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The temperature dependence of the dynamic form factor, S(Q,co), of liquid He at p =20 bars has
O —]

been determined by inelastic neutron scattering measurements. Two wave vectors, Q =1.13 A
O —]

and Q =2.03 A, corresponding to the maxon and roton regions of the phonon-roton dispersion
curve, were studied over a wide range of energy transfer, Ace. Based on previous data at SVP,
Woods and Svensson proposed that S(Q, co) could be represented as a sum of two components, one
proportional to the superfluid density, ps(T), and one proportional to the normal density p&(T).
The component proportional to ps(T) contained the sharp one-phonon peak which vanished at
T= T~. The aim here is, firstly, to present data on the temperature dependence of S(Q, co) at 20
bars and, secondly, to explore whether or not the Woods-Svensson decomposition of S(Q, co) holds
at higher pressure. At 20 bars and for the Q values investigated here, we find that the sharp peak of
S (Q, co) does indeed decrease rapidly in intensity as T increases and the corresponding excitation ei-

ther vanishes or changes abruptly in character at Tz. The sharp nature of the one-phonon peak Tq
does therefore appear to be associated with superfluidity or a Bose condensate at these Q values.
However, the weight of the one-phonon peak does not scale as ps( T) and subtracting a contribution
proportional to p„(T) from S(Q,co) leads to negative values of the superfluid component of S(Q, co)

at low co. Thus S (Q, co) at 20 bars does not naturally separate into a part proportional to ps and one
proportional to pN. %'e also explore the consequences of a simple subtraction of the multiphonon
component, assumed temperature independent, as an alternative method of extracting one-phonon
parameters from the total scattering intensity. The values of the one-phonon properties such as the
frequency and the lifetime obtained by the simple multiphonon subtraction method also show a
marked change at Tq.

I. INTRODUCTION

The dynamics of liquid He has been investigated'
by inelastic neutron scattering over a wide range of
momentum (fiQ) and energy (fico) transfer beginning with
the pioneering experiments of the late 1950's. The dy-
namic form factor, S(Q, co), may be obtained from the

0
observed intensity. For Q 5 3.6 A ' and at low tempera-
tures ( T= 1.1 K), $(Q, co) has a single sharp peak at fre-
quency co=co(Q) superimposed on a wide "multiphonon"
continuum. This peak is identified as the collective
"phonon-roton" excitation in the Auid density originally
proposed by Landau. At low Q (Q (0.5 A ) most of
the scattered intensity is in the one-phonon peak. As Q
increases the one-phonon intensity Z (Q) increases until it
reaches a maximum in the roton region (Q = 1.92 A at
SVP). The multiphonon intensity continues to grow with
Q until it dominates the intensity. At /=3. 6 A the
sharp peak disappears and for Q) 3.6 A ' liquid 4He
responds like a gas of weakly interacting atoms. The dy-
namic form factor S(Q, co) is then a broad function
peaked slightly below the free-atom recoil energy,

fico„=ft Q /2m.
The purpose of the present paper is to explore the tem-

perature dependence of S(Q, co). In spite of extensive ex-
perimental' ' ' and theoretical' study, the tem-
perature dependence of S(Q, co) is not well understood.
The results of Woods and Svensson" (WS) suggested that
the sharp component of S(Q, co) usually identified with
one-phonon excitations is unique to the superfluid phase
and somehow associated with the existence of a Bose con-
densate. They also proposed a two-component model for
S(Q, co) in which the one-phonon peak has a weight pro-
portional to the macroscopic superfluid density pz(T),
and hence disappears at T&. We are thus led to the fol-
lowing questions: Does the sharp peak in S(Q,co) also
disappear or change abruptly at the superfluid transition
temperature Tz at higher pressures? Is the weight Z(Q)
in the sharp peak proportional to the superfluid density
pz(T), as found by WS at SVP'? Is S(Q, co) also largely
independent of T for T ) T&? To address these questions
we have carried out neutron scattering studies of liquid
He at @=20 bars and several temperatures above and

below Tz. We chose two wave vectors, Q=1.13 A ' and

38 11 229 1988 The American Physical Society



11 230 TALBOT, GLYDE, STIRLING, AND SVENSSON 38

Q=2.03 A, corresponding to the maxon and roton re-
0

gions of the phonon-roton dispersion curve. The position
of the sharp peak [the phonon energy A'co(Q)] is quite
different at these two Q values and sits at a quite different
position relative to the maximum of the corresponding
broad multiphonon background. This difference in posi-
tion is a help in separating the one-phonon peak from the
broad background. Measurements under applied pres-
sure are interesting because the relative weights of the
one-phonon and multiphonon components of S ( Q, co )

change significantly with pressure, especially at the max-
on wave vector. This offers a test of models of the one-
phonon and multiphonon components of $(Q, co) under
new conditions.

Specifically, Woods and Svensson" (WS) proposed that
S ( Q, co ) could be expressed as the sum of two com-
ponents:

ps( T) px( T)
S(Q, co)= $&(Q,co)+ Sz(Q, co) .

p
'

p

Here ps( T) and p~( T) are the usual superfluid and nor-
mal fluid densities ' of liquid He. The $~(Q, co) is a
broad normal-fluid component which is essentially the
same above and below Tz. Since ps(T) vanishes for
T & Tz, SN(Q, co) can be determined from the observed
scattering intensity at temperatures immediately above
T&. The observed intensity above T& was found" to be
nearly independent of temperature for Q + 0.8 A
Indeed if we write S~(Q, c0) as

mentary excitations inferred from thermodynamic data
than energies taken from the whole of S(Q, co). The
half-width I (Q, T) of $&(Q, m) also agreed better with the
predictions of Landau and Khalatnikov ' (LK) than did
the values obtained from the whole S ( Q, co ), although we
would not expect the LK model to hold for T near T&
where I (Q, T) becomes large.

A specific aim here is to test whether the WS decompo-
sition (1) holds well at higher pressure; particularly
whether the one-phonon intensity Z(Q, T} scales as
ps(T)/p. We argue in the discussion (Sec. VI) that the
integrated intensity of the one-phonon peak in (5) as ob-
tained via (3) and (4), necessarily scales as ps( T)/p if the
total $(Q) is independent of T. Since S(Q) is observed to
be approximately independent of T, S~ (Q, T) defined in

Eq. (5) is found to scale as ps(T)/p. To avoid this issue
and to explore the WS decomposition more directly we
define the one-phonon intensity Z(Q, T) in terms of
$, (Q, a)) as

1
S, (Q, co) = — [ns(co)+1]y", (Q,~)

[ns(co)+ 1]A
& (Q, co),

1

2m

where

A &(Q, co) =2Z(Q, T)
[co—co(Q, T)] +1(Q,T)

$~(Q, co) = — [ns(co)+1]g'N(Q, c0),
1

n~
I (Q, T)

[co+co(Q, T)]'+I (Q, T)
(7)

ps( T) px
Ss(Q co)=$(Q ~) Sx(Q ~) .

I P
(4)

They found that the resulting integrated intensity in the
one-phonon peak

Sws(Q) jd Sws(Q ) (5)

scaled as ps(T)/p. This suggested that the one-phonon
peak could be identified with the superfluid and that it
disappeared at Tz. WS also found that by associating
co(Q, T) with the position of only the sharp component
S,(Q, co) of S(Q, co) they obtained an excitation energy
~(Q, T) near Tz that agreed better with the values for ele-

the imaginary part yz of the dynamic susceptibility yz
was taken to be independent of T for T above but close to
Tz. In this temperature range all of the observed T
dependence in S(Q, co) was ascribed to the Bose function
ns(co)=(e~" 1) ', where —P=ksT. With yIv assumed
independent of T, WS used (2) to determine $~(Q, co) at
all T below Tz. The "superfluid" component Ss(Q, co)
was taken as the sum of the sharp component (S, } plus a
multiphonon background (Ssc ),

ps( T) ps( T)
Ss(Q, co) =S& (Q, co)+ Ssc(Q, co) . (3)

p
' ' ' '

p
WS determined $&(Q, co) from the observed S(Q, co) via
(1) by subtracting out the normal part as

is the one-phonon response function [—g&'(Q, co)/nm
= A &(Q, co)/2m] and n =N/V. In (7) we have included
both the Stokes [co—co( Q, T)] and anti-Stokes
[co+co(Q, T)] terms in A, (Q, co). Equation (7) is a direct
generalization of the 5 function response function

A ((Q, co) =2mZ(Q, T) I 5[co—a)(Q, T)]-5[a)+co(Q, T)]I

in which each 5 function is represented by a Lorentzian
function. Equation (7) is the usual expression for a
response function if the real [co(Q, T)] and imaginary
[1(Q,T)] parts of the excitation energy are assumed to
be frequency independent. As discussed in the Appendix,
with both the Stokes and anti-Stokes terms included, (7)
is actually identical to the harmonic oscillator" function
often used' to describe $, (Q, co). The one-phonon pa-
rameters Z (Q, T), co(Q, T), and I (Q, T) are obtained here
by fitting this Lorentzian function to S~(Q, co). If the WS
decomposition represents the observed $(Q, co) well, the
Z(Q, T) of (7} should be proportional to ps(T)/p. [In
this paper, both the excitation energy co(Q, T) and its
width I (Q, T) will be given in THz. ]

A number of authors have attempted to provide a
theoretical foundation for the WS formula for S(Q, co).
Griffin' and Griffin and Talbot' attempted to recover
the WS formula from the microscopic theory based on
Bose condensation. They identified the normal-fluid
component as scattering from thermal excitations already
present in the liquid and associated the superfluid com-
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ponent with the creation of one or more quasiparticles
(phonons). Griffin and Talbot' used the dielectric for-
malism in a model (one-loop) calculation that neglected
the creation of excitations. They found that at low Q the
scattering from thermal excitations was indeed roughly
proportional to the normal-fluid fraction, but contrary to
experiment, the peak in the associated S ( Q, co) shifted to-
wards higher frequency as the temperature increased.
This shift in the peak frequency originated from the
dielectric function used in the calculation, a dielectric
function involving only thermal scattering and neglecting
any one-phonon intermediate states. As this dielectric
function clearly played a very important role and also ap-
peared in the one-phonon scattering, it became clear that
one-phonon scattering would interfere strongly with the
thermal scattering. In a subsequent calculation, Talbot
and Griffin' included the one-phonon peak and the in-
terference between the one-phonon processes and the
thermal scattering, again neglecting the processes where
two or more excitations are produced. They argued that
the approximations used were reasonable at low Q where
the two-phonon scattering is small. The result of this
more sophisticated model was a single peak in S(Q, co)
centered at the one-phonon frequency with a width which
scaled roughly as pz, but with no indication of a sharp
peak appearing on top of a much broader one.

In the spirit of Kadanoff and Martin, Yamada' in-
verted the two-fluid hydrodynamic equations to obtain
the density-density correlation function. He found that
one could identify terms proportional to pN /p and a reso-
nant term proportional to ps/p. He argued that such be-
havior would extend beyond the hydrodynamic region
into the collisionless region. However no proof of this
statement was given. Indeed Mineev used a similar ap-
proach in the collisionless, but still adiabatic, region
(r ' «co « T) and did not obtain a weight proportional
to ps/p for the resonant term. Mineev instead attributed
the apparent success of the WS formula to the fact that
the static structure factor S (Q) changes rather little (S%%uo)

between 1 K and T& as noted above and discussed further
in Sec. VI.

In view of the apparent success of the WS formula at
SVP and the difficulty in explaining it, we propose to test
it explicitly in liquid He at p=20 bars. At p=20 bars
the weight Z(Q, r) of the one-phonon peak is substantial-
ly smaller in the maxon region than at SVP. We examine
S(Q, co) closely at T near Ti to determine whether the
Z (Q, T) vanishes at Ti. Since both S~ and S~ are broad
functions of co, in practice it can be extremely difficult to
separate S(Q, co) into different components.

In Sec. II we describe the experiment and present re-
sults. In Sec. III the results are analyzed to extract the
individual components of S(Q, co) defined in Eqs. (1)—(4),
(6), and (7). The full $(Q, co) given by (1) is reconstructed
and compared with the observed $(Q, co) in Sec. III. We
consider a second (simple) one-phonon extraction pro-
cedure in Sec. IV. The one-phon on parameters are
presented in Sec. V and a discussion is given in Sec. VI.
Finally a discussion of the one-phonon response function
(7) is given in the Appendix. Some of the present results
have been briefly reported elsewhere.

II. EXPERIMENT AND RESULTS

The measurements of S(Q, co) were made using the
IN12 triple-axis spectrometer which is situated on a
cold-neutron guide tube from the Institut Laue-Langevin
high ffux reactor. Pyrolytic graphite (002) was used as
both monochromator and analyzer. The instrument was
operated with a fixed final neutron energy of 1.127 THz
(1 THz=47. 99 K=4.14 meV), yielding an instrumental
resolution of 0.034 THz (FWHM) as measured by the in-
coherent scattering from vanadium. From this measured
elastic resolution, the resolution FWHM at the maxon
(Q=1.13 A ) frequency is calculated to be 0.039 THz
and that at the roton (Q=2.03 A ') frequency is calcu-
lated to be 0.036 THz. A cooled (77 K) beryllium filter
before the analyzer minimized higher-order scattering
contamination.

The high-purity He sample was condensed into a 3-
cm diam cylindrical aluminum cell in a helium-flow cryo-
stat. The cell contained cadmium discs spaced 1 cm
apart vertically to reduce multiple scattering. Sample
temperature and pressure were measured by a calibrated
carbon resistor and by a Wallace and Tiernan pressure
gauge, respectively. For the applied pressure chosen, 20
bars, T&=1.928 K. No in situ calibration of Tz was

made, but the quoted temperatures are believed to be reli-
able to within +0.02 K. As well as measuring the tem-
perature dependence of the scattering from the He sam-

ple, the scattering from the empty cell was determined at
1.27 K. The empty container spectrum, consisting of a
sharp elastic peak and a very small flat inelastic back-
ground, was subtracted, unadjusted, from the observed
He scattering to obtain the net scattering from the liquid
He. The height of the subtracted elastic peak at Q= 1.13

A ' is roughly 4200 counts with an integrated intensity
of roughly 170 count THz. At Q=2.03 A ', the height
of the elastic peak is roughly 5200 counts with an in-
tegrated intensity of roughly 200 count THz. There is
then a region near co=0 (approximately +0.04 THz)
within which it is not possible to determine accurately
the inelastic scattering from the He sample.

In Fig. 1 we present the net scattering intensity at the
two wave vectors considered, for temperatures below Tz.
As the low temperature one-phonon peak for the roton is
so strong, the scale of Fig. 1 does not permit us to see the
broad multiphonon component. From Fig. 2, we see,
however, that the broad multiphonon component of the
scattering at Q=2.03 A ', T=1.29 K lies well above the
empty cell background. Figure 3 presents the corre-
sponding spectra at T= 1.9 K and above Tz = 1.928 K.

At the lowest temperature in Fig. 1, the spectra consist
of a sharp one-phonon component plus a wide multipho-
non continuum peak at higher energies. For the maxon
wave vector Q= 1.13 A, the sharp one-phonon peak in-

0

tensity drops markedly as T increases towards T&. While
at 1.83 K a sma11 remnant of the sharp component can
still be distinguished from the wide multiphonon peak, by
1.90 K this has apparently disappeared. The spectra for
the temperatures above T&, T=2.05, 2.96, 3.94 K are
identical to within the experimental uncertainty (Fig. 3).
Turning to the spectra at the roton wave vector 2.03
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A ', we see that similar conclusions pertain. Just below

T& at T=1.90 K, a weak-roton signal can still be ob-
served near 0.13 THz. At 1.93 K this seems to have
disappeared leaving only a broad scattering intensity
which is largely temperature independent. As with the
maxon wave-vector scattering, the roton spectra at and
not far above Tz (T= 1.93, 1.96, and 2.06 K) are indistin-
guishable (Fig. 3). However, the spectrum at T=2.97 K
is significantly different with the peak position having
shifted to lower frequency and with the peak intensity de-
creasing somewhat. Although it is not obvious from Fig.
1, close inspection of our results shows that, for both Q
values, the high-frequency tail of the distributions
(beyond v=0.7 THz) is, to within experimental uncer-
tainty, completely independent of temperature (see also
Fig. 5).

From Figs. 1 and 3 we conclude that at both the max-
on and roton wave vectors, the sharp one-phonon com-
ponent disappears or changes abruptly at or near T&. A

graphic demonstration of this is provided by Fig. 4 where
a two-dimensional projection of the three-dimensional
scattering function at the roton wave vector is shown.

III. ANALYSIS FOLLOWING WOODS AND SVENSSON

In applying the Woods-Svensson (WS) model (1) we
firstly determined the "normal" scattering component
Sz(Q, co) by fitting Eq. (2) to the net scattering intensity
observed above T& shown in Fig. 3. In spite of possible
contributions from Rayleigh scattering, we found that a
yz(Q, co) in (2) independent of T for T & T) could readily
be identified. The resulting Sz(Q, co) for the two Q values
are shown in Fig. 5.

Next, the "superfluid" component [ps(T)/p]Ss(Q, co)

at T ( T& defined by (4) was determined by subtracting
out the "normal" component [p~(T)/p]S&(Q, co) from
the observed data points S(Q,co). At low co, we find that
the remaining intensity is actually negative for the roton
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[Eqs. (I)—(7)] to S(Q,co). To obtain this fit, Z (Q, T) in Eq. (7) is not proportional to pz(T)/p.
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at temperatures T» 1.83 K. Since a scattering intensity
cannot be negative, this shows that at low co we have sub-
tracted off too much intensity if we assume there is a nor-
mal component given by [ptc( T) Ip]SN(Q, co).

Thirdly, at the lowest temperature (T=1.29 K), where

[pz(T)IP]S&(Q, co) is small and the one-phonon scatter-
ing is very sharp, we fit (by eye) a broad function to the
remaining scattering intensity of (4} to determine the
broad multiphonon component S~(Q, co). The resulting
SM(Q, co) are plotted as the dashed curves in Fig. 5. At
Q= 1.13 A ', the low-frequency end of S~(Q, co) extends
into the one-phonon region and it is difficult to separate
(ps/p)Sst from S, . We have simply assumed that S~
vanishes at roughly the same frequency as it does at
Q=2.03 A

With Ssc(Q, co) determined and assumed independent

e

0 0&fi e-- «««eaT

0,2 0 0.2 0.4 0.6 0,8 1,0 1.2

i' {THz}
o

FIG. 2. The raw scat tering intensity at Q =2.03 A
T= 1.29 K showing the broad multiphonon scattering (~) (with
the dashed line drawn in to guide the eyej and the empty cell
scattering ( X ).

of T, we fit the resolution-broadened version of the
Lorentzian function given by (6) and (7) to the sharp,
one-phonon peak component of Ss(g, co) at all tempera-
tures. Specifically, we assumed that the Bose function
ns (co) was negligible in the peak region, that the two
Lorentzians in (7) are well separated [co(Q) && I (Q)], and
that the experimental resolution function was a Gaussian
of known width. A single Lorentzian was then convolut-
ed with a Gaussian and the resultant was fitted to the ob-
served peak position, width and height of S, (Q, co) to ob-
tain co(Q), I (Q), and Z(Q), respectively. The resulting
fitted values are listed in Table I ~

In this way we determine all three components
SN(Q, co), SM(Q, co), and S, (Q, co) in the expression (1).
The total Woods-Svensson S(Q, co) given by (1) and (3),
i.e., by

S&(Q,co)+psSw(Q, co) Ip+ptvS&(Q, co)lp

can then be reconstructed and this total is shown as the
solid lines in Fig. 2(a). The fit is clearly very good except
at low co below the roton peak where (pz/p)S~(Q, co) is
too large. However we note that the Z(Q, T) determined
in this manner does not scale as ps(T)IP as we discuss
below.

IV. SIMPLE MULTIPHONON SUBTRACTION MODEL

In the Woods-Svensson analysis discussed above a
normal-fluid scattering function and a multiphonon part
of the superfluid scattering function are defined. After
subtracting these contributions from S(Q, co) we are left
with the Woods-Svensson definition of the bare one-
phonon scattering from which we can obtain the one-
phonon parameters Z(Q, T), co(Q, T},and I (Q, T). Other
procedures for obtaining one-phonon parameters have
been used by Tarvin and Passell' and Dietrich et al. '

Unfortunately both these authors chose to fit a one-
phonon scattering function to the total scattering al-
though there is a significant multiphononz ' contribu-
tion. At the higher temperatures the one-phonon peak is
sufficiently wide to have significant overlap with the mul-
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tiphonon peak. Here some method of separating the
multiphonon scattering from the one-phonon contribu-
tion must be used to extract meaningful one-phonon pa-
rameters. Also, the one-phonon function which Dietrich
et al. and Tarvin and Passell call a Lorentzian is actually
a Lorentzian multiplied by co. The presence of the co un-
fortunately distorts the extracted values of ro(Q, T} and
I (Q, T) away from those obtained using a normal
Lorentzian function. This distortion increases as the
groups become wider near T&.

In this section we implement the method introduced by
Miller, Pines, and Nozieres and used by Cowley and
Woods to identify the one-phonon and multiphonon
contributions at T=1.1 K. At this low temperature the
one-phonon peak is extremely sharp and, under good
resolution conditions, it may be separated ' reasonably
unambiguously from the multiphonon contribution. To
extend this to higher temperature, we first determine the
multiphonon part from our lowest temperature scan

T(K)

FIG. 4. Temperature dependence of the roton scattering
function. The net scattering intensity S(g, co) is plotted verti-
cally. Note the abrupt change of form at or near Tq.

( T= 1.29 K). The resulting multiphonon part SM(Q, r0) is
identical to the multiphonon part Ssr(Q, ni} defined in (3)
and used in the Woods-Svensson analysis (dashed curve
in Fig. 5). We then simply subtract (SS) the same
Ssr(Q, ni} at each temperature, as if it were independent
of T.

Use of a temperature-independent multiphonon part is
certainly too simple. Figure 7 of Svensson et al. show-
ing S(Q, co} at SVP and Q=0.3 A ' shows that the shape
of the multiphonon peak can change as T increases to
above T&. We also know from the study of quantum
solids that the two-phonon contribution to S ( Q, cu ) in-
creases with T at low co. By analogy we expect the multi-
phonon contribution to S(Q, ro) at low co in liquid He to
increase somewhat with T On .the other hand, we find
the high-frequency tail of S(Q, co) (co~0.7 THz) is in-
dependent of T (as mentioned earlier and see Fig. 1).
With these reservations and given that the dominant
effect of temperature is to broaden the one-phonon peak,
a simple subtraction of a temperature-independent
Ssr(Q, ni) should be meaningful. Griffin has already
used this method to obtain one-phonon properties at
SVP.

This simple subtraction (SS) yields the one-phonon part

S, (Q, ro) =S(Q,ni)— PN
SN(Q, oi)+ SM(Q co)

ps

p p

(9)

The S
&

are depicted in Fig. 6 where we see that most of
the high-frequency scattering has been removed. The ex-
pressions (6) and (7) are then fitted to S, (Q, co). The
S~(Q, co) are peaked at lower frequencies than SM(Q, r0)
and, as a result, the SS one-phonon peak positions are
shifted to significantly lower frequencies as T increases to

S I (Q, ai) =S(Q, ru) Ssr(Q—, co)

which is to be compared to the WS one-phonon part
defined as
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T (K)

TABLE I. WS one-phonon parameters.

{a) Q=1.13 A (Maxon momentum)

co(Q, T) (THz) 1(Q, T) (THz) Z(g, T) (arb. units)

1.29
1.57
1.72
1.78
1.83
1.90

1.29
1.57
1.64
1.72
1.83
1.88
1.90

0.3102+0.0014
0.3063+0.0022
0.3045+0.0035
0.3002+0.0056
0.3012+0.0077
0.294 +0.025

(b) Q=2.03
0.1537+0.0007
0.1489+0.0007
0.1439+0.0011
0.1418+0.0014
0.1358+0.0014
0.1307+0.0018
0.1299+0.0018

0.0133+0.0025
0.0178+0.0033
0.0448+0.0042
0.0576+0.0061
0.0754+0.0081
0.122 +0.025

o

A (Roton momentum j
0.0061+0.0014
0.0115+0.0013
0.0156+0.0017
0.0184+0.0021
0.0326+0.0020
0.0340+0.0024
0.0422+0.0024

34.6+2.6
26.2+2.6
24.0+1.8
20.2+2.0
17.1+1.9
10.1+2.6

488+26
410+18
361+20
324+22
228+11
148+9
107+5

near T&, particularly at the roton wave vector. For this
reason ns(co)&0 in the one-phonon region and co(Q, T) is
not much greater than I (Q, T) at the higher tempera-
tures. The Z(Q, T), co(Q, T), and I (Q, T) were therefore
determined using a least-squares fit to the full expressions
(6) and (7). The SS one-phonon parameters are listed in

Table II.

U. ONE-PHONON PARAMETERS

In this section, we present the one-phonon parameters
Z(Q, T), co(Q, T), and I (Q, T) obtained from the Woods-
Svensson model and the simple multiphonon subtraction
model.

As described in Sec. III, the WS one-phonon parame-
ters are obtained from fits of Eqs. (6) and (7) to the

S, (Q, co) defined by (9). Above T& the total scattering
intensity is simply Sz(Q, co); hence from (9) Si (Q, co)

and therefore Z(Q, T) must vanish at Tx. The WS one-

phonon intensity Z(Q, T) is shown for both the maxon
(Q=1.13 A ') and the roton (Q=2.03 A '}momenta in

Fig. 7. In the upper part of Fig. 7, Z(Q, T) is plotted
simply against T. The Z(Q, T) must vanish at Ti =1.928
K. Also plotted is ps(T)/p scaled to coincide with

Z(Q, T) at T=1.29 K. Thus even though ps(T)/p and

Z(Q, T) are fixed to agree at T=1.29 K and 1.928 K, we

see that there is a significant difference between the ob-
served Z(Q, T) and ps(T)/p at intermediate tempera-
tures. This is emphasized further in the lower half of Fig.
7 where we have plotted the WS Z(Q, T) versus ps( T)/p.
We see that the Z (Q, T} exhibit a definite downward cur-
vature showing that there is more scattered intensity im-

mediately below Ti (small ps/p) than predicted by a

Z(Q, T) linear in ps(T)/p.
Figure 8 shows the Z(Q, T) obtained from the SS pro-

cedure described in Sec. IV. In this case Z(Q, T) does
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co(Q, T) (THz) m.S&(q) (arb. units)

TABLE II. SS one-phonon parameters. (Error bars are twice the statistical error bars of the fit. )

(a) Q=1.13 A (Maxon momentum)
I (Q, T) (THz) Z(Q, T) (arb. units)

1.29
1.57
1.72
1.78
1.83
1.90
2.05
2.96
3.94

1.29
1.57
1.64
1.72
1.83
1.88
1.90
1.93
1.96
2.06
2.97

0.3093
0.3043
0.3013
0.2922
0.285
0.264
0.247
0.214
0.253

+0.0014
+0.0023
+0.0048
+0.0064
+0.013
+0.019
+0.023
20.056
%0.043

0.153 89+0.000 23
0.148 42+0.000 31
0;14364+0.000 48
0.14076+0.000 59
0.1299 +0.001 1

0.1190 +0.0019
0.1066 +0.003 5

Q.074 +0.011
0.058 +0.015
0.002 +0.015
0.000 26+0.000 63

0.0146 +0.0020
0.0296 +0.0038
0.0647 +0.0087
0.086 +0.012
0.117 +0.025
0.162 +0.032
0.176 +0.042
0.194 +0.070
0.200 +0.069
(b) Q=2.03 A

0.004 80+0.000 23
0.01400+0.000 38
0.01902%0.000 61
0.028 70%0.000 92
0.055 7 +0.002 1

0.078 1 +0.003 4
0.102 1 +0.0048
0.135 7 +Q.0072
0.1449 %0.0072
0.162 1 +0.003 2
0.1877 %0.0041

36.2+1.1

34.5+1.4
39.3+2.5
41.2+3.0
47. 1+6.3
53.7+8.9

55212
56+23
60+20

(Roton momentum)
474.0+ 1.4
463.3+1.7
451.6+2.3
490.8%3.6
545.7+9.8
628.0+21
781.0%43
1 210+210
1 590+440

48 0002710000
370 000%920000

35.2+0.9
32.5+1.1

34.5+1.6
34.6+1.6
36.6+2.7
36.6+2.6
35.6+3.0
34.7%3.9
42.1+4.6

470.0+1.1

454.9+1.1

440.9+1.4
469.4+2.0
477.5+3.8
489.0+5.4
508.5+6.6
500.6+8.4
512.0+8.5
517.2+0.9
487.5+ 1.7
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and (6) and (7) we have

Z (Q, T) 2 i ni(Q, T)
vr I (Q, T)

(10)

Since S, (Q) is approximately independent of T (see Fig. 8
and Table II), Z(Q, T) must increase if ni(Q, T)/f'(Q, T)
decreases. In the SS method, where ro(Q, T) decreases
with T, it might be more appropriate to replace Z(Q, T)
by Z(Q, T)l (Q, T)/co(Q, T) in which Z(Q, T) would then
be approximately constant. A constant S, (Q) is really
built into the model: If the total intensity S(Q) is ap-
proximately independent of T and we subtract a constant
multiphonon component S~(Q, co), then the remaining
one-phonon intensity S, (Q) must be approximately in-

dependent of T. The SS model therefore requires that the
one-phonon component does not "disappear" at Tz.

Figure 9 shows the one-phonon peak energy ro(Q, T)
and half-width at half maximum I (Q, T) obtained from
both the WS and the SS analysis. The WS analysis, by its
definition, only gives one-phonon parameters below T&
but the SS analysis defines a "one-phonon" component at
any temperature. Also shown in Fig. 9 are the peak posi-
tions (PP) and half-widths (HWHM) of the full S(Q,cu)
above T&.

From Fig. 9 we see the WS co(Q, T) for the maxon is
essentially independent of temperature while for the ro-
ton, ro(Q, T) decreases by approximately 20% between
T= 1.29 K and Tz. However the maxon one-phonon
peak is very weak and broad near Tz and it is dificult to
determine the ni(Q, T) accurately near Ti. By contrast,
the SS ro(Q, T) shows a temperature variation which is
about twice as large for T ~ T&. Above T&, the simple-

not vanish at T ~ Ti . Rather, in the SS method Z (Q, T)
stays relatively constant up to T= 1.8 K and then in-
creases significantly with T. This final increase near T& is
a consequence of the definition of Z(Q, T) in (7) and the
decrease of ni(Q, T) with T for T~1.8 K. For example,
from

S, (Q)= J dcoS, (Q, co)

subtraction maxon energy Oattens off at about 0.25 THz
but the best fit to the roton energy goes to zero above
T= 1.96 K.

From the upper part of Fig. 9 we further note that at
T ~ T& the peak position of the total S(Q, co) for the max-
on (Q=1.13 A ') is at roughly 0.55 THz, well above ei-
ther of the %'S or SS "one-phonon" energies. This is be-
cause the maxon S(Q, cu) contains significant intensity at
high frequency which was subtracted away to obtain the
WS or SS one-phonon S, (Q, co). The PP of the total
S (Q, co) for the roton levels off at roughly 0.08 THz above

TA.

The WS one-phonon frequencies listed in Table I
shows an approximately linear dependence on ps/p, a
simple consequence of the fact that the temperature
dependence of the quasiparticle energies between 1.2 K
and T& is mainly due to interactions with the rotons.
The energy shift is then approximately linear in the num-
ber of rotons or ps/p. Extrapolating we can obtain the
roton energy at T=O K at 20 bars; viz. , oc(Q, T= 0)

= b,(0)=0.1575+0.0010 THz. As the WS and SS extrac-
tion procedures for ru(Q) are identical and valid at low T,
this should be a reliable estimate of b, (0).

The lower part of Fig. 9 shows I"(Q, T) as a function of
temperature. Also shown for comparison are the half-
widths of the total S(Q,ni) for a few temperatures near
and above T& and, at the roton momentum, the Landau-
Khalatnikov ' (LK) width of the rotons ' appropriate
to p=20 bars. For both Q values and from both analyses,
I (Q, T) clearly increases significantly between T=1.29 K
and T& ~

At the maxon momentum, the SS I (Q, T) is consistent-
ly about 50% higher than the WS I (Q, T). Above T&,
the SS maxon width levels off at roughly 0.2 THz. We
note that the total S (Q, ni) at T ~ T& has a width which is

roughly twice that of the SS "one-maxon" part; again this
is a reAection of the fact that our analysis subtracts most
of the high-frequency scattering from S ( Q, co).

At the roton momentum, the WS I (Q, T) agrees very
well with the LK width for rotons. ' In contrast to
SVP where WS" found that the one-phonon widths
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agreed with the LK result for all Q between 0.8 and 1.93
A ', we have found that the maxon width is about twice
that of the roton at 20 bars.

Figure 10 shows the variation of the WS widths with
temperature on a larger scale. For comparison, we have
also included the WS roton widths at SVP" and the LK
widths2i, 28, z9 at both SVP and 20 bars. We see that, in
contrast with the LK width and the WS widths at SVP,
the values of I at low temperatures and 20 bars do not go
to zero but are significantly greater than their estimated
uncertainties. This indicates that, at low temperatures, a
mechanism other than roton collisions is determining the
quasiparticle width. This is particularly apparent for the
maxon where the low-temperature decay mechanisms are
probably dominated by the decay of the maxon into two
rotons.

The SS I (Q, T) increases more rapidly than the WS
I (Q, T) as T approaches T), becoming two to three times
the WS roton width near T),. Above T), the SS I (Q, T) is
significantly larger than the width of the total S(Q, ro) for
the roton. This is a consequence of the fact that for

T& 1.96 K, the SS co(Q, T)=0 and

Z (Q, T)ru(Q, T):Z—( Q, T)I (Q, T),
where Z(Q, T) is fairly temperature independent. Under
these conditions (7) becoines

Z(Q, T) 4I (Q, T)co

[co +I (Q, T)]
(12)

VI. DISCUSSION

The aims of this paper were to determine with high ac-
curacy the temperature dependence of S ( Q, co ) at
Q=1.13 A (maxon) and Q=2.03 A (roton), to test the
Woods-Svensson (WS) hypothesis at high pressure and to
extract one-phonon energies and lifetimes. We obtain es-
timates of the one-phonon energies and lifetimes in two

I (Q, T) is no longer a good measure of the width of
A (Q, co); for example, the HWHM of (12) is =0.74
I (Q, T). Thus the roton I (Q, T) for T& 1.96 K in Fig. 9
are unrealistically large and not very meaningful.

0.6

0.5-

0.4-
Nr

0.3
I-
p 0.2-

Ol-

0
I.O

~ ~ ~ to ~ ~ ~ ~

s

I.5

Q~ 1.13k

MAXON

p i20atm

WS

ss
Peak Poiition of S(Q,~) above

2.0 2.5 3.0 3.5 4.0
T (K)

O. I 8

0.16-

0.06
I.O

~ o PP, T+T&

1.5
I

2.0
r (K)

O.I4-
x

O.I2-
l-

CX
3 0 IO-

ws

008 --~- ss

Q 2.05K
ROTON

p 20 atm

I

2.5 3.0

.e))

~ ~ ~ ~ ~

0.6

0, 5

0.4-
N

0.3-

Q-i. I3A

~ ~ ~ ~

0.30

0.25-

X
0 I5

I-

Q~2.05K

~ WS
-a- SS
"o" HWHM of S(Q, ~),7~ 7&

0.2-4 O. IO-

0 0.05-

I.5 3.0

~ WS /

$$ / ~
4" HWHMs 7 ~Tv

0 s V 0 I

I.O I.5 2.0 2.5 3.0 3.5 4o I.O 2.0 2.5
T (K) T (K)

FIG. 9. Upper part: The one-phonon frequencies co(Q, T) plotted vs T Dots —WS analysis; t.riangles —simple multiphonon sub-
traction. The open circles denote the position of the center of the total S(Q, co) at high temperatures defined as the midpoint of the
two half-height points (peak position, PP). Lower part: The corresponding half-widths I (g, T) plotted vs T. The solid line at
Q=2.03 A shows the Landau-Khalatnikov result for the roton width.



38 TEMPERATURE DEPENDENCE OF S(Q, co) IN LIQUID 4He. . . 11 239

0.14—

0.12

L-K

1.13 A ~, P = 20 bars

2.03 A, P = 20 bars

1.926 A P = SVP

THEORY, P = SVP

THEORY, P = 20 bars

010

I4 0.08

I

I- 0.06—

T& (20 bars)

Tg (SVP)

0.04

0.02—

0.00 '.
1.0 1.6

TEMPERATURE tK)

I

20 2.2

FIG. 10. The WS one-phonon half-widths I (Q, T) plotted vs

T for both Q=1.13 A (open circles) and Q=2.03 A {solid
circles) at 20 bars. Also shown are the SVP roton widths
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ways. Firstly, a one-phonon part, S, (Q, co), of the total
S(Q, co) was obtained following the WS formula. Second-
ly, the T=O multiphonon contribution SM(Q, co) was sim-

ply subtracted (SS) from S(Q, co) at all temperatures as in
(8). In both cases, (6) and (7) were fitted to the resulting
S, (Q, co) to obtain one-phonon energies co(Q, T) and life-
times I (Q, T). If S~(Q, co) and SM(Q, co) were the same,
then the two methods would yield the same S, ( Q, co )

since pal+ps =p. As see from Fig. 5 this is more closely
the case for the maxon (Q=1.13 A ') than for the roton.
It is thus not surprising we find that the co(Q, T) and
I (Q, T) obtained from the two models are in better agree-
rnent for the maxon than for the roton.

A. One-phonon properties

From Fig. 9 we see that for T ~ 1.7 K the WS and SS
methods yield essentially the same co( Q, T) and I ( Q, T)
for the roton and the maxon. That is, for T& —T ~ 0.2 K
the maxon and roton one-phonon peaks are sufficiently
sharply defined that the broad component of the scatter-
ing can be rather well identified and the remaining one-
phonon peak well fitted to (6) and (7) to obtain co(Q, T)
and I (Q, T). Within 0.2 K of Ti, this is no longer true,
particularly for the roton. We find co (Q, T) [I (Q, T)]
decreases (increases) more rapidly with T than co (Q, T)
[I (Q, T)]. Basically this is because a larger fraction of
the temperature-dependent background is subtracted in
the %'S method, leaving a narrower one-phonon peak

that changes shape less with temperature. Within 0.2 K
of T&, it does not appear possible to separate and subtract
a multiphonon component unambiguously from S(Q,co).
Also, the remaining S, (Q, co) is broad enough that fitting
(6) and (7) to Si{Q,co) to obtain frequency-independent
values of co(Q, T) and I (Q, T) is only approximate. The
S, (Q, co) may be a more complicated function of co than
(7), the effective co(Q, T) and I (Q, T) may be co dependent
and S, (Q, co) not describable in terms of a simple "ener-
gy" and "lifetime" alone. Thus it could be argued that a
one-phonon co(Q, T) and I (Q, T) has meaning up to
T= 1.7 K only.

From Fig. 9 we see that I (Q, T) increases rapidly with
T for T & T&. Indeed at SVP Mezei" and Mezei and Stir-
ling' find using spin-echo methods I'( Q, T)=0.01
K=0.2X10 THz at T=1 K for both rotons and pho-
nons. Thus between T= 1 K and Ti, I'(Q, T) increases
by approximately three orders of magnitude at SVP. For
T 51.7 K we find in Figs. 9 and 10 that I (Q, T) agrees
with the Landau-Khalatnikov ' result in which I (Q, T)
—&Te ~", where b, is the roton energy [b =co( Q, T),
Q=2.03 A ' here]. Since the LK theory is a perturba-
tion theory using infinite lifetime intermediate state pho-
nons, we do not, however, expect it to hold well when

S, (Q, co) is broad, as it is within 0.2 K of Ti .
Above Ti, the I (Q, T) and the HWHM of the full

S(Q, co) are essentially independent of temperature.
Thus, if there is a one phonon (zero sound) excitation
above Tz, its damping mechanism is very different from
that below T&. In this sense there is a very distinct
change in the nature of the excitation above and below
T& as emphasized by Woods and Svensson. " The peak
position (PP) and HWHM of the total S(Q, co) are really
the only well-defined quantities above T&.

From Fig. 9 we see that co(Q, T) also changes markedly
at T=T&, especially for the roton. For the maxon, the
one-phonon frequency [co (Q, T) or co (Q, T) ] lies
below the peak pos!&(ons (PP) of S(Q, co) observed above
Ti, i.e., below the PP of Sz(Q, co). Since Sz(Q, co) and

SM(Q, co) are similar (see Fig. 5), the maxon data can be
interpreted as a broad multiphonon component, largely
temperature independent and centered at co=0.5 THz,
plus a one-phonon component peaked at a lower frequen-
cy and which disappears at Tz. For the roton, the one-
phonon co(Q, T) lies above the PP of the S (Q, co) observed
above Ti, i.e., above the PP of Sz(Q, co). In the roton
case, however, the broad component centered below
co(Q, T) grows in intensity with increaing T below Ti (see
Fig. 4). For the roton, both one-phonon and multipho-
non intensity are rapidly changing functions of T just
below Tz.

The incremental change in co(Q, T) for the roton,
Ao —b(T)=co(Q, T =0) co(Q, T), is sho—wn in Fig. 11 for
p=20 atom. There we see that the present values of
b,o

—b, (T) {A or ~ ) are independent of the method of
analysis on this scale except immediately below T&.
These values also lie close to the predictions of Bedell,
Pines, and Zawadowski (BPZ) based on a Landau-
Khalatnikov-type theory ' with the coefficients calculated
by the solution of a Bethe-Salpeter equation. The short-
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dashed line in Fig. 11 is a roton liquid theory (RLT)
upper limit to b,o

—b, ( T). However, a roton liquid
theory, like a Fermi liquid theory, may not be valid at T
near T& where the width of the rotons is large. As noted
above, a frequency independent co(g, T) and I (Q, T) may
not be meaningful immediately below T&.

In Fig. 11 we also show values of Ao —h(T) obtained
by Dietrich et al. ' at 20 bars. Their values were ob-
tained by fitting S(g, co) to a Lorentzian function multi-
plied by co which we believe is inappropriate. This func-
tion, for example, leads to an infinite S(Q} for any finite
I . Their data agree well with the present data.

At SVP, Tarvin and Passell' fitted their roton data to
the same Lorentzian multiplied by cu used by Dietrich
et al. ' and to a harmonic oscillator (HO) function. The
values of b,o

—b, (T) they obtain at SVP are shown in Fig.
12. As noted above, we believe that the ho —A(T} values
obtained using the Dietrich et al. ' Lorentzian (L) func-
tion are too large. In the Appendix we show that the HO
function used by Tarvin and Passell (TP) is the same as
(7) which we have used. However, in the HO function,
they identified the quantity

E(g, T)= [co(g, T)i+ I (Q, T) ]'~

as the excitation energy. On the basis of (7) and the dis-
cussion in the Appendix, we believe co(Q, T} to be the
appropriate excitation energy. At low T, where
I (Q, T}«co(Q,T), E(Q, T)~co(Q, T). Since E(Q, T) is

necessarily larger than co( Q, T) the increment

ho b—( T) =E (Q, O) E—(g, T) obtained by Tarvin and
Passell is necessarily smaller. In Fig. 12 we have correct-
ed their b,o E—(Q, T) values to ho —b, ( T)
=—co(Q, O) —co(g, T). This raises their HO values for
T 1.9 K as indicated in Fig. 12 until they lie on the line
predicted by Bedell, Pines, and Zawadowski. The
corrected TP-HO values then also lie only slightly above
those obtained by Woods and Svensson and in reasonable
agreement with WS for T= T&. This correction from
E (Q, T) to n~(g, T) as the excitation energy and the rejec-
tion of the values (L) obtained using the Dietrich et al.
Lorentzian removes much of the disagreement in ni(g, T)
between WS and TP. The TP co(g, T) remain somewhat
smaller [bo—A(T) is larger] because they fitted to the
whole of S(g, co) while WS fitted to St(g, co) only.

Just above Ti for Q=1.13 A, S(g, co) peaks at 0.5
THz and has a full width at half maximum of 8'=0.7
THz. The corresponding longitudinal phonon group in
solid bcc He (p =25 atom) at Q =1.0 A ' has frequency
co =0.6 THz and W=0. 4—0.5 THz. Thus S(g, co) in

solid helium and liquid He above T& are similar. In
liquid He the zero-sound or density component of
S(Q, co} has co&=0.3 THz and &=0.15 THz at Q=1
A ' and p=10 atom. ' The width in He is largely in-

dependent of T. While energies and widths are smaller in

He, the shape of S(g, co) is similar in the two normal
quantum liquids. This suggests that the nature of the ex-
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FIG. 11. The shift in the roton gap h&(T) with temperature
at p=20 bars as determined by the %'S model (solid circles) and
the SS model (solid triangles). The Dietrich et al. ' points
{open triangles) correspond to fitting the total S{Q,col with a
Lorentzian times co profile function. RLT is the roton-liquid
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FIG. 12. The shift in the roton gap hz(T) with temperature
at SVP. The solid triangles show the original values quoted by
Tarvin and Passell (Ref. 12) and these values corrected upward
when co{Q) rather than E {)Q=[co' {)Q+I' {)Q]'~ is taken as
the excitation energy. The open triangles show values obtained
fitting a Lorentzian times co to the total S{Q,co). The open cir-
cles show Mezei's observed values (Ref. 13) and the solid line his
fit to observed values.
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citations in normal liquid He and He and in solid He
may be quite similar, namely a damped zero-sound-type
phonon mode in the density-density correlation function.
Liquid He is unique below T&, where the one-phonon

peak becomes extremely sharp (1000 times sharper than
that in the solid or in liquid He at T=1.0 K) and is rap-
idly varying with T.

For the two Q's examined here, we find that S(Q, oi)
changes character quite abruptly at T&. This agrees with
the WS results at SVP. At low Q, Q =0.2 A ', however,
Cowley and Woods observed little change in the full
width of the total $(Q, oi) as T passed through T». Thus
while we observe an abrupt change at T» for Q=1.13 and
2.03 A ', this may not be the case at very low Q. We in-

tend to examine this region in detail in a future experi-
ment.

B. Components of S(Q,oi)

In the Woods-Svensson decomposition (1), the one-
phonon scattering intensity Z(Q, T) should scale as

pz(T)/p below T». As noted in Sec. V we find that
Z(Q, T) does not scale as ps(T)/p at p=20 bars. Also,
the superfiuid component Ss(Q, co), obtained from (4),
can be negative at small co which is not physically mean-
ingful. Thus the WS decomposition (1), at least with the
temperature dependence given by ps(T)/p and p~(T)/ ,p
does not appear to be precise enough to have fundamen-
tal meaning.

WS found that their one-phonon intensity S, (Q)
given by (5) scaled as ps(T)/p at SVP while we find

Z(Q, T) in (7) does not. This difference can be ascribed
to a difference in analysis of the data. Their conclusion,
as pointed out by Mineev, follows if S(Q) is approxi-
mately independent of T. To see this, we note that (3}
and (4} imply that the WS one-phonon weight (5} is given

by

S, (Q) = [S(Q)—SM(Q)],
P

(14)

i.e., $, (Q, T) is proportional to pz(T)/p if S~(Q) is
chosen to be temperature independent as WS assumed it
to be. Thus we believe that S, (Q)~ps(T)/p follows
from the assumptions of the model and the fact that S (Q)
is approximately independent of T in practice. In the
present case Z(Q, T) was determined by fitting (7) to the
observed $, (Q, oi), not by integrating the observed

S,(Q, co). We believe that Z(Q, T) in (7) is a better mea-
sure of the one-phonon weight.

By contrast, the simple-subtraction model has a one-
phonon weight given by

S, (Q)=S(Q) —SM(Q), (15)

and, as a consequence, the SS model forces S, (Q) to be

(Q) =$(Q) — $~(Q) — $~(Q) . (13)

As S(Q) is found experimentally to be constant to
within 5% in the temperature range 1.0 K to T», we have

S~(Q) =S(Q) at all T and (13) becomes

essentially independent of temperature. In summary, the
assumptions used in each model force the associated
one-phonon weights to have certain temperature depen-
dences.

Although the form (1) does not fit well at Q=2.03 A
and has no theoretical justification, we do find a sharp
component below T& as pointed out by WS. From this
point of view it does make sense to determine I'(Q, T)
and co(Q, T) by fitting (7) to the sharp component of
S (Q, co) only, as suggested by WS.

C. Interpretation and summary

We now attempt to interpret our results in terms of ex-
isting theories of excitations in liquid He. In the original
postulates of Landau, the first microscopic description
by Feynman and in subsequent theoretical work by Al-
drich, Pines, and collaborators, the sharp peak is a col-
lective phonon mode in the density of the liquid. These
theories do not make explicit use of a Bose condensate or
a broken Bose symmetry. Feynman made explicit use
of Bose statistics but not apparently of the condensate
fraction. The phonons are very sharply defined at low T
because there is a single dispersion curve and decay of a
single phonon into two others is severely limited by
phase-space requirements. The recent measurements by
Mezei and Stirling' which show that the line width in-
creases at low Q in the region of upward dispersion in
co(Q) support this picture. At larger Q, phonon decay is
primarily via a four phonon process ' requiring a
thermal phonon, scarce at low T. This picture might be
expected to hold equally well above as below Tz. Indeed
the measurements of Cowley and Woods for low-Q pho-
nons suggest that the width of S ( Q, co ) continues to in-
crease with T at approximately the same rate above and
below T». At Q & 1 A ' the WS results and those
presented here clearly show that the temperature depen-
dence of S (Q, co) is quite different above and below T».

The present results may be interpreted within the
dielectric function formulation of $(Q, co). This can be
traced back to Hugenholtz and Pines who showed that,
in a dilute Bose gas having a large no, the poles in the
single-particle Green's (G) function show up in the total
density-density response function (y). When no=0,
there is no relation between the poles of the two func-
tions. For a strongly interacting Bose fiuid such as liquid
"He, where no is small, Gavoret and Nozieres showed
that below T&, y and G have common poles but there are
also additional terms in g which do not appear in G.
More recently, the dielectric formalism developed by Ma
and Woo and others has shown that, below T&, y and G
each have two poles, denoted co, and co2 and that y and G
share a common denominator. This interpretation has
recently been reviewed by GriSn. Above T&, y has the
usual zero-sound mode of energy oi(Q) =oii(Q) [the pole
of G being denoted as oi2(Q)]. Below T» this oi, (Q) is
shifted in energy due to the coupling with the single-
particle Green's function to cubi(Q) and the decay mecha-
nisms can be quite different. Also, below Tz where
no+0, the coi(Q} becomes a common mode of y and G
and for this reason co, (Q) also becomes an elementary ex-
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citation or single-particle mode in the fluid. Payne and
Griffin have recently contrasted the dilute Bose gas and
strongly interacting Bose fluid characters and discussed
the interplay between S(Q, co) and the single-particle
Green's function in model calculations. The weight of
the pole at co&(Q) appears to be very small in y since it
has not been observed. %ithin this picture, a change in
the mode energy and damping mechanism is expected at
T~. The extent of this change could certainly be a sensi-
tive function of Q —which appears to be the case experi-
mentally.

In summary the present data shows that the one-
phonon widths at both Q values increase sharply with T
up to Ti. For T & Ti, the HWHM of S(Q, co) increases
little with T. The details of S(Q,co}, however, are quite
different for the two wave vectors. The maxon frequency
co(Q, T) decreases little with increasing T for T &Ti
while the roton co(Q, T) drops significantly. For the max-
on, there is a broad multiphonon component which is
reasonably independent of T. Thus in Fig. 5, the
Sz(Q, co) defined by the scattering at r & T& and

SM(Q, co) defined by the low-temperature multiphonon
scattering are quite similar at Q=1.13 A '. The maxon
S ( Q, co) can, therefore, be reasonably described as a sharp
one-phonon component, which disappears at T&, super-
imposed on a reasonably temperature-independent multi-
phonon background. This is the essence of the WS mod-
el. In the SS model, there is a one-phonon component
which persists to T) Tz where it is defined as the
difference Sz(Q, co) —SM(Q, co) =Si (Q, co).

The roton behavior is quite different. At Q=2.03 A
the S~(Q, co) is much larger at low co than S~(Q, co) (see
Fig. 5). Thus either the multiphonon background or the
one-phonon contribution significantly increases the
scattering intensity at low cu as T increases toward T&.
As seen from Fig. 4, the sharp peak has either become
very broad or has vanished at T&. However,
S~(Q, co) —SM(Q, co) =—S, (Q, co) is large for the roton for
T & T&. The temperature dependence of the intensity of
the roton thus remains difficult to interpret.

Finally we reiterate that a necessary consequence of
the WS model is that the one-phonon intensity vanishes
at Ti whereas, in the SS model, it must remain essentially
constant. The two models are found to agree for T & 1.7
K. Although we have not been able to determine one-
phonon parameters for higher temperatures, it is none
the less clear from our observed results that there is a
marked change in the one-phonon contribution at or very
close to T&. It either vanishes there or becomes extreme-
ly broad.
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APPENDIX

In this appendix we outline the origin of the response
function (7) and relate it to the harmonic oscillator func-
tion used by Tarvin and Passell' and to the response
function for phonons in solids. In this way we attempt to
justify (7). For convenience we set Z (Q, T) =n = l.

The zero-order retarded Green's function for a free
Bose particle (or phonon) is

gi(Q, co) =6 i (Q, ~)= 1 1

CO
CO@

+ l 6' CO+
CO@

+ l E'

2' g

(cil+ i e ) cog
(A 1)

Clearly the first term (the Stokes term) of A, (Q, co) is
highly localized around co=co& and the second (the anti-
Stokes term) around co= —co&. Taking account of the in-

teraction of the Bose excitation with other particles or ex-
citations, ~

co& acquires a self-energy, X&(co), such that

aP&~co&+X&(co) =co&(co) i I &(c—o), (A3)

where X&(co)=5&(co) i I &(co)—is complex and frequen-

cy dependent and co&(cu) =co&+b,&(co). Also A&(co) and
I &(m) are even and odd functions of co, respectively [e.g.,
I &(

—co) = —I &(co)]. The basic approximations made to
arrive at (7) are to assume that

A i(Q, co) is highly local-
ized around &@=co& and co= —

co& and to set I &(co}
=I &(co&)—= I & and co&(co&)=co&. Substituting (A3) for
co& in (Al), and recognizing that the second term of (Al)
is localized at negative co = —cog for which
I ~( —co&)= —I &(co&)= —I &, we have

6i(Q, co)= 1

co cog+/ I g

1

co+cog +/ I g
(A4)

and

A, (Q, co) = —26", (Q, cu)

rg
(co —co&) +I &

Ig
(co+co&) +I &

(A5)

Here eg is the energy of the infinitely-lived single-
particle excitation. The corresponding response (or spec-
tral} function is

A, (Q, co) = —26,"(Q, co) =2m[5(co —co~ ) —fi(co+co~)] .

(A2)
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The form (A5) and (7) is discussed for quasiparticles by
Nozieres and for phonons by Ambegaokar et al. and
Lovesey. ' Equation (7) should be valid whether the exci-
tation in liquid He is interpreted as a quasiparticle or a
phonon for small I &. Equation (7) satisfies A, (Q, —co}
= —A, (Q, co).

By combining the Lorentzian functions in (7}, we may
write A, (Q, co) as
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2' QG, (Q, )=
co cog 2cogXg(co)

Writing again Xg(co) =b g(co) —i I g(co) and defining

(A7)

8coco(Q)I (Q)
[co —[co (Q)+I (g)]I +4co I (Q)

(A6)

Tarvin and Passell fitted (A6) to their data, calling (A6}
the harmonic oscillator (HO) function. We see that the
HO function and the symmetrized Lorentzian function
(7) are identical. However, Tarvin and Passell identified
the sum E (Q) =co (Q}+I (Q) in (A6) as the excitation
frequency squared. We believe from (7) that it should be
co (Q). Certainly, since WS used only the first term of (7)
to fit their data, for the WS and TP excitation energies to
agree beginning with identical data, we must interpret
co(Q) as the excitation energy in each case. As noted in
connection with Fig. 12, a large part of the difference be-
tween the HO excitation energies of TP and those of %'S
at SVP arose because TP used E ( Q) =co ( Q)
+I (Q) while WS used co (Q).

.Equation (7) and the HO function (A6) may also be ob-
tained by analogy with phonons in a solid. From Dyson's
equation the full Green's function is 6&

' =6, ' —X.
Using the one-phonon Green's function (Al) for G „we
obtain, rigorously,

cog(co) =cog +2cogkg(co) [cog +kg(co)]

we have

2' QG, (g, co) =
2

co cog+ l2cogI g(co)

and

geo g I g ( co )
A, (g, co) =

[co'—cog(co)] + [2cogI g(co)]'

(A8)

(A9)

If rQ is snail compared to NQ and we again set
I g(co) = I g, we may approximate (A8) by (A4) and (A5)
above. ' Also, following Cochran and Lovesey"' we
may obtain the HO oscillator function (A6) directly from
(A9) if we substitute cogl g(co)=coI g and cog(co)=cog.
This definition of I"

Q
is clearly consistent with choosing

I g as the value of I g(co) at co=cog and recognizes that
I g(co) is an odd function of co. On this basis cog rather
than Eg =(cog+ I g

)'~ represents the excitation energy.
From this discussion, we see that fitting a Lorentzian

(A5) or a HO function (A6) will give the same results pro-
vided the same excitation energy coQ is used. These func-
tions are valid for small I g. Near Tt, where the response
is broad, the frequency dependence of cog(co) and I g(co)
should be retained and defining a single-particle energy
eQ and inverse lifetime I

Q
is not meaningful.
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