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Magnetic field effects in Josephson networks
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The zero-temperature critical current of two-dimensional Josephson-junction arrays was studied
in square and triangular geometry. The critical current for a low magnetic field is determined by a
lattice-dependent pinning force, and is independent of the flux.

I. JOSEPHSON NETWORKS

Artificial devices have been constructed' that are
two-dimensional arrays of small superconducting islands
on a normal or insulating substrate. At temperatures
somewhat below the transition temperatures of the indi-
vidual islands, their phases become ordered due to the
Josephson effect. Understanding the effects of magnetic
field and temperature on these devices is a necessary first
step in the study of granular and disordered supercon-
ductor s.

It will be assumed in what follows that the fluctuations
in the magnitude of the order parameter on an island can
be ignored, so that the phase is the only relevant degree
of freedom; and that the Hamiltonian for the system can
be taken in the form

H= Es g cos(—P; —P E, ), —

where the sum is over all neighboring sites i and j. Thus
this is a site model for weakly coupled small chunks of
superconductor, each having one degree of freedom. The
magnetic field enters through the term E;~., defined by

(2)

where A is the vector potential and Co=bc/2e is the
flux quantum. In principle, the vector potential should
contain the contributions from the fields set up by the
Josephson currents, but these will be neglected on the as-
sumption that they are small. Then there is no Meissner
effect and the penetration length is infinite. The coupling
energy EJ depends on temperature and magnetic field
through the order parameter for the superconductor; it
will be assumed that the temperature dependence can be
incorporated by a rescaling of the explicit temperature,
and the magnetic effect will be ignored altogether by as-
suming that the applied field is less than 0„ for the is-
lands. Then all physical properties are periodic functions
of the flux 4 through an elemental plaquette of the lat-
tice, with period 4z. This effect is special to the periodic
Josephson array, it does not occur for a uniform super-
conducting sheet because there is no preferred length
scale to relate field to flux, and for a random array the
differing plaquette areas give incoherent contributions

which suppress the periodic effect. ' Associated with the
Hamiltonian (I) are the Josephson currents

I; =J sin(P; —P E, ),—

4=(p/q)40,
where p and q are integers, then

IyJ ~J/g

(4)

where J=2eEJ!fi. Choosing the phases to minimize the
Hamiltonian also forces the net current into each site to
cancel.

Several discussions have been given to the effects of a
magnetic field on a Josephson network. Alexander not-
ed that finding the equilibrium state for the linearized
Landau-Ginzburg model is equivalent to determining the
band edge for free electrons in a magnetic field, for which
the spectrum is known. This predicts a superconducting
state at all fields at zero temperature, and a critical tem-
perature curve which is a continuous function of flux.
The effect of the magnetic field is a nearly smooth de-
crease in critical temperature, with maximum depression
in the "half flux quantum" case.

The model Alexander studies is most appropriate to a
lattice of thin wires, since it is assumed that the order pa-
rameter is everywhere small, and that it varies along a
wire. Thus we may not directly transcribe this result to
the site model; yet it is clearly relevant so that the behav-
ior of the site model should be qualitatively similar. The
theory gives the highest temperature at which the order
parameter is nonzero anywhere, which is distinct from
the resistive transition; it is a determination of H, i( T) for
the network viewed as a type-II superconductor (though
perhaps we should define a T, (Hi), since at low tempera-
tures the Josephson network is a superconductor at all
fields, at least until the islands go normal or finite size of
the junctions becomes relevant).

Teitel and Jayaprakash' *" have given a different
theory for the critical temperature. They claim to deter-
mine the zero-temperature critical current density Ir, (H)
and from this determine a temperature Trs(H) that
demarcates the lowest temperature at which flux-flow
resistivity can occur. It is related to the flux as follows:
If the flux per plaquette can be written as a rational frac-
tion of the flux quantum
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and

kT~J =EJ/q .

sin(P „—P +, „+b,)I=J g
m, n

The theory is remarkable in that the dependence of
critical current on field is highly discontinuous, and that
the predicted critical current density is small for all but a
few special values of 4.

The present paper will show that the effects of a mag-
netic field on a Josephson network can be interpreted in
the language of type-II superconductivity. The magnetic
field gives rise to singularities in the order parameter
field, which are the locus of vortices in the current distri-
bution and would be regions of concentration of the mag-
netic field if the penetration depth were finite. The densi-
ty of these vortices is 8/4, . The vortices move as if they
were point particles subject to three forces: a pinning
force due to the lattice structure, which tends to confine
them to the interior of a plaquette; a Lorentz force whose
direction and magnitude is given by I XB; and a mutual
repulsion. At zero temperature, an isolated vortex will
move only if the Lorentz force exceeds the pinning force;
this condition determines the critical current density.
The Lorentz force and the pinning force are independent
of the magnetic field, and thus for weak fields the critical
current density is independent of the field, in disagree-
ment with Eq. (5). The critical current density can be
anomalously higher for special values of the applied field
that give rise to a simple superlattice commensurate with
the network itself, because the lattice moves piecewise
and this is opposed by the mutual repulsion. This effect
is most operative at 4= —,'40 because this is the case
where the vortex density is highest.

In the absence of a magnetic field, where the phases can
all be the same, we have a current density (current per
horizontal bond) I=J sin( b, ). In the absence of the
phase strain no supercurrent would flow; the critical
current density I, =J.

The energy was minimized by simple relaxation. A
typical starting configuration for 5=0 is shown in Fig. I.
The upper part is a representation of P „which resem-
bles a twisted surface with cuts in it. The twist is the
response of P to the vector potential term. Well away
from the ends of the cuts, the cuts are discontinuities of
2m,' they are needed to allow the surface to twist while
still matching (modulo 2~) at the opposite edges. The
number of such cuts is LWf; this figure is for f=1/L,
which is the smallest possible nonzero field.

The lower part of Fig. 1 is a representation of the
current distribution. The ends of the cuts appear here as
the location of the vortices; there is no physical meaning
to the location of the rest of the cut.

The configuration shown in Fig. 1 is a local energy
minimum but not an absolute minimum. The repulsion
force favors a different arrangement with larger spacing,
but the pinning force prevents motion.

The simulation proceeds by slowly increasing 5, while
continually relaxing the configuration, so that its adiabat-
ic evolution can be observed. This induces a current
(horizontally to the left in the representation of Fig. 1)
which in turn gives rise to a vertical force on the vortices.
The current, force, and energy increase until the pinning

II. ZERO-TEMPERATURE SIMULATIONS

Rectangular sections of the square lattice having width
8' and length L, were studied. The Landau gauge was
chosen for the vector potential

A=yXB,
so that for the square lattice, E; =0 for links in the x
direction, and

E; =axe/@o=2mmf

for links in the y direction, where the lattice sites are
x=ma, y=na for integers m, n. An additional term
representing a "phase strain" was added to the Hamil-
tonian, and periodic boundary conditions were imposed.
With the phase strain oriented along the x axis, Eq. (1)
becomes

~ ~

~ I

I I ' ' ~

~ ~ ~

~ ~

~ ~

I
. I

i ~

I'~ I

H= EJ g cos(Q „——$ +i „+b,)

m, n

EJ g cos(P „—P
—„+,—2nmf ) .

m, n

Here, f=4/4o; periodicity requires that f be a multiple
of 1/L. The phase strain is represented by 6; its effect
can be most clearly seen in the expression for the current
density in the x direction:

FIG. 1. The phase distribution, and the corresponding
current pattern (L =32, &=8,f=—'). Top panel: the negative
of P „ is represented as height in this projection view. Lower
panel: A line has been drawn starting at the middle of each link
in the direction of the current and with length proportional to
the current. The scale is set by the maximum current J; the pic-
ture looks almost the same at the critical current because the
average current per bond is still small.
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force is overcome; then some of the vortices move,
changing the length of the cut and thus relieving the
phase strain. Moving one vortex the full width 8'of the
strip effectively decreases the total phase strain LA by
2~, so moving one vortex one step is equivalent (on the
average) to decreasing the phase strain by 5b, =2rr/LW.
Figure 2 shows how the energy and current density
evolved as the phase strain increased from zero to 1 rad
in steps of 0.001 rad, starting from the configuration
shown in Fig. l. In the initial stage (up to b, = ,' rad), —

every other vortex in the row advances, which serves to
spread them apart, eventually arriving at square superlat-
tice of edge &32 (rotated by 45'). The subsequent
motions of the vortices cause the superlattice origin to
move vertically; the periodic drops in energy and current
that appear in Fig. 2 occur when the whole superlattice
moves one step downwards. Since this entails moving
L Wf vortices one step, the periodicity interval is
5b=2rrf =0.196 rad for the L=32 strip. The largest
current density is 0. 121Jper horizontal bond. This value
decreases slightly as the vortex density is lowered. For
example, W=8, L=64, f=1/L gave I, =0.11, and
W=10, L =100,f=1/L gave I, =0.107. The equilibri-
um configuration in these latter cases is a single row of
vortices, of horizontal spacing L/W, implicitly forming
an unrotated square lattice. Since the mutual repulsion
of the vortices plays no role here, these values are a good
estimate of the magnitude of the pinning force and the
smallest possible critical current density. '

The largest simulations attempted were L =32,
W=32, for f=

—,'„which has 32 vortices present. One
possible arrangement is the &32 square lattice discussed
earlier; this was observed and the behavior was identical
to that for the L =32, 8'=8 strip. Another possible ar-
rangement is a 8X4 rectangular lattice; if the short edge
is parallel to the direction of current flow, it transforms
into the &32 lattice, but the alternate orientation is
stable, with a critical current of 0.185.

This study also provides an estimate of the barrier
height preventing free motion of the vortices. The max-

FIG. 2. Energy and current density with increasing phase
strain (L =32, &=8, f=

—,', ). The top trace is the energy, and
the lower is the current density. The initial con6guration was
not the ground state, and the 6rst eight jumps occurred as vor-
tices moved to better positions. Thereafter the whole vortex ar-
ray moved one step every time the critical current was reached.
The tic marks on the abscissa are drawn at intervals of m/32,
which is the periodicity interval predicted by Eq. 10.

imum energy of a W =8, L =32, f=
—,', configuration

(just before the eight vortices move} is —1.8130EJ per
site; thus the energy difference between a vortex just
about to move over the barrier and the minimum energy
is 0.36EJ per vortex.

Other lattice sizes and field values were studied. Many
of these supported the periodicity rule

56=2rrf, (10)

although it was more common for the vortex array to
move piecewise rather than all at once, giving a periodic
succession of small drops in energy and current. These
multistep patterns were especially common when the vor-
tices were not spaced uniformly in the x direction. A few
cases were observed in which the period was a multiple of
Eq. (10), due to an alternate choice of ordered
configurations.

Random arrangements were also constructed for
L =32, W= 32, f=

—,', . These rapidly acquired and main-
tained a "liquid" arrangement, with rather uniform
neighbor spacing but no orientational order. It is
relevant to note that "sideways" (parallel to the current)
motion of the vortices was only rarely observed; the mu-
tual repulsion forces were generally balanced too well to
overcome the pinning force. This effect, which is special
to the geometry considered, obviously prevents the cry-
stallization of the vortices. As 6 was slowly increased,
only a few vortices reached criticality at a given time, so
that the relaxation of the phase strain took place by many
small steps. The current density stayed close to its criti-
cal value, which was 0. 10+0.01J. Eventually the se-
quence of configurations became periodic, with period
2m /32.

Another study for L =32, W=32, f=
—,', imposed

equal slowly increasing phase strains in both the x and y
directions, so that vortices were forced to move in both
directions. Now the &32 pattern was no longer stable; it
decomposed into a liquid in which most of the vortices
had six equally spaced neighbors. For small f the ground
state is probably a large-scale periodic structure which
closely approximates the (incommensurate) triangular su-
perlattice, which is the ground state for the type-II super-
conductor. ' The lowest energy observed for the liquid
was —l. 8272E~ per site, which is less than the &32 state
( —1.8243EJ). The horizontal and vertical components
of the critical current density for this liquid were again
0. 10+0.01J.

For f=
—,', the ground state is a checkerboard pattern

of vortices, ' for which the critical current density is
0.414J. Simulations on a 32X32 array showed that the
relaxation process that occurs at the critical point is the
advance of one column of vortices by one step (giving
three vortices in a row}, which quickly rearranges into
two domain walls separating the original vortex lattice
from a stripe domain which is again the checkerboard
but with alternate registry. The domain walls are pairs of
adjacent vortices. The simulations suggest that the
"shear strength" of the domain wall is lower than that of
the lattice, so that the wall moves whenever the current
density exceeds 0.25J. The walls repel each other, so that
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once formed, they do not anneal out. This suggests that
the ground-state properties may not provide a complete
description of the dynamical behavior.

As shown in Fig. 2, the advance of a vortex is a nonadi-
abatic irreversible process. The rapid change in phases
occurring as a vortex advances is associated with a volt-
age field according to the second Josephson equation; the
energy which the relaxation process removes from the
system would be dissipated by normal processes. A more
accurate simulation would include a resistive shunt to
each Josephson junction, and find that the advance re-
quires a time of order A/2eJR. We may ignore this
correction if we assume that the rate of increase of 5 is
slow on this time scale. This is equivalent to requiring
that the applied electrical field be less than RJ. Then we
will observe a current whose temporal behavior is given
by Fig. 2: a dc component whose magnitude is compara-
ble to I, independent of the applied field, and a strong ac
component of frequency

2eV/Lfi55=2eV/Lhf .

The Teitel-Jayaprakash theory assumes the evolution
in adiabatic at all stages, so that the configuration
changes whenever a lower-energy state becomes avail-

able. This will occur at intervals 5b, =2m/q [q is defined
in Eq. (4)]; the current would then oscillate syminetrically
about zero and never exceed mJ/q. In fact the evolution
is not adiabatic, because the phase configuration changes
continuously, and the di6'erent vortex arrangements are
then separated by energy barriers. Furthermore, the suc-
cession of configurations required to maintain the Teitel-
Jayaprakash periodicity rule may require the vortex pat-
tern to jump several squares at a time.

A similar study was undertaken on the triangular lat-
tice. Since the 2ir branch cut is shared by only three
bonds (instead of four) at the end of the cut, the
configurations are closer to criticality and the pinning
force is lower. The phase strain was aligned to drive a
current parallel to one of the bonds; in this geometry the
critical current density in the absence of a field is l.7602J
per horizontal bond (0.5867J per bond). For low-field
configurations the critical current density was found to be
0.068J per horizontal bond.
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