti-
bility and zero-temperature order parameter for a BCS super-
conductor in the absence of impurities.

self-consistently. Newton's method was used to solve Eq.
(2.30). Then we find U„+ again from Eq. (2.30) and calcu-
late X, /X„by using Eqs. (3.27), (3.18), (3.21), (3.22), and
(3.24) —(3.26). Our results are shown in Figs. 1 —4.

Figure I shows the dependence of X, (solid curve) and
(dashed curve) on 1/r, b,o for T/T, o 0.5 and——

H /50=0. 3, 0.8, and 2.0, and with 1/r„= 1/rz ——0.
Here T,o and 60, respectively, are the values of the tran-
sition temperature and the zero-temperature order pa-
rameter in the absence of 8& and the impurities. e
note that for H&/b. o=0.3, one has superconductivity
when 1/r, =0. With the increase in 1/r„, A(X, ) increases
(decreases) initially and then saturates. For H& 5 =0.8,
there is no superconductivity up to 1/r&50-1.4. Increas-

I.O

V. NUMERICAI RESULTS

A. General

First we give our results by regarding H as a parame-
ter and neglecting the spin-fluctuation effects. Our aim is
to study the dependence of the longitudinal electron-spin
susceptibility 7, on the scattering rate for scattering of

~ ~conduction electrons from the nonmagnetic, spsn-orbit
and magnetic impurities. The dependence of X, on H&
will also be given. As our purpose is to investigate the
superconducting state, the dependence of normal state
s in susceptibility on H& is not considered. The numeri-
cal rocedure consists of two steps. First we calculateca pr
the order parameter 6 by solving Eqs. (2.30) and ( .

Oc:
X

~ 0.5
X

IO

I

&so &o

I5
i/v h,

20

30

FIG. 2. g, /g„as a function of 1/z, Ap with T/T, p=0. ,=0.1

1/~& ——1/~ =0 and 0&/5p fixed at 0 (1), 0.8 (2},and 2.0 (3). In1/&p ——1/Tl= p an
the insert, 5/4p is plotted vs 1/~„hp fox the same set of param-
eters.
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ing the scattering rate, the quantity b,(X, ) increases (de-
creases) sharply and then saturates. For H&/bp ——2.0,
the superconductivity starts near 1/~, ho-10.8. Increas-
ing the scattering rate the behavior of 6 and 7, is similar
to that for the case of Hg/Do=0. 8 except now the initial
rise (fall) of b, (X, ) is much slower. For a large fixed value
of 1/~, hp, X, is more when H& is more. This can be un-

derstood by the fact that in the short mean-free-path lim-
it, there is an effective pair breaking parameter given by'
Hgri/b, p.

The effect of spin-orbit impurity scattering on X, is
quite interesting and is shown in Fig. 2. We have taken
T/T, p 0.1, ——1/r, =l/r'2 0——, and H&/bp=O, 0.8, and
2.0. The dependence of b, on 1/r„hp for the same set of
parameters is shown in the insert. The dependence of 7,
on 1/r b p for the case of H&/b p=O (BCS superconduc-
tor) is already known in literature. When H&/b, p=0.8,
g, curve exhibits a sharp minimum. The spin-orbit im-

purity scattering affects X, in two opposite ways. Firstly,
it increases b, from zero and this is responsible for the ini-
tial sharp drop in X, . Secondly, it increases X, by the
process of spin Sipping as it does in a BCS superconduc-
tor. The minimum is a result of the interplay of these
two mechanisms. For H&/b, p=2.0, the X, curve shows
only a shallow minimum.

In Fig. 3, we show the dependence of 1', and 6 on
1/r'2bp. We have taken 1/~„=0, T/T, p =0.1,
1/r, ho=15, and H&/bp=O, 0.8, and 2.0. One notes that
X, increases as 1/Tzkp is increased from zero. This be-
havior is due to the pair breaking nature of the magnetic
scattering. The sharp increase in X, is related to the
sharp decrease in b, .

In Fig. 4 we have shown the dependence of 7, and b
on H&lbp by taking 1/r2 ——I/r =0, 1/ribp ——15, and
T/T, p=0.5. At H& ——0, X, has the BCS value. X, in-

creases with an increase in H until the superconductivi-
ty is destroyed by the molecular field. Comparing the
two curves, one notes that the increase of X, results from
the decrease of b, . The increase (decrease) of X,(h) is due
to the fact that now H& and 1/w, both contribute to pair
breaking.

1.0—

o 05—
0

X

I

1.0
Hp/b, p

I

2.0

FIG. 4. X, /X„(solid curve) and 6/60 (dashed curve) as a
function of H& /6p with T/T, p ——0.5, 1/r&Lp ——15, 1/r&
= 1/r =0.

B. Temperature dependence of 7,

"=U. 1- '
(U +1)'/2 (5.1)

ln
T
c0

1 1 1=27rT
( U2+ 1 )

I/2 (0
(5.2)

I.O

Here we give our results by including the spin-
fluctuation effects and also by including the temperature
dependence of the staggered field. In Fig. 5, X, is plotted
as a function of temperature. We have taken
I/rz ho=0.45 and Tz/T, p=0. 1. For temperatures be-
tween T~ and T, (paramagnetic phase: H& ——0), Eqs.
(2.30) and (2.32) reduce to the AG equations

0
Cl

CI

I.O

(

0 C
X
& 0.5-
X

o 05—
0 C=

X

X

O. I 0.2 O.3 0.50.4
I

&Z &0

FIG. 3. X, /Q (solid curve) and b/60 (dashed curve) as a
function of 1//Hb p with T/T, p

——0.1, 1/r&hp=15, 1/r =0, and

H& /hp fixed at 0 (1),0.8 (2), and 2.0 (3).

0
I

O. I

T /Tco

I

0.2

FIG. 5. J', /g„as a function of T/T, p. We have taken
1/rq kp=0.45 and TN/T p=0. 1 ~ Above value of 1/r2 6p corre-
sponds to T, /T, p ——0.24. For curves (1)—(3), 1/r2 ——0,
1/r&Ap= 10 Hg(0)/Ap= 2.0, and 1/r„hp ——0.5, 2.0, and 5.0, re-
spectively. Curve (4) has same set of parameters as curve (2) ex-
cept that now H&(0)/bp ——2.4. Curve (5) has 1/r2 5p ——0.35 and
1/rzhp ——0.10 and the other parameters are same as for curve
(2). Here 1/r2 is effective magnetic scattering rate defined in
Eq. (4.6) and H&(0) is the value of the staggered field at T=0.
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When 6—+0, the above equations lead to AG T, equation

T.
ln

cO

=g( —,')—g —+ (5.3)

I.O

0.8—

Xs
X„

0.6—

0.4—

0.2—

I

0.2
I l

0.4 0.6
T
Tc

I

0.8 I.G

FIG. 6. 7, /g„as a function of T/T, . We have taken
1/rz ——0, 1/028 0

——0.4 (then T, /T, 00.355}, T~ /T, =0 5, .
1/~~60 ——0.2, H&(0)/50= 2.0, v=4. Defining 1/~= 1/r&

+ 2/3~„, the quantity 1/~50 ——7.5, 8.0, 12.0, and 30.0 for curves
(1)-(4), respectively. The curve marked AG is the extension of
the paramagnetic phase curve into the AF region.

where P(z) is the digamma function and I/rz is the
effective magnetic scattering rate defined in Eq. (4.6). In
this temperature range, b, and T, do not depend on I/r,
and I/i„. Equation (5.3) gives T, /T, o 0.2——4 when

I/vz 60 0——45 . W. e take 1/rz ——0 so that I/rzho 0 4——5.
The susceptibility I, /X„ is obtained from Eq. (3.30) with
I/rz replaced by I/~~&. Curves (1)—(3) correspond to
above value of I/rz b,o and I/~~ho=0. 5, 2.0, and 5.0, re-
spectively. For the antiferromagnetic phase (T&T~),
Eqs. (2.30)—(2.32), (3.18), (3.21), (3.22), and (3.24) —(3.27)
must be used with I/~z' replaced by 1/r2 . Now I/~z and
the staggered field are temperature dependent as given in
Sec. IV and the values of I/r, and Ht, (0) are also
relevant. We have taken I/w, ho ——10, H&(0)/50=2. 0,
and v=4 for curves (1)—(3). From these curves, we see
that X, increases with the increase of I/r both above
and below T~. Curve (4} has the same set of parameters
as curve (2) except that now H&(0)/60=2. 4. Comparing
these two curves, one notes that whether 7, is enhanced
or depressed by the AF ordering depends on H&(0}. X, is
enhanced (depressed) when H&(0) is larger (smaller). For
curve (5) we have I/x&ho=0. 35 and I/rzh0=0. 10 and
the other parameters are the same as for curve (2). One
observes that in the AF phase, the 7, values given by
curve (5) are larger than given by curve (2). This happens
because now a part of the effective magnetic scattering is
coming from the magnetic impurities whose pair break-
ing effect is not suppressed in the AF phase.

In Fig. 6, we show the dramatic influence of nonmag-
netic impurity scattering rate on the temperature depen-
dence of X, in the AF phase. We have taken 1/rz ——0,
I!rz60=0.4 which gives T, /T, 0=0.355. Further,

T~/T, =0.5, Hg(0)/50 ——2.0, v=4 0., I/r„bo ——0.2.
Defining I/v=1/vi+2/3r„, the quantity I/rho —7—5,.
8.0, 12.0, and 30.0 for curves (1)—(4), respectively. The
cleanest superconductor corresponds to curve (1) and the
dirtiest corresponds to curve (4). The curve marked AG
is the extension of the paramagnetic phase curve into the
AF region. We note that for the cleaner superconductors
[curves (1) and (2)] the susceptibility X, is enhanced by
the AF ordering (with respect to the AG curve), whereas
for the dirtier ones [curves (3) and (4)] there is a depres-
sion in g, below Tz. The order parameter 6 used to cal-
culate X, was evaluated by us in Ref. 22, where it is
shown as Fig. 1. It may be observed that the enhance-
ment (depression) in X, below T~ happens in those cases
where b is depressed (enhanced). In SmRh484, b, is
enhanced by the AF ordering. Thus, for this material,
one expects a depression in X, below Tz.

VI. SUMMARY

We have presented a theory of the longitudinal
electron-spin susceptibility 7, for an antiferromagnetic
superconductor. In Sec. II, the single-particle Green's
function for the conduction electrons has been written by
treating the exchange interaction between the conduction
electrons and the rare-earth ions within the mean-field
approximation and by assuming a one-dimensional elec-
tron band that satisfies the nesting condition c&

———ci,+&.
The order-parameter equation is also given. The effect of
impurities have been included in the formalism. In Sec.
III, the general expression for g, has been derived and
the limiting case when H& ——0 is considered. Section IV
described a model for including the spin-fluctuation
effects. Numerical results have been given in Sec. V and
are shown in Figs. 1-6.

Figures 1-4 give our results by regarding H& as a pa-
rameter and neglecting the spin-fluctuation effects. The
effect of nonmagnetic impurities is shown in Fig. 1. The
general result is that with the addition of nonmagnetic
impurities, the value of X, (for H&&0) is initially
depressed and then saturates. Figure 2 shows the depen-
dence of X, on the spin-orbit scattering rate I/r„The.
spin-orbit scattering influences the AFS in two ways.
When H&&0, it weakens the effect of the AF field which
is responsible for the enhancement of 6 and the depres-
sion in 7, . Secondly, it increases X, by the process of
spin flipping. The interplay of these two mechanisms re-
sults in a minimum in the g, versus I/~ curve (when

H& & 0.4960}. Figure 3 shows the effect of magnetic im-

purities on g, . Here the pair breaking nature of the mag-
netic scattering dominates. The dependence of 7, on H&
is shown in Fig. 4. 7, increases with the increase of H&.
This increase is due to the fact that now H& and 1/~&

both contribute to pair breaking.
The temperature dependence of g, is shown in Figs. 5

and 6. Here the spin-fluctuation effects and the tempera-
ture dependence of the staggered field are included. We
have taken Tz&T„and our aim is to see if 7, is
enhanced or depressed by the AF ordering occurring
below T~. In the paramagnetic phase (TN & T & T, ), X,
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depends on the scattering rates for scattering of conduc-
tion electrons from the spin-orbit and magnetic impuri-
ties and also from the magnetic rare-earth ions. Now U„,
5, and T, are determined from Eqs. (5.1)—(5.3) and X, is
obtained from Eq. (3.30) with 1/rz replaced by 1/r'2

defined in Eqs. (4.6}. In the antiferromagnetic phase
(T(Tz), Eqs. (2.30)—(2.32), (3.18), (3.21), (3.22), and
(3.24) —(3.27) must be used with 1/r'2 replaced by 1/rz .
Now 1/r2 and the staggered field are temperature depen-
dent and the values of 1/r, and H&(0) are also relevant.
The main results of Fig. 5 are that: (1) I, increases with
the increase in 1/~ both above and below Tz', (2) The
enhancement or depression of X, by the AF ordering de-
pends on H&(0)—there is enhancement (depression)
when H&(0) is larger (smaller). Figure 6 shows that the
nonmagnetic impurities have a dramatic effect on the

temperature dependence of X, in the AF phase. For
cleaner (dirtier} superconductors, I, is enhanced
(depressed) by the AF ordering occurring below TN. In
SmRh4B4, one expects a depression in X, below T~ as 6
is enhanced by the AF ordering.

Our results regarding the dependence of 7, on the con-
centration of nonmagnetic, spin-orbit, and magnetic im-
purities at a fixed temperature (Figs. 1 —3), on the temper-
ature dependence of X, (Figs. 5 and 6), and on the expect-
ed depression in X, below Tz for SmRh4B4 need
verification in future experiments.
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