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Impurity states in liquid-helium films
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We study the properties of impurity atoms of 'He and spin-polarized hydrogen isotopes in films of
liquid He adsorbed to a substrate. We find that a He impurity has three ormorebound states, two
of which we associate with surface states. Hydrogen atoms are very weakly bound and have only
one bound state. Depending on the thickness of the film, deuterium impurities may form two sur-
face bound states, or may penetrate to the substrate. For all cases studied, tritium impurities also
tend to penetrate to the substrate. We develop the theory of the formation of "self-bound" or "po-
laron" states, but we see no evidence that such states can become energetically favorable.

I. INTRODUCTION

The study of adsorbed films of quantum liquids is
presently an active area of a variety of experimental stud-
ies. ' These are, among others, the investigation of the ex-
cited states by neutron-scattering experiments, ' mea-
surements of the third-sound velocity, ' and electron-
mobility experiments ' which provide information on the
layer structure of such films. '

A further exciting experimental aspect of adsorbed
helium films is the opportunity to generate two-
dimensional Fermi systems of electrons and He atoms.
Electrons bound to helium surfaces have been investigat-
ed by Dahm and collaborators. '

Systems of 3He atoms adsorbed on the free surface' or
to films of liquid He are of special interest. " '3 This sys-
tem is an (almost) ideal two-dimensional Fermi liquid; a
layer of He atoms with a density less than that of a
monolayer may be treated as a dilute system of impuri-
ties. On the surface of bulk He, the impurity particles
have a binding energy' ' of about 2.2 K relative to the
state where the He atom exists in bulk He. The physi-
cal picture becomes more complicated for the case of He
atoms on films of He. A second "layered" state may ex-
ist within the medium, ' which generates a mixture of a
quasi-two-dimensional and a three-dimensional system.
The ability to change the properties of the He with the
thickness of the He background makes these systems ex-
perimentally very interesting, ' and poses a challenging
theoretical problem.

In the past there have been several studies of the in-
teraction between a homogeneous or inhomogeneous heli-
um liquid and an impurity atom. ' Among those stud-
ies the work of Ref. 28, for the first time, included the
layer structure of the adsorbed liquid. The major draw-
back of that work was that it has been based on an ap-
proximation introduced by Lekner which assumes that
the correlations between the impurity and the back-
ground atoms are the same as the correlations between
the individual background atoms. This rules out the ap-
plicability of the theory to impurities of a different
species, for example hydrogen atoms.

The possibility' of studying the low-temperature prop-
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where U,„b(r;)is an external potential, which we will

identify with the substrate potential which the particles
feel, and V(

~
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) is the two-body interaction.
The best choice of the one- and two-body functions

u, (r) and u2(r;, rj. ) is the one that minimizes the energy
expectation value

erties of systems of hydrogen isotopes as atoms, rather
than molecules, has made necessary the extension of the
impurity theories to systems, where the interaction be-
tween the impurity and the background is considerably
different from the interaction between two background
atoms. A theoretical description of such systems has
been attempted by Mantz and Edwards and Guyer and
Miller. Mantz and Edwards predict for a hydrogen a
binding energy of a few tenths of a degree, whereas the
prediction of Guyer and Miller was less than 0.01 K and
therefore of no practical consequence. Both theories
suffer from uncertainty in the impurity-background
correlations and the lack of a layer structure of the un-
derlying film, which leads, as we will see, to interesting
effects. Therefore, we have generalized the theory of Ref.
28 to the inclusion of arbitrary impurities.

For didactic reasons, we brie6y review the ground-
state theory of Ref. 28. In the variational approach used
there, the ground-state wave function of an A-particle
system is approximated by a variational form
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fd'r, . . . d r~4p(r&, . . . , rz)H+p(r&, . . . , rz)

fd r&. . . d r„%'p(r,, . . . , r„)
(1.3)

i.e., the solutions of the variational problems
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An exact evaluation of the energy expectation value (1.3)
for given functions u&(r) and uz(r, , r ) is possible with
Monte Carlo techniques, but restricted to simple choices
of correlation functions. Alternatively, one may sacrifice
some of the calculational accuracy for the sake of a more
flexible choice of the correlations and the possibility to
study more delicate effects like, for example, the propaga-
tion of collective excitations or the response of the system
to external forces. Of course, using an approximation
method to evaluate the energy expectation value has the
consequence that the variational problem (1.4) is not
necessarily meaningful. It was one of the most important
results in the formal studies of variational wave functions
that the hierarchy of the so-called hypernetted-chain
(HNC) approximations is the only procedure that allows
a meaningful optimization of the correlations at any level
of sophistication, giving a qualitatively correct descrip-
tion of the short- and the long-ranged correlations.

It is im.portant, for the problem of describing the struc-
ture and excitations of an adsorbed film, to have an ade-
quate treatment of both the short- and the long-ranged
correlations: The short-ranged correlations are needed to
keep the particles apart from each other in the region of
the repulsive core of the two-body interaction. They are
also responsible for the formation of the layer structure
of the film. Long-ranged correlations describe the low-
lying excitations which are needed to treat the response
of the system to the perturbation due to the impurity po-
tential. Finally, we note that the optimized HNC theory
is simple and flexible enough to be used without further
approximations in quantum liquids with simple symme-
try breaking. Thus, we are able to study anisotropies of
the correlations in the surface.

There are some well-known disadvantages to the HNC
method: In its simplest version, the quantitative agree-
ment between the predictions of the HNC theory and the
experimental results is only fair. Being an entirely micro-
scopic theory, there is no way to honestly introduce phe-
nomenological parameters to improve the agreement
with experiments. The cure for this problem has been
known for some time: ' It is the systematic improve-
ment of the HNC approximation by the inclusion of "ele-
mentary diagrams, " and the generalization of the wave
function to incorporate three-body correlations. The
most honest calculations done for bulk He lead to an
agreement of the binding energy and the velocity of
sound within better than 10% and an excellent reproduc-

I

tion of the pair correlation function. The most impor-
tant point, for our purposes, is that more sophisticated
wave functions lead to a better quantitative agreement,
but lead to no further qualitative insight into the physics
of the system. Therefore we restrict ourselves to the
HNC approximation and expect it to give us the correct
overall physical picture, whereas we allow for some quan-
titative uncertainties.

In Sec. II, we develop the HNC theory for the impurity
in an inhomogeneous medium. We derive a variational
energy expression and the Euler equations for the
impurity-background corre1ations and develop an
eScient algorithm for their numerical solution. Section
III is devoted to the derivation of some formal properties
of the relevant interaction matrix elements in the long-
wavelength limit, and the illumination of the relation of
our theory to perturbative approaches. The theory is ap-
plied in Sec. IV to the case of impurities of He and atom-
ic hydrogen isotopes in the surface of an adsorbed film of
He. We find that the He impurity can have three or

four bound states depending on the thickness of the film.
The H isotopes do not have a bound state within the

bulk helium liquid. However, their attraction to the sub-
strate is about twice as strong as that of He background
atoms. For the films under consideration, which display
up to five layers, we find that the tritium atom is always
so strongly attracted to the substrate that it penetrates
the liquid layer. The same happens for the D atom for
two- and three-layer substrates, whereas the D atom has
two bound surface states for films with more than three
layers. The H atom always stays on the surface of the
liquid and has one bound state whose binding energy de-
creases with the film thickness. We argue that the
asymptotic value of the binding energy should be about
0.3 K.

In Secs. II-IV, we have assumed that the state of the
impurity is translationally invariant on the surface. In
Sec. V we study the question whether it could be energet-
ically favorable for the impurity particle to form a local-
ized (or self trapped or p-olaron) state. From the structure
of our equations we conclude that the translationally in-.

variant state is always a local minimum of the energy,
i.e., it is locally stable. In order to break the symmetry of
that state, macroscopic changes of the impurity wave
function must be considered. We investigated such mac-
roscopic changes of the impurity wave function but did
not find indications for a polaron state.

Section VI summarizes our results and discusses fur-
ther applications. An Appendix gives details of the nu-
merical optimization procedure for the bulk and surface
impurity problem.

II. WAVE FUNCTIONS, ENERGIES,
AND KUI.KR EQUATIONS

The simplest variational wave function for an inhomo-
geneous N-particle Bose system with an impurity has the
form

A A

pp(lp, r, , . . . , r„)=exp—,
' u, (rp)+ g u, (r, )+ g u2(rp, r, )+ u2(r;, r, )
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A
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with the understanding that u, (ro) and uz(ro, r, ) are

diferent from u, (r, }and uz(r;, r ) for i&0, j~0.
The Hamiltonian of the (A +1)-particle system con-

sisting of A background particles (labeled 1. . . A) and
one impurity particle (labeled 0) is

t A g2H= — Vo+U, „b(ro)+g — V;+U,„b(r;)
2ptl 0 2pal

+ g V(~ro —r;~)+ g V()r, —r, ~). (23)
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Here, the U,„b(r;}is the external substrate potential
which the particles feel, and V(

~
r; —r

~
) is the interac-

tion between two individual particles. Note that we will

again drop the explicit reference to the impurity particle
(otherwise indicated by the superscript I) whenever the
meaning is unambiguous. Thus, the U,„b( ro) and
V(

~
ro —rj ~

) are diferent from the U,„b(r;) and
V(

~
r; —r

~
) for i&0

The superscript I stands for the impurity, i.e., u, (ro) is

the one-body part of the impurity wave function, and

uz(ro, r, ) is the correlation function between the impurity
and a background atom. To simplify the notation we
adopt the following convention: We will always label the
impurity coordinate as ro and omit, whenever it can be
done unambiguously, the superscript I. Thus, we will al-
ternatively write the wave function as

+o(ro ri

The energy that is necessary (or that is gained) by add-
ing one impurity atom to a system of A background
atoms is

(2.4}

u, (r;;P)=u, (r;)+P U,„b(r;)— V u, (r, )
8m;

(2.5)

for i =0, . . . A (note, again, that the mass and the sub-
strate potential are different for i =0) and (b) each two-
body function uz(r, , r ) replaced by

where EI
„

is the energy of the system containing one im-

purity and A background atoms, and EA is the energy
(1.3) of the unperturbed background system. In our ap-
proximation, EI

„

is the energy expectation value of the
Hamiltonian (2.3) with respect to the wave function (2.1).
We deviate in our notation from the one of earlier works
for the bulk system, which considered the energy need-
ed to replace a background particle by the impurity. Un-
like in the bulk system, the energy difference (2.4) is the
relevant physical quantity in our case of a liquid film ad-
sorbed to a substrate. For the formal developments, that
are necessary to extend the impurity theories for bulk
systems to the inhomogeneous case, it also turns out that
it is almost trivial to calculate (2.4) using the results from
the density matrix theory of Ref. 28.

The total energy E~ „ofthe system with the impurity
can be calculated just as it is done in the background sys-
tem with, the usual Jackson-Feenberg (JF) integration by
parts. We define a generalized wave function
4o(ro . . . rg P) by the following replacements in Eq.
(2.2): (a) each single particle function u

~ (r; ) replaced by

uz(r;, ri;P)=uz(r;, r, )+P V( ir; —r, i
)— V+ V uz(r r)

8m; '
8mj:—uz(r;, ri)+pV, F(r;, rj) . (2.6)

We now define the generalized wave function as

q'o(ro ri rw '&) =e"P
p l U'(ro rw )+&V'(ro

with

(2.7)

and

A

U*(ro,r„.. . , r„)=g u, (r;)+
i=0 I,J

0&i &j& A

uz(r;, r~ ), (2.8)

A g2
V'(ro, r, , . . . , r„)=g U,„b(r,) — V u, (r, ) +

8m, 0&i &j&A
VJF(r, , r, ) . (2.9)

The energy, the one- and two-body densities, and the Euler-Lagrange (EL) equations (1.4) are now conveniently for-
mulated in terms of the generalized wave function and its derivative with respect to P. We define generalized back-
ground and impurity one-body densities

fd ri. d ra'4(ro ri .
pi(ro ~)= (2.10)

Jd "o . d raq'o(ro .
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f "2 "A o( 1

p, (r, ;P)= A
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p2(ro, r1,P) = A

fd ro. . . d rA @o(ro, . . . , rA, P)

f d r3. . . d r A%' o(r„.. . , rA; p)
p2(r, , r2»}= A( A —1)

fd 1'''d rA+0(rl ''' rA P)

p2(r, , r, ;P)=p, (—r, ;»)g.2(r, ,r;»)p, (r;») .

(2.11)

(2.12)

(2.13)

(2.14)

For the background quantities, we can relate the P-
derivatives of the generalized densities with the energy
and the Euler-Lagrange equations (1.4}

E„= ln d r1. . . d rA+o(r1, . . . , rA;P)3 3 2

EA a
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5u, r 8 '
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E
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P2(r1, r2, p) — ( V1+V2)p2(r1, r2)=8
8m

and

=P2(rl r2)
8
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(2.17)

p', (r;, r, ) = [p1(r; )p1(r, )+p1(r; )p1(r, )]g(r;,r, )

+p, (r;)p, (r, )g2(r;, r, ) . (2.18)

and find for the impurity density

exp[m(ro', P)]
P1(ro}= f d roexp[m(ro;P)]

and the binding energy

(2.20)

a~E—:Et, A
—EA = f d rop(ro) ~(roiP)

P=O

(2.21)

The advantage of this procedure is that one can use the
density-matrix results (5.18) and (5.19a) of Ref. 28 with a

For the calculation of the impurity energy, we define

3 3 2d r1. . . d rA+o(ro, r1, . . . , rA', P)
exp[m(ro, P)]= fd r1. . . d r Addio(r ,1. . . , r A; p)

(2.19)

g(r;, r2) =exp[u2(r;, r2)+N(r;, r2)],

X(r, , r2}=g(r;, r2) —1 N(r;, r2), —

h(r, ,r2}=g(r, , r2}—1,
N(r;, r2}=[Xeh](r;,r2) .

(2.24)

Note that the two-body functions g(ro, r, ) etc. involving
the impurity atom are not symmetric in the coordinates.
To determine the one-body densities in terms of the one-
body functions u, (r,. ) and the two-body correlations, we
also need the Born-Green- Yvon (BGY) equation

Vp, (r, ) =p, (r; )Vu, (r, }

+p, (r;)f d r2g(r;, r2)V;u2(r;, r2) . (2.25}

[In Eqs. (2.24), we also allow for an implicit P dependence
of all functions. ] We can now use the density matrix re-
sults of Ref. 28 to calculate n.(ro;P) [Eq. (2.19)] in terms
of the diagrammatic quantities introduced in the HNC
theory. We must only replace the u2(r„r2)/2 in (5.18a)
of Ref. 28 by u2(ro, r, ) and imply a dependence of the
correlations on the parameter P. Using the results of Ref.
28, we can write

slight modification for the calculation of ~(ro»). The de-
tour through the mixture formalism used in Ref. 26 can
therefore be avoided.

The derivations of this section have been exact so far.
In order to derive computationally manageable expres-
sions, we must now introduce the HNC procedure for in-
homogeneous systems. This leads to a systematic se-
quence of approximate relations between the one- and
two-body components of the wave function, the densities,
and distribution functions. %e restrict ourselves here to
the simplest approximation, known as the HNC approxi-
mation For .any two-point quantity [i.e, any function of
two variables F(r, , r )], it is convenient to define

F(r, , r }=Qp,(r, )F(r, , r )Qp, (r ) (2.22)

and the convolution product of two functions A(r;, r~)
and B(r;,r )

[A eB](r;,r )=f d rk A(r;, rk)B(rk, r ) . (2.23)

The HNC approximations relating the two-body correla-
tions u2(r, , r ) to the pair-distribution functions g(r, , r, )

are, for i =0, 1
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m(rp;i6)) =u, (ro)+ f d r, [X(ro,r, ) ——,'h(ro, r, )N(rp, r, )]p,(r, ), (2.26)

where X(rp, ri ) N(rp ri ) are calculated from Eqs. (2.24). The calculation of d E [Eq. (2.21)] is now an algebraic exercise.
The calculations are considerably simplified by the assumption that the background correlations have been optimized,
i.e., we can use Eqs. (2.16) and (2.17). After a number of straightforward manipulations, including the elimination of
the one- and two-body functions u, (rp) and uz(rp, r, ), we can find a variety of equivalent, but algebraically different for-
mulations, among which we found the following form most convenient:

~E=f d "o
2 I V&pi«o) I

'+Pi«o»sub«o} +fd "od ripi(ro}Pi(ri}g'(ro ri}V(
I ro —ri I

}

f2 $2
+fd rod r, p, (rp)p, (r, )

I Vp+g(rp, r, )
I

+ I V, +g(rp, r, )
I

2mo 2m

+2 rod r&p& ro pi r& h ro ri I ro r (2.27)

where we have defined in view of later use

wt(rp, r, )=—,'[H, (0)+H, (l)]N(rp, r, )+—,'[X«H, X](rp Ii)

and the one-body Hamiltonian

1 1
H, (i}—:— Vp, (r; } V

2m; p, (r, ) p, (r, )

(2.28)

(2.29)

(2.30}

With

The density of the impurity is calculated by minimizing the energy (2.27} with respect to Qp, (rp). We get the usual
Hartree equation

$2
V +Pl(ro)+ [U b(ro}+ Vsc(ro)]+Pi(ro) =8+Pi(ro)

2mo

3 3
2 2

Vsc(ro)= «ipi(ri)g(ro ri}v(
I ro —r, I

)+ d rip, (ri)
I Vo/g(ro, ri)

I
+ I ViVg(ro ri)

I

2

21' p 2m

2

d r, h(rp, r, )p, (r, )wt(rp, r, ) — Vop, (rp) Vp d r, d r2h(ro, r, )h(ro, r, )p, (r, )X(r„rz)p,(r2) .d r
h'

3 3

16mpp, rp

(2.31}

The two-body Euler equation is finally derived by variation with respect to Qg(ro, r, ). After a number of algebraic ma-
nipulations that are virtually identical to those used in the derivation of the Euler equations for the background, one
arrives at

[H, (0)+H, (l)]X(ro ri) [X«HiX](ro ri}=—2~p-h(ro rl} .

The "particle-hole interaction" is, just as in the background system

$2
Ii-h(ro ri)=g(ro ri}V( Iro —ri I

)+ I Vo&g(ro ri}
I

+
I Vi&g(ro ri}

I
+h(ro ri)wt(ro ri) .

2mo 2'

(2.32)

(2.33)

H, (rp}IP.(rp) =t, g, (rp) (2.34)

Equations (2.30)—(2.33) form a complete set of equa-
tions determining the two-body correlations and the im-
purity density from the structure of the background and
the one- and two-body potentials. The major numerical
effort of the calculation is the solution of the two-body
equation (2.32), which is complicated by the fact that the
impurity distribution functions are not symmetric. A
convenient way to solve the two-body equation (2.32} is
to first solve the eigenvalue problems

and

f d rzHi(r, )[5(r,—rz) —X(r„rz)]iI};(r2)=A'to;p;(ri) .

(2.35)

Details on the procedure are described in the Appendix.
It turns out that the solutions of the second eigenvalue
problem (2.35) are already known from the density fluc-
tuations and the collective excitations of the background
system. We find (c.f., Appendix)
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)
—)/25[ (i)(r )]1/2 (2.36)

(4; I V,-« I
{('/)= —2 g f;(ro) '

P, (r)),
f; +Ra)J.

(2.37)

which is the generalization of Eq. (A3) for the inhomo-
geneous case. The other manipulations for the iterative
procedure to obtain the optimal pair correlations are
identical to the ones in the bulk system and need not be
repeated here. Most of the work requiring extensive nu-
merical calculations has already been done in the calcula-
tion of background system. The only new aspect is the
diagonalization of the one-body Hamiltonian H, (0).

III. INTERACTION MATRIX ELEMENTS,
STRUCTURE FUNCTION, AND UNIFORM LIMIT

Before we discuss the numerical application of our
theory to He and hydrogen atoms in the surface of a
liquid He film, we first investigate the coupling of the
impurity to the low-lying excitations of the background.
Information on this coupling is needed for the qualitative
study of polaron formation, the calculation of the impuri-
ty effective mass, and the impurity-impurity interaction.
As the lowest-lying collective mode "softens" with in-

I

where the Ace; are the collective excitation energies of the
background, and 5[p", (r) ]'/ the spatial shape of the cor-
responding density fluctuations. We then obtain the stat-
ic structure function of the impurity

h(ro r))—=S(ro, r, )

= Jd r2&(ro r2)S(r2, r

creasing film thickness, impurity properties that are
determined by these soft modes can be a sensitive probe
for the surface structure of the underlying liquid. ' The
physical interpretation of our theory is illuminated by
comparison to conventional theories applicable in the
weakly interacting limit.

The key elements of the theory are the matrix elements

(3.1)

between the excitations of the background system and the
impurity atom. To study the singular behavior caused by
the energy denominator in the long-wavelength limit it is
suScient to restrict the discussion to the lowest-lying
states. From Eq. (2.34) we see that

'~ll'll

Po(ro) =3/ Pi(zo& L
(3 2)

where we have normalized the wave functions to an area
L parallel to the surface. The lowest-lying excitations of
the background must be worked out separately for the
adsorbed film and in the limit of an infinite half-space.

The lowest-lying collective excitation of an adsorbed
film of finite thickness is the third-sound mode
(oo(q(( ) c3q~(, where c3 is the third-sound velocity, and q((
the mornenturn parallel to the surface. The third-sound
velocity c3 is given in first approximation by the Van der
Waals acceleration of the liquid in the substrate potential.
The shape of the density Auctuation is determined by the
solutions of the eigenvalue problem (A8); observing the
normalization (A9), the lowest-energy eigenfunction of
Eq. (2.35) is in the long-wavelength limit given by35

Po(r) =[))lo)o(q~()] ' H, (I(' '(r)
1/2

2~)r) o(qg&

'5
qg 5p (z)

2m fi(oo(q) ) Qp, (z) L

[H)(0+)+2V «(0+)] '
] gp))

(&p) I [ i(o+&+ V, «( +& 'l&p))

(3.3)

Vz «(0+ ) is the long-wavelength limit of the particle-hole
interaction of the background

V), «(zi, z2, 0+):—Jd r}~QP)(z) )V) «( , z)rZ(~2)QP)(Z2),

I

keeping only the terms that dominate the long-
wavelength behavior, we obtain

( 4(qp) I
X

I (t'o(q(( »

and

(3.4)
3

AmoC3q~~

' 1/2

(p) I ~~-«( +'I5p)' (qadi 0),

1 d d 1Hi(0+ ) = — p)(z i )
2ln ~p (z ) dz) dz) /p (z )

(3.S)

We have not spelled out the z dependence of the opera-
tors in the second line of Eq. (3.3). The last line of Eq.
(3.3) defines the 5p, (z), which is the shape of the density
fluctuation normalized such that f dz 5p, (z)=1. Insert-

ing the form (3.3) of the lowest-lying mode in (3.1) and

(3.6)

where we have applied the definition (3.4) for VI „(0+).
Using (2.37) we can finally work out the static struc-

ture function in the long-wavelength limit. We find

S(zo,zi q(i)

(pi I V,'«(0+)
I 5pi&= —Qp)(zo), 5+p)(z) ) . (3.7)

2mc3
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The derivations are a bit more delicate in a semi-infinite
medium. Here, the linear third-sound spectrum is re-
placed by the ripplon dispersion relation

(3.8)

Z 1

fi~ (qtl) p, (zo)
I
X(0+)

I dz 1

~0 . (3.15)

qll

2mp„co„(qi)

' 1/2
dp, (z, )

Pi(zo} I X(qi }
I

dZ1

(3.10)

In the case of a free surface, the density profile of the
impurity particle is completely determined by the density
profile of the background, i.e.,

Pi(zo)=Pi[Pi(z)](zo} . (3.11)

In particular, the impurity density moves with the sur-
face of the background if the background density profile
is displaced rigidly by a distance g, i.e.,

Pi[pi(z+k)]( o) pi[pi(z))(zo+4) . (3.12)

Expanding Eq. (3.12) to first order in the displacement g,
we find the relation

dpi(zo} ~pi«o} dpi(zi }
Z1

dzo 5p, (z, ) dz,

dp, (z, )
=pi(zo) d'r, X(ro, r, )

dZ1
(3.13)

by the definition of the "direct correlation function"
X(ro I i). From the relation (3.13) we see that the matrix
element of X appearing in Eq. (3.10) vanishes for

q~~
~0:

where p„is the asymptotic density of the film, and o. the
surface energy. The corresponding eigenfunction of the
normal mode (A8), (A9) is

Po(r)=[%co„(qi)] ' H, V„(z,qi)

Qp, (z) . (3 9)
mp„co, qi dz

Using the shape (3.9) of the collective modes and the rip-
plon dispersion relation Eq. (3.6) we find

(P IX(r, r, )IP )

dpi(zi }
p', (z, )

I V,'„(0+)
I

=0 (3.17)

in an infinite half-space. We can finally calculate the stat-
ic structure function for qt~~0, using (3.16), (3.17), and
(2.37):

S(zo,zi, qi )=— 2 dp, (z, )
Pi«o) I Vi I

eqll z i

d&pi(zi)
X pi(zo }

Z1
(3.18)

Our results on the structure of the interaction matrix ele-
ments will be used in Sec. V for a qualitative study of the
formation of "self-trapped" or "polaron" state.

To conclude this section, we investigate the relation-
ship between the present variational theory and alterna-
tive approaches based on perturbation theory and
effective interactions. A direct application of these
simplifications is the interaction between electrons and
liquid helium surfaces' where the assumption of a
weak interaction is indeed justified.

Our formal derivation of the weakly interacting limit
closely follows the derivation of the "uniform limit" in
the bulk system in the sense that we keep all impurity-
background correlations in coordinate space to second or-
der, but treat all convolution products between correla-
tion functions exactly. This approximation corresponds
to assuming weak, but long ranged correlations.

To be specific, we identify in this approximation the
particle-hole interaction the bare impurity-background
interaction

vp h(ro ri) = v(
I ro —ri I » (3.19)

Since V~ h (ro i'i ) is a short-ranged function, its
Fourier transform is analytic at the origin. Therefore,
V& h (zo Z „qi) has the expansion

~p h(z-o zl qi ) ~p h(z-o zl 0+ )+qi Vi(zo, z, ), (3.16)I

with [c.f., Eq. (3.15)]

dp, (z, ) dp, (zo)
pi(zo)

I
X (0+)

I

= fdzo ——0, (3.14)
dz

1 dzo

and expand in the second line of Eq. (2.27)

I
~;v'g(ro ri} I

'=
4 I

()';g(ro ri)
I

'
~ (3.20)

if the impurity does not penetrate into the medium.
Now, using the Euler equation for long wavelength, we

find, for qll ~0
Note that no approximations are made for the back-
ground quantities. Using (3.19) in the Euler equation
(2.32) and (3.20) in the energy expression (2.27},we find

$2~E=fd "o I ~&pi(ro) I +p&(ro)Usub(ro) + fd "od &&pi(ro)pi(r&)V( Iro
2@ip

+ —,
' f d rod r,p, (ro)p, (r, )h(ro, r, )V( I ro —r, I

), (3.21)
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and using the formal solution of the Euler equation (2.37) we obtain

g2~E= f d "o I ~&pi«o) I +Pi«o}Usub(ro} + f d "od "iPi(ro)Pi(ri}V( I ro —ri I
}—X2mo t; +%co.

(3.22)

The first two terms in Eq. (3.22} describe the kinetic energy of the impurity particle and its energy in the substrate po-
tential, and the third term the interaction between the impurity atom and the background. The last term in Eq. (3.22) is
the energy that is stored in the elastic deformation of the background due to the presence of the impurity, and the ener-

gy that is gained by the fact that it is energetically favorable for the impurity atom to get closer to the substrate.
A somewhat heuristic derivation of a very similar expression draws the connection with the work of Guyer et al. '

If the impurity-background interaction is weak, we may assume that the total energy of the system consists of the fol-
lowing.

(a) The energy of the impurity in the field of the substrate

Er = ~o V pi ro +pi ro Usub ro
2m

(3.24)

(b} An impurity-background interaction

Et s = fd "od'ri pi(ro}pi(r i) V(
I ro —ri I

) .

(c) The elastic energy of the background due to a deformation 5pi(r) of the background density due to the presence of
an impurity:

5EA
E,i

———,
' d rid r2

5 5pi(rl)5pl(ri),
pi ri pi rz

(3.25)

where E„the energy of the background atoms. The integral kernel in Eq. (3.25) is obviously related to the inverse of
the zero-energy density-density response function. In our formulation of the background theory, we can express the
elastic energy as

E„=f d r, d ri5+p, (r, ) H, (r, )5(r, —ri)+2V~I, (r, , ri) 5+p, (ri) . (3.26)

Note that the density p, (r, ) in Eq. (3.24) is the perturbed background density, pi(r, ) =p'P(r, ) +5p, (r, ). We may now
minimize the total energy with respect to the change of the background density. The elimination of 5p, (r) can be car-
ried out explicitly using the spectral decomposition derived from (AS} for the integral kernel in Eq. (3.24}. Thus, we
find a final expression for the impurity energy

r +Er-a +Ee

R2
I (@O I

V
I 0, }

I

'
= fd ro I VVpi(ro) I +pi(ro)U, „b(rp) + fd rod r, pi(ro)p, (r, )V(

I rp —ri I
)—

2mo AcoJ.

(3.27}

i.e., the same expression as Eq. (3.22} if one assumes, for
the calculation of the background response, an infinite-
mass impurity.

To derive an expression identical to (3.22) from a weak-
ly interacting theory, one has to calculate the impurity
self-energy and take the zero-energy limit. The impor-
tant point for our purposes is to demonstrate that the de-
formation of the background is contained in the varia-
tiona1 theory, even though one has assumed that the
correlations between the background atoms are the same
as in the unperturbed system.

U,„b(z)=e
'9 3

i s s
iS z z

(4.1)

There we have considered a number of helium atoms in-
teracting via the Aziz potential. The atoms are ad-
sorbed to a substrate which is described by an external
field U,„b(z). A simple form for U,„b(z)is the potential
obtained by averaging Lennard-Jones interactions be-
tween helium and substrate atoms over a half-space.
One obtains

IV. GROUND-STATE STRUCTURE Given the substrate potential, the two-body interaction,
and the surface coverage,

The physical model underlying our calculations of the
He background is described in detail in Refs. 28 and 3S. n = fdzpi(z), (4.2)
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0'
Vtt &,(r) =4s

T
(4.3)

with the parameters a=6.57 K and cr =3.19 A as deter-
mined by Toenis et al. The hydrogen isotopes are, on
the other hand, more strongly attracted to the substrate.
Following Ref. 41, we took the substrate potential (4.1)
with the strength e =90 K. The long-ranged attraction
agrees with the value given by Bruch. ' The short-ranged
portion of the potential is less well known. Since we are
mainly interested in states where the impurity atoms are
on the surface of the helium film, the detailed form of this
part of the potential should be immaterial.

The numerical calculation of the impurity states is a
somewhat delicate task if the impurities are located in the
low-density region of the helium film. It is rather difficult
and expensive to extend the calculations of the back-
ground system into a sufficiently large low-density region
of the He liquid. In that regime, the pair correlation
function between two He atoms develops a large and
long-ranged overshoot, and a very large mesh is needed
to avoid numerical instabilities. On the other hand, our
method of solving the Euler equations for the impurity
requires a complete set of normal modes. In order to
keep the computational effort reasonable, we have there-
fore calculated the normal modes of the background [i.e.,
the eigenfunctions of Eq. (A8)] on an enlarged mesh by
extrapolating the integral kernel of Eq. (A8) to its known
asymptotic form V~ 1, (z,z',

q~~
)~0 as z,z'~ ~ and

H&(z)~ —(fi /2m)(d /dz ) pasz~ao. W—e have then
generated the normal modes, but have not iterated the
background equations any further on the extended mesh.

The helium and the hydrogen impurities in the bulk
behave qualitatively differently. A He atom is bound in
bulk He, but is energetically favorable by about 2.2 K to
stay at the surface. The hydrogen isotopes, on the other
hand, will be expelled from the bulk. The potential bar-
rier can be obtained by calculating the impurity energy in
the bulk as described in the appendix. At the calculated

the physica1 model of the background is completely
defined.

We have described, in Ref. 35, the difficulty in using a
realistic potential close to the substrate. This difficulty
arises from the formation of a solid layer close to the sub-
strate, which causes the HNC-EL equations to develop
an instability at finite wave number. Such a property of
the theory is in principle desirable, but the simultaneous
treatment of a liquid and a solid is presently beyond our
computational capabilities. To avoid a divergence, we
have weakened the short-ranged attraction somewhat,
and adjusted the attractive tail of the potential to a value
about midway between the experimental and the theoreti-
cal prediction of Ref. 39. Thus, the substrate potential
for the background particles is determined by the param-
eters e =48 K and s =3.6 A.

For the He impurities, the same substrate potential
and the same two-body interaction were taken. The
helium-hydrogen interaction is somewhat less attractive
and has a considerably larger repulsive core. Here we
used a Lennard-Jones 6-12 potential

'12 ' 6

equilibrium density of bulk He the He atom feels an at-
tractive potential of —2.6 K in the bulk He, whereas the
T, D, and H atoms are repelled from the bulk by a poten-
tial barrier of 4.3, 11.5, and 30 K, respectively. Whether
a surface bound state like the one of He develops is a
question of a delicate balance between the attraction to
the surface and the kinetic energy of the particle. In our
case, the situation is even more complicated due to the
attraction to the substrate.

We have attempted calculations of the binding energy
of He, H, D, and T atoms to a family of He films with a
surface coverage of n =0.15, 0.20, 0.25, and 0.30, A
In all cases considered it turned out that the tritium atom
penetrates the film and forms a very tightly bound state
at the substrate. This can be understood considering the
relatively weak repulsive barrier seen by the T atom that
tries to penetrate into the bulk, and the stronger attrac-
tion of the hydrogen isotopes to the substrate. The deu-
terium atom is also seen to penetrate to the substrate for
the films with the smaller surface coverage n =0.15 and
0.20 A . We believe that our present model of the
structure of the adsorbed films and the substrate poten-
tials close to the substrate is too crude to make more
definite statements on the structure and the binding ener-
gies of these tightly bound states. We therefore, restrict
our discussion to those cases where the impurity atom
forms a bound state at the free surface of the film. One
should expect that a tritium surface-bound state develops
when the film becomes thicker due to the weakening of
the substrate attraction.

The binding energies of the He, H, and D impurity
atoms are collected in Table I, the shape of the ground
state of the various impurities on the different substrates
is shown in Figs. 1(a)—1(d). In Table I we also give the
energies of the bound excited states of the impurities; we
will discuss these states further below. The binding ener-
gies for the He impurity are in reasonable agreement
with the calculation of Ref. 28, where we assumed that
the two-body correlations between the He impurity and
the He atoms are the same as the ones between two He
atoms (Lekner approximation ). The particles appear to
be bound somewhat weaker in our improved calculation,
we expect that this is to some extent due to the extrapola-
tion used there for the one-body potential.

The most interesting H isotope is atomic hydrogen, a
case which has been under dispute as to whether the
atom forms a surface-bound state. We found such a
bound state in all cases considered. Our binding energy
of a few tenths of a K may indeed be an underestimate
due to mesh-size restrictions. We also feel that we have
extended our calculation to sufficiently large films such
that one expects that there should also be a bound state
in the limit of infinite film thickness. To substantiate our
argument, we show in Figs. 2(a) —2(c) the one-body poten-
tials acting on the particles for the different surface cov-
erages. The attractive parts of the potential seen by the
H atom [Fig. 2(b)] for the two thickest films appear to be
essentially parallel shifted by an amount comparable to
the increase of the film thickness. In particular, a sizable
part of the attraction comes from correlations. Taking
these arguments and error estimates for the binding ener-
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TABLE I. Binding energies and excited states of He, H, and D impurities for the four examples of
He films discussed in the text. The surface coverage n is given in A and all energies in K. The deu-

terium impurity penetrates to the substrate for the two thin films with n =0.15 A and n =0.20 A

E,p

He H
E,p &o

D

0.15
0.20
0.25
0.30

—5.82
—5.10
—4.40
—3.99

—2.73
—3.01
—2.68
—2.47

—1.91
—1.51
—1.30
—1.26

—2.86
—0.89
—0.50
—0.27

—2.75
—2.42
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—0.57
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FIG. 1. (a) The densities for the He, H, and D impurities are shown on the background of a He film with a surface coverage of
n =0.30 A (dotted line). The He impurity is closest to the surface, followed by D and H. (b) Same as Fig. 1(a) for the background
of a He film with a surface coverage of n =0.25 A (dotted line). (c) Same as Fig. 1(a) for the background of a He film with a sur-
face coverage of n =0.20 A (dotted line). The deuterium impurity has no surface-bound state and penetrates to the substrate. (d)
Same as Fig. 1(a) for the background of a He film with a surface coverage of n =0.15 A (dotted line). The deuterium impurity has
no surface-bound state and penetrates to the substrate.
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FIG. 2. (a) The self-consistent one-body potential
V, (z)=U,„b(z)+Vs&(z) for a He impurity is shown for the
four surface coverages n=0. 15, 0.20, 0.25, and 0.30 A . The
potentials with the longer ranges correspond to the higher sur-
face coverages. Also shown is the bare-substrate potential
U,„b(z)(dotted line). (b) Same as Fig. 2(a) for the hydrogen im-
purity. (c) Same as Fig. 2(a) for the deuterium impurity for the
surface coverages n =0.25 and 0.30 A

gy for the H atom due to mesh restrictions into account,
we estimate that a H atom would have a binding energy
to the free surface of about 0.2 K.

The binding energy of a deuterium atom turned out to
be about 2.5 K. The numerical uncertainties due to the
finite mesh-size are smaller in this case since the D atoms
are more tightly bound, c.f., Figs. 1(a) and 1(b). The
widths of the bound states for the two surface coverages
are very similar. A comparison of the one-body potential
for the different surface coverages [c.f., Fig. 2(c)] suggests
that the substrate potential contributes about twenty per-
cent of the total binding energy, i.e., we expect that a D
atom will have a binding energy of about 2 K to the free
surface of liquid He.

Our results are in reasonable agreement with those of
Mantz and Edwards. It is expected that our binding en-

ergy of the deuterium atom is somewhat larger since the
authors of Ref. 29 assumed that the He-D distribution
function is identical to the He- He distribution function.
This should lead to a weaker binding due to the stronger
repulsion between the He and the D atom. One expects
that the effect is less severe for the case of the H impuri-
ty, since this atom is located farther away from the sur-
face. The short-ranged structure of the correlations
should therefore, be less important. A further source of
uncertainty is the intrinsic inaccuracy of the HNC ap-
proximation, which predicts for bulk He a binding ener-

gy of —5.4 K at a saturation density of 0.017 fm, as
opposed to the experimental value of —7.2 K at 0.021 85
fm 3. One may therefore argue that the HNC approxi-
mation may also underestimate the binding energy of an
impurity.

Whereas the hydrogen isotopes form essentially surface
states, the He impurity always has a significant overlap
with the last filled layer. In the double-layer film [Fig.
1(d)], the He impurity is seen to be a part of the second
layer. As the film thickness increases [Figs. 1(c) and
1(b)], the overlap with the inner parts of the film becomes
smaller and the particle gets more expelled to the surface.
We expect that our calculation for the largest film [Fig.
1(a}] is representative for the limit of an infinite half-
space. Our He densities shown in Figs. 1(a)—1(d} are in
essential agreement with the results of our earlier work.

Figures 3(a) and 3(b) finally show the excited states of
the helium and the deuterium particles in the film with
the surface coverage n =0.30 A, i.e., the densities
p&(zo)=

~
f&(zo)

~

corresponding to the bound eigen-
states of Eq. (2.10) above the ground state. We note that
for the two films with surface coverage n =0.25 and 0.30
A we found a very weak fourth bound state of a He
impurity with an energy of about 0.1 K. This state is
very widely spread into the vacuum region. We therefore
felt that our energy estimate would not be very accurate
due to numerical uncertainties. Our results for the He
excited states are in essential agreement with those of
Ref. 28. %'e also found a first excited state of the deuteri-
um impurity of a shape very similar to the first He excit-
ed state. It is again worth noting here the qualitative
difference between the two systems: If the thickness of
the film is increased, one will obtain for the He impurity
a dense band of bound states corresponding to He im-
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purities living in the bulk. The energy difFerence between
this continuum and the lowest state is about 2.2 K, and
one is tempted to identify the third state of the He im-

purity with the lower boundary of this continuum. A
similar continuum will not exist for the hydrogen iso-
topes which will be expelled from the bulk liquid. The
first excited state of both the He and the D impurity ap-
pear to be surface-bound states. The existence of such a
second state of the He impurity, which is further spread
out than the surface-bound state, seems to be necessary to
interpret the experimental data' on the specific heat of
dilute He systems in the surface of He.

V. PQI.ARON STATES

So far we have assumed that the state of the impurity
atom is translationally invariant in the plane parallel to
the surface. In this section, we investigate in some detail
the possibility of a spontaneous breaking of that symme-
try. Such a situation can occur when the impurity be-
comes more strongly bound with decreasing thickness of
the background film. The impurity particle can then gain
potential energy by moving closer to the substate. In that
process, however, the background has to be deformed,
which increases its energy. The localization of the im-

purity costs additional kinetic energy. The resulting state
is a localized impurity state on a deformed background.

Most closely related to our work is that of Guyer
et al. ,

' who studied the formation of self-trapped states
of hydrogen atoms on the surface of He. In that work a
hydrodynamic approach was taken towards the calcula-
tion of the collective excitations, and the impurity-
background interaction was assumed to be weak. Some
delicate considerations are due in order to formulate the
polaron problem in the framework of the optimized vari-
ational theory.

The original objective in writing the ground-state wave
function in the form (2.1) has been to separate one- and
two-body quantities. The pair correlations have been
made unique by requiring that they vanish when two par-
ticles are moved far from each other. If the impurity par-
ticle is localized, such a distinction is no longer possible,
and u, (rII) and u2(ro, r,. ) are no longer independent func-
tions. We therefore, have a certain amount of freedom to
describe the polaron state.

For the sake of the practical application of the theory,
we adopt the following picture: We assume that the
Euler equations have been solved for the translationally
invariant case as described in Sec. II. Let us denote the
corresponding one-body functions u I '(r; ) for
i =0, . . . A, the corresponding wave function with

VII(ro, . . . , rz ), and the energy expectation value with

respect to this wave function with E~o). The impurity
density is, in that case,

(o)
pi (ro)=

L
(5.1)

where L is the assumed box size parallel to the surface,
and P(z) is normalized such that

0.01 ~ ';

t
t

~ ~

4

~ ~
0

' tr

f "y'(z)dz =1.
0

(5.2)

0.00
0.0 i 0.0

z (i)
20.0

0.0
30.0

We now try to find a lower-energy state by breaking
the translational invariance of the one-body functions in
the x-y plane, but keep the two-body functions fixed. We
assume a macroscopic change of u, (ro) and an
injinitesimal change of the one-body function of the back-
ground

FIG. 3. (a) The shape of the excited states of the He impuri-
0

ty is shown for the surface coverage n =0.30 A . Solid line:
ground state. Long-dashed line: 6rst excited state. Short-
dashed line: second excited state. Also shown is the back-
ground density (dotted line). (b) Same as Fig. 3(a) for the deu-
terium impurity.

u, (r;)=u', '(r;)+5u, (r;) (i =1, . . . , A ), (5.3)

in order to accomodate the response of the background.
Assuming the center of the polaron state at the coordi-

nate origin, we now have an impurity density
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p((ro)~0 (
~
Ip

~

+ co ),
with the normalization

(5.4)

d ropi(ro)=1 . (5.5)

Let us denote this new, "polaronic" ground-state wave

function with %p(rp, . . . , rz ). For this wave function,
we must evaluate the energy to second order in 5u, (r; ),
assuming that the two-body correlations have been opti-
mized for the reference functions. In other words, we
calculate for some u, (ro), which is not necessarily close
to u) '(rp), the expansion for the polaron energy

AEp =E[u i (ro), u, (r; )]—E(p)

5E[u, (rp) u i(I'. )]=E[u, (ro) uI" (r;)]—E(o)+fd3r) 5u((ri)
5u, (r, ) u (r,. )=u (r,. )

1 i 1

5 E[u, (ro), u, (r;)]+ ( f d rid rz5u)(r))5u((r3)
5u, r, 5u, rI

=AE0+LE, +4E2 .
u (r,. )=u'0'(r, . )

1 i 1

(5.6}

e calculations are somewhat delicate and are therefore, displayed here in some detail. The relation between the one-
body functions u, (rp), the densities, and the normalization integrals

I= r0. . . r%p r0 ~,r„ (5.7)

[The normalization integral I' ' is defined correspondingly with )Iip(rp, . . . , r„)]is
Pi(ro} I' '

p(o)( I )
exp[u, (ro) —u' )(rp)],

and the Euler equations for the one- and two-body components of the reference wave function )Iip(rp . . ~ r g ) are

2
1 2 (0)d ri. . . d r&%'p(rp ~ ~ ~ r„)[V(p)(rp, . . . , r„)—E(p)]= V p, (rp},I(0) 8m0

and

(5.8)

(5.9)

A 3 2

I(0) fd r2. . . d ra%'o(ro ra }[V(o)(ro . , rz) —E(o)]=
2 2

Vo+
8

Vi P2 (rori}.2 ~ 2 (0)

8m0 8m
(5.10)

Here, E(p) is the total energy of the system evaluated for the reference functions u (i )(r, ), and V('p) the quantity (2.9) for
the same wave function.

The second-order change in the total energy of the system due to the change in the one-body function of the back-
ground can be calculated rather easily if one assumes that this term is dominated by the deformation energy of the
background. We then can follow the linear response theory of Ref. 28 and obtain for optimized tu)o body correla-tions

u2(r;, r, )

2

EEI —— d rip)(ri)
~
V5ui(ri)

~

2

8m

For the first term in the expansion (5.6) we find

(5.11)

bEp= — d ro. . . d ra+a(ro . . ra}[V (ro . ra) —E(())]2

I
3 3 ~"1 0 u1 0 ~ 2

(0) 2
(0)=—fd ro. . . d r„e 'Po(ro, . . . , rw ) V(o)(ro . ra) —E(o) V ["i(ro} ui (ro)]

8m0

(0) 2 (0)I fi 3 [u1( 0) "1 ( 0)j 2 (0)d rpe V pi (rp) —pi (rp}V [ui(I'p} —u, (I'p))(0) (0)
I 8m0

1/2 2

f d rop, (ro) V (p)
——f d rot(ro} .3 (0) pl(ro} 3

2mo P')"(ro}
(5.12)

In the derivation of Eq. (5.12}we have used the Euler equation (5.9) and the relation (5.8}. The derivation of the second
term in the expansion (5.6}is siinilar. We write
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5E[u, (ro), u, (r, )]
5u, (r, ) ul{r,. )=u1 {r,. )

f2

Sm
V pi(ri)+ —d rpd r2. . . d r„+p(rp . ~ ~ r„}[V*(ro,. . . , r„)—E], (5.13)I

where E is the energy of the system calculated with the deformed one-body function u, (ro), i.e., E =E~p~+ EEp. Using
the two-body Euler equation (5.10) to eliminate V'(ro, . . . , r „),we find

5E[u, (rp), u, (r; }] f d ropi(ro ri )
I
~[u i(ro} u i '(ro}l

I
—~Eopi(ri }

5u, (r, ) u&{r,. j=u(& ){r,. }

p2(ro, rl )
d rp t(ro) bE—opi(ro)

Pi(ro}

=f d rpr(rp)h (ro, r, )p, (r, ) (5.14)

Here, we have defined in the last line

r(rp) = t(rp) EEppi(rp) (5.1S)

and h(rp, ri)—:g(rp, r, ) —g(ao ), where g( ~ ) is the value of the pair correlation function in the limit
I rp —r, I

~ ~,
which may deviate from unity by an amount of I /L . We can now take for h (ro, r, ) the correlation function for the
reference system. Finally, we can eliminate the deformation of the background one-body function 5u i (r) in favor of the
deformation of the background density 5pi(r) and write the total energy shift in terms of the fiuctuation of the densities

p, (r)5u, (r)=5p, (r) —p, (r)f d r'X(r, r')5p, (r'),

and find

hE, =f d rod rii(ro}X(rp, ri}5pi(ri)

and

5pi(ri)
EE2 ———,

' d r&d r2 [H, (r, )5(r, —r2)+2V «(r, , rz))
&p, (r, )

(5.16)

(5.17}

(S.18)

The next step is to minimize the total energy shift EEL with respect to the deformation of the background density. The
optimal deformation is given by the relation

5pi(ri) ~(ro }= —2 d r2[H, (r, )5(r, —r2)+2' «(r, , r2)] ' f d rpX(f2 rp)
+pi(ri } Pi(rp)

(5.19)

where the inverse is understood as an operator inverse, which can easily be calculated from the normal-mode decompo-
sition of the background excitations. Inserting the result (5.19) into EEp we find

EEp =EEp —fd rpd rpr(rp) IV(ro rp)r(fp) (5.20)

with

IV(rp, rp)= fd r, d r2X(rp, r, )[H, (r, )5(r, —r2)+2' «(r„rz)] 'X(r2, ro) . (5.21)

The expression for the interaction W(rp, ro) becomes
especially simple when we consider its matrix elements
between the impurity states g;(rp) [Eq. (2.34)]. Using the
spectral decomposition of the operator [H, (r, )5(r,
—r2)+2V~ „(r,, r2}] derived from the eigenvalue problem
(A8), and the formal solution (A12) for the matrix ele-
ments of X(ro, r, ), we obtain

(5.22)

(it'
I

~'(ro ro}
I 4, }

p- 1

t; +Acor Ac@I t +%col

In plane surface geometry as studied here, the subscripts
labeling the states contain both the discrete variable per-
pendicular to the surface and the continuous momentum
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parallel to the surface.
Before we proceed with a numerical evaluation of the

polaron energy, it is worth considering the formal struc-
ture of our result. Attention is directed to the Euler
equation for the impurity-background correlations (2.32)
and its formal solution in terms of the excitation energies
of the background system (2.37). There is no way that an
instability of the equations could build up as it does, for
example, for the bulk liquid for suSciently low and high
densities. This means that the translationally invariant
impurity state is always a local minimum of the total en-
ergy of the system. The Euler equations give no indica-
tion for the instability of the system against the formation
of a polaron. This result is in agreement with the struc-
ture of our energy functional (5.20), (5.15) for the polaron
state. Note that the quantity r(ro) is of second order in
the deviation of the polaron wave function from the
translationally invariant state. This means that the
potential-energy term in Eq. (5.20) is of fourth order in
that deviation, and small perturbations of the translation-
ally invariant impurity state will only contribute to the
kinetic energy contribution AEp, which is positive. In
other words, small perturbations of a translationally in-
variant state will never indicate the formation of a pola-
ron.

From our derivations of Sec. III we conclude that the
softening of the surface excitations for large films does
not cause an instability against the formation of a pola-
ron. Using the form (3.3) for the lowest-lying mode we
obtain for the dominant contribution to polaron self-
interaction matrix element in the limit qll ~0

(fo I
@'I 40)= z 4 q I

(P'&
I

I'q-I (0+ }
I &Pi) I

fi mc3qll

The singularity at qll ~0 does not cause a problem since
the volume integral of r(ro} [c.f., Eq. (5.15)] vanishes.

From Eq. (5.23) one might be led to the impression
that the polaron self-interaction becomes stronger with
increasing film thickness. However, as the film ap-
proaches the infinite half-space, the shape of the collec-
tive excitation approaches the form (3.9) for the ripplon,
and the interaction matrix element in the numerator van-
ishes. To obtain the correct limit of the infinite half-
space, we have to use the form (3.9) for the shape of the
density fluctuation, use the expansion (3.16) and observe
(3.17}. We then obtain

5 2
2qii dp, (z, )

(40 I

@'
I fo)=, , pi(zo} I ~f

I

i5 mp~coq Z 1

T 22mp„dp)(z, )
p&(zo) I "i I

qll Z1

(5.24)

We see that the singularity of the polaron self-interaction
becomes even weaker in the surface of an infinite half-
space.

Let us now turn to our numerical investigation of the
polaron states. The energy functional (5.20} would still
lead to a two-dimensional equation describing the pola-

ron density. In order to simplify the problem, we assume
that the z dependence of the polaron state is identical to
the one of the translationally invariant state, i.e., we as-
surne a density

p/(ro) =y'(z)8'(r~(

with the normalization

f d rl8 (r~~)=1 .

(5.25)

(5.26)

and

EEp= fd rl I V8(r1} I

2mp

2

r(r~~ ) =
I
V8(rl )

I

—bE08(rl )
z „z

2mp

(5.28)

(5.29)

and ~(q~~) is the two-dimensional Fourier transform of
r(r~~). For a bound state, r(r~~ ) will fall off exponentially
for large rll, its Fourier transform is therefore, analytic at
the origin. Since the volume integral of r(r~~) vanishes,
we have

(5.30)

The resulting energy functional can now be minimized
with respect to the function 8(r~~) which leads to an equa-
tion reminiscent of a Hartree equation in two dimensions.
Instead of solving this equation, we have chosen to mini-
mize the energy using a trial function

—r /2a8(r(()= —e
a&m

(5.31)

which leads to an energy functional of the form

2 2 2
'2

d qg flqg -1nqlla'
EEI' —— z

—
—,', W(q)) )e

2moa " (2m. ) 2mo

(5.32)

The qll factor under the potential-energy integral of Eq.
(5.31) is a consequence of Eq. (5.30).

The polaron self-interaction weighted with the q ll
fac-

tor coming from Eq. (5.30) is shown in Fig. 4. The func-
tion is seen to have a double-peak structure and falls off
rather rapidly for rnomenturn transfers larger than 2
A '. The potential is strongest for the very thin film,
since the impurity particle is attracted in that case most
strongly to the substrate, which favors the formation of a
polaron. Considering only the long-wavelength structure
(5.23) of the polaron self-interaction without taking into
account the change of the interaction matrix element

This specific form has the effect that only the ground-
state matrix elements [go l

W(ro, ro)
l $0)] contribute to

the energy functional (5.20}. The z dependence can be in-

tegrated out exactly, and the polaron energy can then be
written in momentum space as

d q
dlE =b,E —f r (q~~ }W(q~( }, (5.27)

(2n )

where EEp simplifies to
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FIG. 4. The weighted polaron self-interaction t(q)q W(q),
where t(q)=Pi /2m q, is shown for the He impurity for the
surface coverages n=0. 15, 0.20, 0.25, and 0.30 A 2. The

0
strongest potential corresponds to n =0.15 A 2; the interaction
becomes weaker with increasing surface coverage.

with the film thickness would have led here to the exactly
opposite conclusion. The corresponding quantities for
the H isotopes are a factor of 3-10 smaller.

We have evaluated the polaron energy expression be
as a function of the polaron width a. We found that the
potential-energy contribution never exceeds 15' of the
kinetic energy. Since the attractive part of the energy is
so small, we have decided that the rigorous minimization
of Eq. (5.25) with respect to e(rl ) is not necessary. We
therefore conclude that the formation of a polaron state
is energetically unfavorable in all cases studied here.

VI. SUMMARY

We have, in this paper, developed a systematic varia-
tional theory for the study of impurities in liquid sur-
faces. We have concentrated on the static properties of
the impurities, i.e., the structure of the ground state and
its discrete excited states. The interpretation of our re-
sults, an assessment of their accuracy, and the general
route of improving the calculational accuracy has been
given in the text and does not need to be repeated here.
One of the most important results is our conclusion that
neither of the impurities studied here form a "polaron"
state.

The same theory could be applied equally well to the
free surface, where we expect that one will find a tritium
bound state. For our present purposes, we found that the
adsorbed films studied here provide richer physics and
were computationally more convenient. A study of He
bound states in the free surface of He was recently per-
formed by Dalfovo et al. , who found, using a nonlocal
density-functional theory, ' also two surface-bound
states. The theory of Ref. 44 give an impressively accu-
rate description of the structure of the free surface of
He, and we expect therefore, that the results of Ref. 43

are quite reliable. Unfortunately, the nonlocal density-
functional theory does not reproduce the layer structure
of the adsorbed films, which is apparently due to the ab-
sence of short-ranged correlation.

Two problems have remained open for further study:
The impurity self-energy (and the related effective mass},
and the impurity-impurity interaction. It is rather
straightforward to calculate the impurity effective mass
using either correlated-basis functions (CBF) theory for
the self-energy, or using "backflow" correlation func-
tions. 4s's In the "uniform limit, " i.e., if one assumes that
the "backflow" correlations are weak, but long ranged,
the second-order CBF theory and the variational
("backflow"} approach lead to exactly the same answer.
Since the effective mass of the impurity particles comes
out to be rather large, we felt that low-order methods
must be evaluated very carefully before microscopic con-
clusions on the effective mass can be drawn. A second
problem which remains to be studied is the impurity-
impurity interaction, ' in particular the question whether
impurities can form bound states in the surface of a heli-
um film. There is experimental evidence that this can
happen for both He (Ref. 52) and electronic impurities. 53

We have commented at various places in the text that
an obvious alternative field of a~plication would be elec-
trons adsorbed to the surface. Since this system is
suSciently different from the problem of atomic impuri-
ties, we have decided to devote an independent study to
the electronic surface states.
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APPENDIX

Numerical optimization

As an introductory exercise, and to display the general
scheme for the numerical solution of the two-body Euler
equation, we discuss first the paired-phonon-analysis
(PPA) iterations for the impurity problem in the bulk.
The solutions of the bulk problem are needed to generate
reasonable initial solutions for the inhornogeneous prob-
lem. The binding energy (2.27) reduces in that case to

bE(bulk)=p Jd r g&(r)vl(r)

$2 $2
+ + ~~U'g (r)~'

2mo 2m

1 k
k Si(k)[1—1/S(k)]

8~op (2
d kf k SI(k)[1—1/S (k)] .

8mp (2~)3
(A 1)
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and the EI.equation is

2 ' i, (k)S(k)
Rco(k)+ t(k)

with

(A3)

i, (r)=gi. (r)Ui(r)+ +
I
'tIVgi(r)

I2@ip

+[gi(r}—l]wi(r) . (A4)

Equation (A3) has been written, in view of our algorithm
for solving the inhomogeneous problem, in a somewhat
suggestive way. fico(k)=A k i/2 mS(k) is the zero-sound
spectrum, and t(k}=Pi k /2mp the kinetic energy of the
impurity particle. The PPA procedure to solve the Euler
equation is as follows.

(a) Start from a reasonable guess for gi(r). For the 3He

impurity, it is suScient to start from a distribution func-
tion for He, for the hydrogen impurities the same initial
correlations can be taken after shifting them somewhat in
the radial direction to accomodate the larger core size of
the hydrogen-helium potential. Obtain from this gi(r)

I

We have labeled here all impurity quantities with a sub-
script I. Note that Si(k) is the Fourier transform of
gi(r) 1.—The induced potential in momentum space is
(as usual, we use the dimensionless Fourier transform
which contains a density factor)

fi k SI(k)
wi(k) = — [S(k)—1]

4mp S(k)

[S (k) —1]
4m S (k)

the corresponding Si(k), wi(k), and ipse(r).
(b) Calculate the impurity particle-hole interaction

(A4} in coordinate space.
(c) Fourier transform and get S&(k) from Eq. (A3). Use

this S&(k) to get a new w&(k).
(d) Fourier transform Si(k) and iai(k). This leads to a

new estimate gl {r). However, this pair-distribution
function will not, in general, vanish inside the repulsive
core of the potential unless convergence has been
reached. A better approximation gi"'"(r) is therefore gen-
erated by

gew(r)gola(r)exp[gppA(r)gols(r)] (A5)

(P; i
5(r —r') —X(r, r')

~ P, )=5, (A6)

In the course of the development of the HNC theory for
inhomogeneous systems, it was shown that the X(r, ,ri)
has the representation

5(ri —ri) —X(ri, ri) = y ficpie'"(r, W'"(r~), (A7)

where the %', (r) are the solutions of the eigenvalue prob-
lem

The steps (b) —(d) are then repeated until convergence is
reached. One sees that the PPA procedure requires three
Fourier transforms per iteration and is therefore extreme-
ly fast.

Exactly the same procedure is used in the inhomogene-
ous case. What is left is to derive the relationship be-
tween the solutions of the eigenvalue problein (2.35) and
the collective modes of the background. The eigenvalues
of (2.35) are real since H, (r, ) is a positive definite opera-
tor, but eigenfunctions P;(r) are not orthogonal on a Eu-
clidean mesh. Rather, they satisfy the orthogonality rela-
tion

r2 H& r& r& —r2 —2V& a ri r2 ~i r2 + 2 =& mt+" r] (A8)

with the orthogonality relation

(4'"
~

H
(
4' ')=5 (A9)

We have identified in Ref. 28 the energies A'coI with the
collective excitations of the system, and 5[pI"(r)]'
=Hi(r)%'"(r) with the spatial shape of the density fluc-
tuations. From that we get

fd' [r5( r r, ) —X(ri, ri)]Hi(rz)'Ii' '(rz)

(g; ~X ~P )= —2 (A12)

Having the matrix elements of X(rp, r&) we can now also
get the X(rp, r, }:

~
P;)=(fico; )

'~ H,
~

4") . (Al 1)

To obtain the solution of Eq. (2.32), we sandwich the
equation between f;(rp) from the left, and P;(r, ) from the
right. This gives us

=iricp %™(r,) . (A 10)

X(i'p r& )= 2 g g (i'p) [(1 X )PJ ](ri )
E, +Acoj-

(A13}

Therefore, we have that the eigenvectors and eigenvalues
of Eq. (2.35) are the density fluctuations and excitation
energies of the background system. The exact relation-
ship is finally determined by the normalization (A6),
which leads to

and

S(rp, r& ) = f cI riX(rp ri)S(r, , r, )
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