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Nuclear-spin relaxation in molecular solids with reorienting methyl
and t-butyl groups: The spectral density and the state of the solid
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We have measured the temperature T dependence of the proton Zeeman relaxation rate R in

polycrystalline 1,3-di-t-butylbenzene (1,3-DTB) at Larmor frequencies of e/(2~) =8.50, 22.5, and

53.0 MHz. The relaxation is caused by the modulation of the methyl proton dipole-dipole interac-

tions by the reorientation of the t-butyl groups [C(CH, ),] and their three constituent methyl groups

(CH3). There are two solid phases which either have a large hysteresis of at least 90 K, or are both

stable below 200 K. The sample melts at 262 K. We interpret the high-temperature phase R-
versus-T data with three models. First, we adopt a one-correlation-time model using a
Davidson-Cole spectral density which suggests that there is a distribution of correlation times, or,
equivalently, a distribution of activation energies for t-butyl and methyl group reorientation. In this

case, the methyl and t-butyl reorientation is characterized by a cutoff activation energy of 17+1
kJ/mol which is to be compared with 18+1 kJ/mol in 1,4-DTB [P. A. Beckmann, F. A. Fusco, and

A. E. O' Neill, J. Magn. Reson. 59, 63 (1984)] in which there is only the one phase. Second, we

adopt two two-correlation-time models using Bloembergen-Purcell-Pound spectral densities; one

based on the dynamical inequivalence of the methyl groups in each t-butyl group and one based on

the dynamical inequivalence of different t-butyl groups, either because of intramolecular effects or
because of intermolecular (crystal-structure) effects. In the low-temperature phase of 1,3-DTB,
R (e, P is unusual in that it is Larmor-frequency dependent in the short-correlation-time limit (i.e.,
temperatures above the relaxation rate maximum). We have fit the data with a Havriliak-Negami

spectral density (which reduces to a Davidson-Cole spectral density when one of the parameters be-

comes unity which, in turn, reduces to a Bloembergen-Purcell-Pound spectral density when an addi-

tional parameter becomes unity). The fit, with an effective activation energy of 10+3 kJ/mol, sug-

gests that this low-temperature phase in 1,3-DTB is a glassy state. We relate the Havriliak-Negami

spectral density to the Dissado-Hill spectral density which has a fundamental microscopic basis and

which has been used to interpret a vast quantity of dielectric relaxation data as well as some

mechanical relaxation data.

I. INTRODUCTION

Nuclear-spin relaxation (NSR) is a powerful experi-
mental technique for investigating molecular motion in
condensed phases. ' The observed Zeeman nuclear-
spin-lattice relaxation rate R is a measure of the rate at
which an excited nuclear-spin system returns to equilibri-
um. When a nuclear spin moves due to whole molecule
or intramolecular motion, it creates a time-dependent di-
polar magnetic field at the sites of neighboring nuclear
spins. A perturbed spin system will relax to its equilibri-
um state via stimulated emission by sampling the Fourier
component of the local time-dependent fields correspond-
ing to the Zeeman splitting. Thus, the observed rate R
contains information about the local molecular dynamics.
R depends on the Larmor angular frequency co and the
temperature T. The Larmor angular frequency is deter-
mined by the applied magnetic field of magnetic field
strength 8 via co=y8 where y is the magnetogyric ratio
of the nucleus. R(co, T) can be tnodeled in terms of pa-
rameters which characterize the structure of the molecule
and the solid and by parameters which characterize the
anisotropic electrostatic environment in which the
motion takes place. This electrostatic potential has both

an intramolecular and an intermolecular component and
in the solid state their relative importance varies consid-
erably. t-butyl groups are relatively large and bulky and
the intermolecular potential is usually significant. Since
the intermolecular electrostatic environment is usually
strongly dependent on the state of the solid, R can be
very sensitive, not only to the state itself, but also to
changes in state even though NSR cannot, in general,
determine the structural details. For a given state, the
link between R and a local anisotropic electrostatic po-
tential V is an effective correlation time v that character-
izes the time scale over which the local magnetic fields
change. The link between ~ and V is model dependent, as
is the link between T and ~.

The results of NSR experiments are rarely, by them-
selves, definitive. In addition to detecting changes in
state, the technique is very good for determining which
motions are occurring in simple systems. The technique
is also very good for determining the statistics and the
effective parameters that characterize the motion. How-
ever, the NSR results must often be coupled with other
techniques, such as calorimetry, ' ' x-ray
diffraction, ' ' and neutron scattering, "' ' to obtain
both precise unambiguous mode1s and parameters which
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FIG. 1. A schematic representation of the (a) 1,4 and the (b)

1,3 isomers of di-t-butylbenzene (DTB). C is carbon, H is hy-
drogen, and only the atoms in the methyl groups are indicated.

describe the molecular motion, and to be able to say how
these parameters relate to the state of the solid. An im-
portant avenue of research is to explore the links between
the experimental observables (including the model-
independent parameters which naturally arise in fitting
data) and the theoretical parameters which are most
relevant to the fundamental physics.

In this paper we present a proton Zeeman NSR study
in an organic molecular solid: the 1,3 isomer of di-t-
butylbenzene (DTB) which is shown schematically in Fig.
1(b). The motion, depicted schematically in Fig. 2, is that
of three methyl groups (CH3) superimposed on a t-butyl
group [C(CH3)3]. R (co, T) versus T ' is shown in Fig. 3.
These motions are one-dimensional reorientations about
(at least) threefold axes determined by an electrostatic po-
tential V(P) where P is a rotation angle. ' One defines a
model-dependent reorientation time or correlation time r
to characterize the motion and it typically ranges from
10 co ' to 10 co

' over the temperature range studied
here. This is discussed further in Sec. III B. The mole-
cules are chosen such that there are no other motions of
the nuclear spins (protons) on the Zeeman nuclear mag-
netic resonance time scale.

The observed R(T) in polycrystalline 1,4-DTB (Ref.
17) is typical of many simple solids and the models used
to fit the data' ' suggest that the reorientation process
can be described by a simple model which we discuss in
more detail in Sec. III C 1. This isomer shows no phase
transitions and the structure, although not known, is
probably one of a few standard forms. ' The observed
R ( T) in the 1,3 isomer, however, shows two phases (Fig.
3) and the R(cu, T) observed in the high-temperature
phase (Figs. 4—7) is very different from that observed in
the low-temperature phase (Fig. 8). The observed
R (co, T) in the high-temperature phase is very similar to
that observed over the entire temperature region in the
1,4 isomer. ' It is not unusual for organic molecular
solids to exist in two phases' and 1,3 isomers in particu-
lar tend to form diFerent states, or have anomalous R-
versus-T ' features, or both. ' Both phases can be
very stable' and which of the two states the sample is in
will usually depend on the thermal preparation. ' Of
particular note for the low-temperature phase of the 1,3
isomer is the dependence of R on co at temperatures

above the maximum in R (Fig. 8). Usually, R does not
depend on co in this region (e.g., the high-temperature
phase in Fig. 5). By using the results from dielectric re-
laxation (DR) studies, we will suggest below that the
low-temperature phase is characteristic of a "glassy"
state.
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FIG. 2. Two drawings of a tertiarybutyl (t-butyl) group
showing the position of the three methyl groups. For ring com-
pounds like DTB, the lower vertical bond goes to the carbon
atom in the ring. Solid lines represent bonds in a plane parallel
to (but not necessarily in) the plane of the page, solid wedges
represent bonds where the wide end of the wedge next to an
atom is more out of the page than the pointed end next to an
atom, and dashed wedges represent bonds where the pointed
end of the wedge next to an atom is more into the page than the
wide end next to an atom. Methyl reorientation is indicated by
single arrows and t-butyl reorientation is indicated by a double
arrow. Two different perspectives are shown. In (a), the t-butyl
reorientation axis and one methyl reorientation axis are in the
plane of the page whereas the other two methyl reorientation
axes go into and out of the page. In (b), the t-butyl reorientation
axis is in the plane of the page, two methyl reorientation axes
come out of the page, and the third goes into the page. The ring
carbon (not shown) and the three methyl carbons are on the ver-
tices of a tetrahedron with the central carbon at its center.
Similarly, three methyl hydrogens and the central carbon are on
the vertices of a tetrahedron with the methyl carbon at its
center. The geometry has been slightly distorted to make view-

ing easier.
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FIG. 3. ln(R) vs T ' in 1,3-di-t-butylbenzene at 8.50 (k),
22.5 (~ ), and 53.0 MHz ( ~ ). The high-temperature phase
ranges from the melting point (262 K) to at least 110 K, which
is the lowest temperature at which measurements were made in

the high-temperature phase. It may be stable at all tempera-
tures. The low-temperature phase ranges from 200 to at least 77
K, which is the lowest temperature at which measurements
were made in the low-temperature phase. It may be stable at all

temperatures below 200 K. The data in the two phases are
shown separately in Figs. 4-7 and 8, respectively.

FIG. 4. ln(R) vs T ' in the high-temperature phase of 1,3-
di-t-butylbenzene at 8.50 (A), 22.5 (~ ), and 53.0 MHz (~ ). The
lines are the theoretical fits using the A-type t-butyl group mod-
el with a Bloembergen-Purcell-Pound spectral density. One set
(dashed lines) fits the data at high temperatures (all frequencies)
and in the vicinity of the maximum in R and the other set (solid
lines) fits the data at low temperatures (8.5 MHz) and in the vi-

cinity of the maximum in R.

II. THE NUCLEAR-SPIN
RELAXATION EXPERIMENTS

The sample of 1,3-di-t-butylbenzene (1,3-DTB) was
purchased from Aldrich Chemical. The quoted purity
was 97% and the melting point was 262 K. For the NSR
experiments, the room-temperature liquid sample was put
in a 7-rnm inside diameter sample tube, deoxygenated by
bubbling dry nitrogen gas through it, frozen in liquid ni-

trogen, and placed in the probe.
The spin-lattice relaxation rates R (the inverses of the

spin-lattice relaxation times T, ) were measured using a
standard ~-t-m/2-t„pulse sequence ' with the repeti-
tion period t~ & 8.5T, . Three fixed-frequency Spin-Lock
CPS-2 spectrometers, operating at 8.50, 22.5, and 53.0
MHz, were used in two experimental setups which
differed only in their data acquisition systems. In one
system, discussed elsewhere, the free-induction decay
was sampled with a boxcar integrator, the averaged sig-
nal was sent to a digital voltmeter, and this voltage and

the accompanying time difference t (in n t n/2) wer-e -se. nt
to a microcomputer for analysis. The other system em-
ployed an Analogic Data 6000 waveform analyzer with a
Model 630 plug-in to receive, average, and analyze the
free-induction decay. The free-induction decay was short
lived; characterized by an effective spin-spin relaxation
time of about 10 ps. The signal-to-noise ratio was large
and the Zeeman relaxation was always exponential to
within experimental error over 2 orders of magnitude in
the difference magnetization. The experimental uncer-
tainty in R was typically 5%.

Temperature was varied by means of a flow of reheated
cold nitrogen gas and temperature was measured with a
copper-Con stantan ther mocouple. Absolute tempera-
tures are known to +1 K and the temperature gradient
along that part of the sample inside the NMR coil varies
with experimental conditions but has been determined

(using two thermocouples) to always be less than 0.5 K.
The observed relaxation rates R are presented in Fig. 3,

which shows both the high- and low-temperature phases.
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FIG. 5. ln(R ) vs T ' in the high-temperature phase of 1,3-
di-t-butylbenzene at 8.50 (L,), 22.5 (~), and 53.0 MHz (1). The
solid lines are the theoretical fits using the A-type t-butyl group
model with a Davidson-Cole spectral density.
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FIG. 6. ln(R ) vs T ' in the high-temperature phase of 1,3-
di-t-butylbenzene at 8.50 L), 22.5 (~), and 53.0 MHz (E). The
solid lines are the theoretical fits using the B-type t-butyl group
model with a Bloembergen-Purcell-Pound spectral density. The
8.5-MHz data at high and low temperatures were used to gen-
erate the fit and the various contributions in Eq. (17) to the re-
laxation at 53 MHz are identified by dashed lines.

The high-temperature phase data and the low-
temperature phase data are shown separately in Figs. 4-7
and Fig. 8, respectively. We are not equipped to do ex-
tremely accurate thermometry or calorimetry but we
strove for preparation consistency. After degassing, the
sample was always frozen in liquid nitrogen and placed in
the probe which was at a preset temperature. Each deter-
mination of R took about 15 min and at least 15 min was
allowed for the sample to come to equilibrium after a
temperature change. On cooling from just below the
melting point of 262 K, it was found that the sample was
always in the high-temperature phase and remained in
the high-temperature phase down to 110 K, which was
the lowest temperature at which R values were measured
in the high-temperature phase. Based on the theoretical
fits discussed below, it is most likely that the high-
temperature phase is the crystalline structure. It is prob-
ably stable to below 77 K so long as the temperature is
reduced slowly. When starting at 77 K, the sample was
always in the low-temperature phase. On increasing tem-
perature slowly from 77 K in the low-temperature phase,
the transition from the low-temperature phase to the
high-temperature phase always occurred within a few de-
grees of 200 K. We made some measurements while the

sample was either in some "in between" state or, more
likely, a mixture of the two phases and we report these
measurements as low-temperature phase measurements in
Fig. 8. The result is that some of the highest-temperature
R values in the low-temperature phase may not be
representative of that phase. They may be indicative of
critical processes near the onset of a phase transition. On
the basis of the analysis discussed below, we suggest that
the low-temperature phase is probably a phase with no
long-range structural order.

III. THEORY

A. General dipole-dipole relaxation theory

For the molecular solids of interest, the proton Zeeman
relaxation results from the modulation of the nuclear-
spin dipole-dipole interactions by the intramolecular
motion. For a system of spin- —,

' pairs in contact with a
heat bath characterized by a temperature T and a mag-
netic field strength 8 =co/y, the observed Zeeman relax-
ation rate R is of the form

R(co, T)= Ah(co, T) .
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A physical interpretation of Eq. (l) is obtained from
Fermi's Golden Rule No. 2. ' The parameter A is a
measure of the strength of the dipole-dipole interaction
and is determined by the geometry and the number of in-
teracting protons. The parameter h is a sum over spec-
tral densities and depends on the nuclear Larrnor angular
frequency ~ and on a series of parameters x, ,x2, x3, . . .
which characterize the reorientation process. Relating
the thermodynamic observables such as temperature T
(or pressure P '

) to the microscopic parameters is one of
the main goals of the research. h(co, x„xz,x3, . . . ) is

written in terms of the spectral density
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where the two terms have their origin in the fact that
those parts of the pairwise dipole-dipole interaction in-
volved with Zeeman relaxation correspond to both single
and double spin flips.

The spectral density is the Fourier transform of the
correlation function g ( t ):
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FIG. 8. ln(R) vs T ' in the low-temperature phase of 1,3-di-
t-butylbenzene at 8.50 (L), 22.5 (~), and 53.0 MHz (~ ). The
solid lines are the theoretical fits using the single A-type t-butyl
group model with a Havriliak-Negami spectral density.
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FIG. 7. ln(R) vs T ' in the high-temperature phase of 1,3-

di-t-butylbenzene at 8.50 (L), 22.5 (~), and 53.0 MHz (~ ). The
solid lines are the theoretical fits using the A-type t-butyl group
two-site model. Bloembergen-Purcell-Pound spectral densities
are used and the two components are shown for 53 MHz and in
the vicinity of the maximum in R at 8.50 MHz. The 8.5-MHz
data at high and low temperatures were used to generate the fit.
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B. Systems with t-butyl groups

The dipole-dipole interaction energy for two spins is
proportional to r (where r is the spin separation) so the
factor A in Eq. (l) is proportional to r . For Zeeman
relaxation in molecular solids where the only motion is
methyl reorientation, one need only consider couplings
between protons in methyl groups and between methyl
protons and other protons. Other proton-proton vectors
are not being modulated by the motion. For a methyl
group, the three protons are r =0.18 nm apart which, on
average, is much smaller than the distances between a
methyl proton and other protons. Thus, in systems
where methyl groups are relatively isolated, considering
only the intramethyl contribution to the total relaxation
rate is often an excellent approximation. The relaxation
for this fixed triangle or protons and closely related sys-
tems has been discussed very thoroughly for many
years but the form of the spectral density
j(co,x, ,x2, X3, . . . ) for all but a few simple systems
remains an unsolved problem.

In general, for three or more coupled spin- —,
' particles,

a perturbed nuclear magnetization will not relax ex-
ponentially, but rather via a sum of exponentials. ' For a
methyl group, there is the added complication that the
motions of the three proton-proton vectors are complete-
ly correlated and this gives rise to cross correlations
(which also result in nonexponential relaxation) as well as
autocorrelations. ' Indeed, nonexponential relaxation



38 NUCLEAR-SPIN RELAXATION IN MOLECULAR SOLIDS WITH. . . 11 103

is sometimes observed in systems where only methyl re-
orientation is occurring.

For a t-butyl group, the methyl reorientation is super-
imposed on t-butyl reorientation as shown in Fig. 2. This
often simplifies the description of the dynamics because
the superimposed reorientations make the motion of each
proton-proton vector less restricted (i.e., they are not
reorienting in only a single plane) and this tends to des-
troy the effects of cross correlations. Thus nonexponen-
tial relaxation due to cross-correlation effects is usually
not observed in systems where t-butyl groups are reorien-
tating' ' ' ' ' and theoretical expressions for the sin-
gle relaxation rate can be obtained in straightforward
ways since only autocorrelation functions need be con-
sidered. This allows for more stringent testing of the as-
sumptions concerning which dipole-dipole interactions
need to be taken into account. This also allows for more
stringent testing of models for the form of the spectral
density.

The relaxation rate in molecular solids where superim-
posed methyl and t-butyl group reorientation is occurring
has been discussed' and we review it here. The total ob-
served relaxation rate is

(5)

where R "'"is the relaxation rate due to the dipole-dipole
interactions between the three protons in the jth methyl
group which, in turn, is in the ith t-butyl group. The in-
dex j runs over the three methyl groups in the ith t-butyl
group. R ""' takes into account the intermethyl, intra-t-
butyl interactions for the ith t-butyl group. There are I
(=2 for DTB) t-butyl groups in the molecule. The
dipole-dipole interactions between the nine protons in a
t-butyl group and other protons is not considered. Not
only is r usually very small for these terms but the
modulation of the orientation of r with respect to the
field is considerably less than for intra-t-butyl r vectors,
all of which reorient through 360' in at least one plane.
In Eq. (5), n IN is the ratio of the number of protons in
the mobile unit (methyl or t-butyl) to the total number of
protons in the molecule. (n =3 for a methyl group, n =9
for a t-butyl group, and N =22 for DTB.) This assumes
that spin diffusion is rapid, which means that tnutual spin
flips transmit changes in local proton magnetization
throughout all hydrogen protons in the molecular and
the solid on a time scale T2 —10 JMs, which is orders of
magnitude faster than T, =R '

& 5 ms. Thus the relaxa-
tion process is slowed down as the "relaxing" protons re-
lax the "nonrelaxing" protons and R is decreased by
nIN

Crudely, the correlation time ~ is the mean time be-
tween changes in the local field, which is the same as the
mean time between methyl or t-buty1 group hops between
equivalent positions. In the simplest case, the correlation
time can be defined rigorously as the area under the
correlation function g ( t ) in Eq. (3):

r= —,'j(0)= —,
' f g(t)dt . (6)

of j as discussed in Sec. III D. ~ is further parametrized
in terms of more fundamental parameters which charac-
terize the anisotropic electrostatic potentials.

If the reorientation of the jth methyl group in the ith
t-butyl group is characterized by the correlation time ~, .

and the reorientation of the ith t-butyl group itself is
characterized by ~, , R "'"is given by

+ 9k (t0, 7;,Xp, X), ~ ~ ~ )

+p~ ji ( co, 1;;j,x p, x g, ~ & ~ )]

where the dipole-dipole strength parameter is

(7)

g intra

'2
pO y A2

4~ r6 (8)

The proton-proton separation in a methyl group is
r=1.797X10 ' m, ppI(4n, }=10 mkgs A where

pp is the permeability of free space, the proton tnagneto-
gyric ratio is y =2.675 X 10 kg ' s A, and
A'=1.054&&10 m kgs '. The numerical value of
A'"'" is 1.69&(10' s . The first and second terms in
Eq. (7) result from the reorientation of the methyl and t-
butyl groups, respectively, and the third term results
from the superposition of the two motions. The correla-
tion time ~;; in this third term is defined by

—1 —1 —1

l lJ l + lJ (9)

and can be associated with the superposition of the two
motions. The proton-proton separation r contained in
Eq. (8}does not change with time and the spectral density
involves only the dynamics of the spherical angles of r.

If r; = no in Eq. (7) (i.e., no t-butyl reorientation) then
the second term vanishes [since h(co, r; ) must approach 0
as r; ~0 or no], and r;,j ——v;j, which can be seen from
Eq. (9). In this case, the first and third terms of Eq. (7)
can be added, 9 + 3Q 4 and one obtains the standard ex-
pression for the relaxation due to a reorienting methyl
group 29 39

~j'"' =
io

'" h ij z (10)

Because the distances between the protons on different
methyl groups in the same t-butyl group change as the
methyl groups reorient, a closed form expression for
R '"'" is cumbersome. An approximate expression can be
obtained by condensing the three protons of each methyl
group to the center of the methyl triangle and consider-
ing the interaction between these three systems. This is
an excellent approximation for ~;- &&~; which will be the
case for the mode1 discussed in Sec. III C 2. However, in
the models discussed in Secs. IIIC1 and IIIC3, we wi11
assume ~; =~;, in which case the accuracy of the approx-
imation is not clear. If we make this approximation,R'"'" is three times R '"'"' in Eq. (10) with A '"'" replaced
with A '""' and ~, replaced with ~, : '

R inter 3 3 g

interpol

( )]

This definition is not suitable for more complicated forms where
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A inter Po
4m.

2
y4g2

6r~
A intra (12)

with

18 3 (3 3 A inter+ 4 A intra) 2 19X 1()9 —2
22 10 4 9 (14)

and where r =3.12X10 ' m. A'""'=6.23)&10 s

The relative importance of the intra-t-butyl, inter-

methyl relaxation rate given by Eq. (11) can be estimated
from the ratio 3 A '""'/A '"'"=0.11. This means that us-

ing the approximation for R'" ' in Eq. (11) in models
which do not satisfy the conditon ~,. && ~; should not lead

to serious error.
The total relaxation rate is now obtained by substitut-

ing Eqs. (7) and (11) into Eq. (5). This expression is valid

for a wide range of systems because it is quite general. It
is also a lower limit because all methyl-nonmethyl
dipole-dipole interactions have been ignored.

C. Specific relaxation models for 1,3-DTB

and

(15)

The numerical values of A, and A„are the same to
within 0.5%. This is accidental since A'"'" depends on r
and A'""' depends on r, . Using Eqs. (2) and (13), we
write the Zeeman relaxation rate as

R = A, [j(~,~„[x„j)+4j (2~,r„[x„j)
+j(~,~. /2, Ix„j ) +4j( 2~, ~. /2, Ix„j)],

(16)

where we have used the fact that A „=A, .

In order to apply the general theory to systems like
DTB we must model the local electrostatic environment
of the t-butyl groups and their constituent methyl groups.
To begin with, we need only specify the symmetry of the
environment. We will investigate three models. First, we
consider the case where all three methyl groups are
dynamically equivalent. In this case, the t-butyl group
and the constituent methyl groups are characterized by
the same correlation time. This is the situation in the 1.4
isomer. ' Second, we consider the situation where two of
the three methyl groups in the dynamically equivalent t-

butyl groups are themselves dynamically equivalent but
dynamically inequivalent to the third methyl group.
Third, we investigate an extension of the first model but
with two inequivalent sites. This model mimics a crystal
structure which leads to two diferent t-butyl group envi-
ronments. The first model is a one-v model and the
second and third are two-~ models.

1. A-type t-butyl groups: A one-~ model

The model used to fit the 1,4-DTB data' involves a
single correlation time. Considering only single molecule
symmetry, the two t-butyl groups in 1,4-DTB are dynam-
ically equivalent, so that the sum over i in Eq. (5) gives
two identical terms. Also, the three methyl groups are
equivalent and the three terms in the sum over j are iden-
tical. This is equivalent to saying that the t-butyl groups
reorient in sixfold potential wells. The surprising result
for 1,4-DTB is that the methyl reorientation is character-
ized by the same correlation time as the t-butyl
group. ' ' In this case, the t-butyl groups are called A

type and the three constituent methyl groups are called a
type. If nearest neighbors on the ring (protons on both
sides for both isomers) dominate in determining the sym-
metry of the reorienting group, then the 1,3 and 1,4 iso-
mers are the same. With these assumptions, ~; =~;.—:~,
(for a type) and, using Eq. (9),
~;;J.=(~, '+~, ') '=~, /2. The relaxation rate in Eq. (5)
becomes

2. B-type t-butyl groups: A two-~ model

In the second model, the two t butyl groups are
equivalent and are called 8 types. ' ' ' They reorient in
a threefold potential rather than in a sixfold potential. In
each t-butyl group, two of the three methyl groups (called
c types) are dynamically equivalent, one being above and
the other being below the plane of the ring. The third
methyl group (called a b type) is in the plane of the ring
close to a ring proton. The geometry can be visualized
with the help of Fig. 2. In this model, the reorientation
of the c-type methyl group is characterized by a correla-
tion time v, and the reorientation of the 8-type t-butyl
group and its constituent b-type methyl group is charac-
terized by a correlation time ~b. The b-type methyl
group and the 8-type t-butyl group have the same corre-
lation time associated with their dynamics. For this
second model, the two terms in the sum over i in Eq. (5)
are identical but there are two different terms in the sum
over j, one for the b process and one for the c process.
Equation (5) then becomes

R = Abh(co, rb, x&,x3, . . . )+ A&bh(co, rb/2, x2, x3y )

+ A, h(co, r„x2,x3, . . . )+ A&, h(co, w&, x2, x3y )

(17)

with ~bb (rb '+rb ——') '=~b/2 and Tb =(1b +7)'
using Eq. (9). Equation (17) for this two-r model can be
compared with Eq. (13) for the one-~ model. The four
multipliers in Eq. (17), along with their numerical values,
are given by

=—' ( —"3—' A '""'+—' —' A '"'"')= 1.57 X 1010 22 4 22 9

(19)

(20)

and

(21)
R = A, h(a), rg, x2, x3, . . . )

+ A„h(co, ~, /2, x2, x3, . . . ), (13)
The relaxation rate [analagous to Eq. (16) for the one
model] is now obtained from Eqs. (2) and (17). The result
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has the form of Eq. (16}but there are now eight terms in-

volving the four correlation times rb, r» ——rb l2, r„and
rb, and the four multipliers in Eqs. (18)—(21).

3. Inequiualent sites: A two-r model

+J ( co, 'r ' l2, I xk ) ) +4j ( 2co, r,"l2, I x„j)]

(22)

where the theoretical values of the A,"depend on the
crystal structure. Their sum must add up to A, in Eq.
(14).

Another approach to the general problem is to assume
a continuous distribution of r values. This is best done
via the form of the spectral density.

D. The spectral density

1. The Bloembergen-Purcell-Pound spectral density

If the motion is random and all rnolecules are in identi-
cal environments, the correlation function is a simple ex-
ponential,

e —IrIlr

Using Eq. (3), the spectral density is'

j(co,r) = 21

1+co

(23)

(24)

This is the Bloembergen-Purcell-Pound (BPP) spectral
density.

2. Distributions of correlation times

There are two quite different physical reasons why the
spectral density appropriate for Poisson statistics [Eq.
(24)] might not apply. One is that there may be sub-
groups of inequivalent groups of rotors. Although each
subgroup has its dynamics described by Poisson statistics,
each subgroup has a diff'erent mean frequency r ' This.
will be the case in a glass where there are many different
environments for methyl groups but this can also be the
case for crystalline solids such as 2,3-dimethylanthracene
and 2,3-dimethylnaphthalene where the form of the crys-
tal structure leads to a large variety of local environ-
ments. In this case, a general spectral density can be
formed from a distribution of BPP spectral densities,
each characterized by a correlation time g. The spectral
density becomes

2gj(co, &,x2, . . . )= A(g, x&,X2, . . . ) dj,
1+co g

(25}

where the distribution function A is normalized,

In the third model, R is given by the sum of two terms
like Eq. (16), each with its unique ~ value, because the
crystal structure leads to inequivalent t-butyl group sites:

2

X '4 o ~J(co 'r txk I }+4j(2cor" Ixk I )

A(g, x, ,xz, . . . )dg= 1 .~ ~ ~ ~

0
(26)

3. The Havriliak-Negami spectral density

Many non-BPP spectral densities have their origin in
dielectric relaxation (DR) experiments. DR and NSR ex-
perirnents are very different in that in the former, the
modulation of an electric dipole vector is observed direct-
ly, whereas in the latter the effect of the modulation of a
nucleus-nucleus vector on the nuclear- (magnetic) spin
state is observed. However, the statistics that describe
the dynamics can certainly be related. With the normali-
zation adopted for j(co), the NSR spectral density is 2/co
times the imaginary part of the DR spectral density
H(co). For example, if the motion is describable by Pois-
son statistics, a Debye DR spectral density H(co) is given
by H(co) =(I+icos) ' and the j(co) for the NSR case is
given by Eq. (24).

Dissado and Hill (DH) have developed a very general
DR spectral density ' which successfully interprets
many sets of DR data. It has also been used to inter-
pret mechanical relaxation data. " The dynamical mod-
el ' on which this DH spectral density is based as-
sumes both distributions of rnotional barriers and the
presence of correlated motions. There is an asymmetric
anisotropic potential and the many-body problem is in-
troduced via a distribution of well depths. This distribu-
tion is characterized by a parameter n where 0&n &1.
The value of n depends on the details of the averaging
procedure and is material dependent. A value of n =0
corresponds to a unique barrier height and a value of
n = 1 corresponds to the greatest allowed distribution of
barrier heights. Correlated motions among the dipoles
will affect the relaxation and this is characterized by a pa-
rameter m, 0&m &1 where m =1 corresponds to no
correlated motions and m =0 corresponds to perfectly
correlated motions.

The DH spectral density H(co) for this model ' re-
quires numerical evaluation of conAuent hypergeometric
functions. We 6nd it preferable to deal with simpler alge-
braic functions if possible and we note, as previously
pointed out, ' that the phenomenological spectral density

There is a question as to when one should assume a con-
tinuous distribution of ~ values and when one should use
a 5nite number of BPP spectral densities, each with its
unique ~ value. We shall address this question in Sec. IV.

Another approach is to assume that the correlation
function is not a simple exponential. Although perhaps
physically quite different, the two approaches can be
made formally identical since the Fourier transform in
Eq. (3) and its inverse,

g(t, x),xp, . . . )= f J(co,x),x2, . . . )e ' 'dco,
27K —oo

(27}

are linear operations. Thus a nonexponential correlation
function can be expressed as a distribution of exponential
correlation functions. Equation (25) in Eq. (27) yields

g(t, x, ,x2, . . . ) = f A(g, x„x2, . . . )e ' ~dg . (28)
0
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j (cu, r, e, 5)=

(29)

At high temperatures where ~ is sufficiently small that
cov &&1,j reduces to

j (co, r, e, 5)=2e[sin(5m/2)]r c.o

and, at low temperatures where cong&1,

(30)

due to Havriliak and Negami (HN) has many properties
in common with the DH spectral density although it is
different in appreciable ways. For our purposes the HN
spectral density is both sufficient and informative.

The HN spectral density for DR studies is given by
H(co)=[1+(ice~) ] ' where 0&5&1 and a&5 '. Al-

though there is no fundamental theoretical relationship
between the microscopic fundamental parameter pair
m, n in the DH model and the phenomenological parame-
ter pair 5, e in the HN model, they can be related by
fitting the same DR or NSR data. The relationship is
m =5 and n =1—5e. Thus 5 is a measure of the correla-
tions and the product 5e is a measure of a spread in bar-
riers.

The NSR spectral density corresponding to 2/co times
the imaginary part of the HN DR spectral density is

(cor} sin(5n/2)
2 sin e arctan

1+(car) cos(5m/2)

co[1+2(cur) cos(5m/2)+(cur) ]'

go. Again, this is discussed in Sec. IV. The singularity at
(=r corresponds to the unique BPP correlation time
since A in Eq. (33) approaches 5(r—g} (where 5 is a
Dirac 5 function) as @~1 and j in Eq. (32) approaches j
in Eq. (24}.

For completeness, we note that if e= 1, the HN spec-
tral density in Eq. (29} reduces to the Cole-Cole spectral
density which has been used extensively in DR studies. '

E. The correlation time

There remains the relationship between the correlation
time ~ and the temperature T. This matter is discussed in
Ref. 9, where several models are given. The experiments
discussed here are performed in the high-temperature
"classical hopping" regime where the details of the pho-
non spectrum that make up the lattice do not matter.
The phonons make up an infinite heat capacity thermal
reservoir that is characterized by the bulk equilibrium
temperature. The energies of the nuclear-spin reservoir
are completely negligible. The transition from the low-
temperature tunneling regime, which may be sensitive to
the structure of the phonon spectrum, to this high-
temperature classical hopping regime is of considerable
interest and is being studied intensively.

The simplest model for v is to assume an Arrhenius re-
lationship,

j (co, r, e, 5)=2[sin(f5'/2)]r 'e (31)
E/kT (34)

4. The Davidson-Cole spectral density

If 5=1, the HN spectral density in Eq. (29) reduces to
the Davidson-Cole (DC} spectral density given by

2 sin[a arctan(cor)]
J C07, e

( 1 + 2+)E/2
(32)

A(g, ~, ~) =
1

sin(em )

The Dc spectral density is an important subset of the
HN (or DH) spectral density because it implies that
m =1 and there are no correlated motions. This is the
usual case for NSR experiments. In terms of the NSR
data, it is usually successful when R(co, T) data is in-
dependent of co at high temperatures (cow «1) as in Fig.
5. Relating the remaining parameter e to the DH theory,
@=1—n so e becomes a measure of the distribution of
barriers.

The DC spectral density can be obtained directly from
the assumption of a distribution of BPP spectral densities
via Eq. (25) with a distribution A(g, r, e) given by

where E is an effective activation energy which is either
equal or nearly equal to the barrier height for E &&kT
(Ref. 58) and where the parameter r„ is discussed below.
Equation (34) ties together the two approaches to non-
BPP NSR data in that the distribution of correlation
times leads directly to a distribution of effective activa-
tion energies which is inherent in the DH model for DR
relaxation.

A physical interpretation of the parameter ~„ in Eq.
(34) can be obtained by assuming that there is a simple
periodic potential of height E &&kT and that reorienta-
tion occurs by thermally activated rotation over the top
of the barrier as discussed above. The reorientation rate

' in Eq. (34) is the product of the probability of being
near the top of the well, exp( E/kT), and th—e attempt
frequency, r„' (i.e., the frequency the rotor has when it
does happen to be near the top of the well). In the har-
monic approximation, this attempt frequency may be ap-
proximated by the vibrational frequency. We call this
frequency ~ „'and 7„is given by

0, 2I
' 1/2

(35)
This distribution of correlation times seems not very
physical since there are singularities at (=0 and (=r but
a meaningful distribution of activation energies can be
derived from it as discussed in Sec. IVD. The fact that
A(g)~g ' ' (with 0&a 1&) as $~0 is not physically
meaningful since g will not go to zero but rather to some

where I is the moment of inertia for the reorienting
group. For a methyl group, I=5.3&10 kg m and for
a t-butyl group, I is approximately 2.4)& 10 kg m .



38 NUCLEAR-SPIN RELAXATION IN MOLECULAR SOLIDS WITH. . . 11 107

IV. DATA ANALYSIS AND DISCUSSION

A. Parametrization of the data

The observed R (co, T ) for 1,3-DTB are shown in Fig. 3.
The high- and low-temperature phases are shown sepa-
rately in Figs. 4-7 and 8, respectively. In both 1,4-DTB
(Ref. 17) and the high-temperature phase of 1,3-DTB
(Figs. 4—7), ln(R ) versus T ' is linear at both high and
low temperatures. A convenient parametrization of the
data in this case is to fit the slopes and intercepts in these
regions. This parametrization is independent of any
theoretical considerations. At high temperatures,

ln(R }=AT '+8
and at low temperatures,

ln(R ) = CT '—+2)

(36}

(37)

(38)

I'

g=]n 2(3+2'+ +2 )eA, sin rs„co '+5m.

5eE,
k

(39)

and

2)=ln 2(3+2' s'+2s')

X A, sin
56 r —s~ —l —se

7g~ S (41)

The two slopes [Eqs. (38) and (40)] are independent of co,

whereas the two intercepts [Eqs. (39) and (41)] do depend
on co so that measurements at high and low temperatures
at two frequencies overdetermines the parameters.

If a two-~ model is used, the data analysis is somewhat

where A, S, C, and S are positive constants. (The slope
at low temperatures is —C, which is negative for C & 0. )

Below, we present a single one-r fit of the low-

temperature data using the HN spectral density. This
procedure will assume that the t-butyl group is A type as
discussed in Sec. III C 1. For the high-temperature data,
we will employ a variety of one-r and two-r models.

We first relate, within the confines of a one-~ model,
the parameters characterizing the HN spectral density
and those characterizing the experimental data. The DC
and BPP spectral densities are then treated as limiting
cases of the HN spectral density. If we assume that the
t-butyl group is A type and if we use the HN spectral
density, R is given by Eqs. (16), (29), and (34) and there
are five fitting parameters, A„E„r,„,5, and e. There
are theoretical values for A, and r, „(called A, and

r, „)given by Eqs. (14) and (35) with which the experi-
mentally determined values can be compared. This set of
five parameters is related to the experimental parameter
setA, 8, C, and 2) in Eqs. (36}and (37}by

more complicated. Using the HN spectral density with a
two-~ model leads to ten parameters, which is unecessari-
ly large. When the HN and DC spectral densities are
used with a one-r model (five and four parameters, re-
spectively} they are mimicking a multi-r model using the
BPP spectral density. Two-~ models should be used only
with BPP spectral densities unless the two ~ values are so
diferent as to lead to clearly separated maxima in R.

The HN spectral density in Eq. (29} reduces to the DC
spectral density in Eq. (32) for 5= 1. For the one-r mod-
els, it follows from setting 5=1 in Eqs. (38)-(41) that the
high-temperature slope, A, gives E, and the ratio of the
high- and low-temperature slopes, C /A, gives e. A, and

r,„then follow from 8 and S in Eqs. (39) and (41). 8 is
independent of co (for 5= 1) whereas S is proportional to
co "+". Thus the parameter e determines not only the
ratio of the low- to high-temperature slopes for fixed e
but it also deterinines the ratios R (co, )/R (co2) for cor »1
(low temperature). This is a very restrictive requirement.
The fitting procedure for the DC spectral density is dis-
cussed elsewhere. Measuring at three frequencies far
overdetermines the parameters; if one obtains A, 8, C,
and 2) at one frequency then the fits at other frequencies
are completely determined with no adjustable parame-
ters.

The BPP spectral density follows from the DC spectral
density by setting a= 1. Again, within the confines of
one rinode-ls, it follows from Eqs. (38)—(41} that
A =C =8, /k, %=]n(15A,r, „), and
2)=]n(12A, r, „'co '). Thus R ~co ' at low temperatures
(cor, » 1).

The Larmor-frequency dependence of R places a con-
siderable constraint on the form of the spectral density
and can be used to determine whether or not the observa-
tion of A &C can be built up from a sum of BPP spectral
densities each with a unique ~.

B. Data analysis: The high-temperature phase

The one-~ model

The high-temperature linear ln(R }versus T ' in Figs.
4-7 is independent of ~. If we begin with a one-~ model
and assume that the relaxation is given by Eq. (16},then
5=1. On the other hand, A and C are different so the
BPP spectral density will not work but it is instructive to
show this in order to point out that the observed value of
A/C -0.9 is significantly less than unity. In Fig. 4 we
show two sets of fits using Eqs. (16}, (24), and (34). In
each case there are three parameters; A„E„and ~,„
and the two sets of fits correspond to forcing A =E, /k
(fit to the high-temperature slope) and then C =E, /k (fit

to the low-temperature slope). In both cases, the region
of the maximum in R was also fitted.

In Table I, the parameters A, and ~, are given in

terms of the ratios A, /A, and r, „/r, „where A, is the
theoretical value given by Eq. (14) and r, „ is given by
Eq. (35) with E=E,. We have used the moment of iner-

tia of the methyl group. Since r o:I', r, „(t
butyl)/r, „(methyl) —6.8, which means the ratios

~, „/7, in Table I should be divided by 6.8 if ~, for a
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TABLE I. Relaxation rate parameters for one-v models.

Molecule

1,4-DTB
1,3-DTB
1,3-DTB
1,3-DTB
1,3-DTB

Phase

High T
High T
High T
Low T

DC
BPP
BPP
DC
HN

Figure
reference

Ref. 16
Fig. 4
Fig. 4
Fig. 5

Fig. 8

Fit

Good
Poor
Poor
Good
Okay

E,
(kJ/mol)

18+1
20+1
14+1
17+1
10+3

3, /3,
1.17+0.06
1.00+0.05
1.00+0.05
1.04+0.05
1.620.6

1

1

1

1

0.43+0. 14

0.89+0.09
1

1

0.86+0.09
0.6+0. 1

0.60+0.06
0.23+0.02

8.3+0.8
1.4+0. 1

—1 —10

t-butyl group is used. The fits are very poor and this ex-
ercise points out the significance of A&C. We note,
however, that the fitted value of A, (see Table I) is given

by the theoretical value to better than 1%. Were the ex-
periments done at only one frequency, one could invoke a
phase transition (i.e., to a new value of E, ) in the vicinity
of the maximum but the co dependence of R completely
rules out this interpretation.

The next step from the three-parameter fits above is a
four-parameter fit that corresponds to the same one-v.

model but using a DC spectral density instead of a BPP
spectral density. Thus, the relaxation rate is given by
Eqs. (16), (32), and (34) and the quite successful fit is
shown in Fig. 5. The fit for 1,4-DTB, which is all the
high-temperature phase, looks very similar to Fig. 5 and
is presented elsewhere. ' The values of E„e, ~,„, and

A, are obtained from the observed A, %, C, and 2) and
are given in Table I. The values of R in the vicinity of
the maximum, which play no role in the fitting pro-
cedure, are reproduced very well by the DC spectral den-
sity.

For this one-~ model using the DC spectral density, the
fitted value of A, /A, —1 [with A, from Eq. (14)] strong-
ly supports the important assumption that intramolecular
methyl-nonrnethyl spin-spin interactions and all inter-
molecular spin-spin interactions involving at least one
methyl proton play a minor, if not negligible, role in the
relaxation process. Although intermolecular proton
dipole-dipole interactions are often important for NSR in
many solids, there are nine closely spaced strongly in-
teracting protons in a t-butyl group so other proton
dipole-dipole interactions play a relatively minor role for
DTB in which 18 of the 22 protons are in t-butyl groups.

2. Two-~ models

The next fit assumes that the t-butyl group is a B type
as discussed in Sec. III C2. There are now two distinct
correlation times ~b and ~, and two cross terms
~i,b rb/2 and v.b,

——(~& '+r, ') ——' resulting from the fact
that the methyl group reorientation is superimposed on
the t-butyl group reorientation. We shall use a BPP spec-
tral density and the relaxation rate is given by Eqs. (17),
(2), (24), and (34). We chose to keep the ratios of the
fitted to theoretical A values constant, thus preserving
one of the essential features of the model. We define a by
a= A;/A; which is independent of i =b, bb, c, and be
[see Eqs. (18)—(21)] and the fitting parameters are a, E„,
E„~b„,and ~,„.This is a five-parameter fit and the best
example is shown in Fig. 6. The fitted parameters are

a = 1.25, Eb ——27 kJ/mol, E, = 16 kJ/mol,
/1b ——0.011, and r, „/'r, „=1.0. The value of a is

quite reasonable and suggests that within the confines of
this model, proton dipole-dipole interactions other than
the intra-t-butyl group contributions are playing a small
but not insignificant role. This is reasonable if the t-butyl
is a B type since there must be enough asymmetry in the
environment to lead to a threefold rather than a sixfold
electrostatic potential. Whether this lower symmetry has
its basis in the intramolecular electrostatic interactions
resulting from the meta positioning of the t-butyl groups
[see Fig. 1(b)] or whether the molecular packing (inter-
molecular electrostatic interactions) are responsible can-
not be determined from these experiments. We note that
the fitted value for ~,„is the same as the theoretical pre-
diction based on the very simple model given in Sec.
III E. The dynamics of a B-type t-butyl group in the vi-
cinity of cov, —1 is such that the c-type methyl groups are
sitting above and below the plane of the aromatic ring
reorienting with a mean rate ~, '-co while the t-butyl

group and the b-type methyl group adjacent to the ring
proton are reorienting at the slower mean rate ~b «,
Thus it is meaningful to speak of isolated methyl reorien-
tation for the c-type methyls and the simple model for
7,„ is relevant. On the other hand, ~b refers to both the
b-type methyl and the B-type t-butyl. As such, the simple
model is not very meaningful and the ratio rb„/~b„ is
not very significant.

In the case of the one-v. model, the term in R that in-
volves ~, /2 does not differ qualitatively from the term in

r, [see Eq. 16)]. Similarly, in this case, Rbb, the terin in
R that involves rb/2, does not differ qualitatively from
Rb, the term in vb, and the two are lumped together as

Rb+» as one of the three dashed lines in Fig. 6. If
~b »r, then it follows from Eq. (9) that wi„-r, and the
terms in R that involve r, and ~b, can also be lumped to-
gether. This is the case for other systems' ' ' and the
situation has been discussed for the 2,4 and 2,5 isomers of
di-t-butylhydroxybenzene. In the present case, howev-
er, 7-b and v., are sufficiently close as to make ~b, look like
a distinct correlation time in the range ~, & ~b, & ~b.
Thus the components of the relaxation rate- R, and Rb,
are distinct. We show Rb+bb, R„and Rb„ the three con-
tributions to the relaxation rate R in Fig. 6.

The final model we investigate is the two-site model.
The t-butyl groups are A type but there are two distinct
sets of them so this is a two-v. model. We use a BPP spec-
tral density and the relaxation rate is given by Eqs. (22),
(24), and (34) with the six fitting parameters A,", E,",
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and ~,'„' for i =1 and 2. The fit in Fig. 7 is successful but
this is not a foregone conclusion simply because we have
one more adjustable parameter than the previous fit. The
important distinction between this case and the preceding
one is that here there are two BPP-like R-versus-T
curves and in the preceding case there were three because
of the Rb, term. For convenience, we choose theoretical
values 3,'"=2,' '= 3, /2 since this would be the case if
there were an equal amount of each type of t-butyl
groups. The fitted values are A,"'/A,"'=1.0+0. 1,
A,' '/A ', '=1.4+0. 1, E,"'=27 kJ/mol, E,' '=19
kJ/mol, w,"„' /r,"„=0.0086, and r,' „'/i ', „' =2.0. The
two contributions to the total relaxation rate are shown
at 8.5 and 53 MHz in Fig. 7. The fit is successful but it is
difficult to analyze the fitted parameters in the absence of
a crystal-structure determination. The ratio
A,'2'/A, "'-—,'would suggest three type-(2) t-butyls to
two type-(1} t-butyls but then both A values are about
50% too large. A fit where A,"I = A,' ' is forced has been
done but the fit is completely unsuccessful. One can use
more than two sites but this would involve nine or more
parameters. This seems unwarranted when the other
models are successful with four or five adjustable parame-
ters.

3. Summary

The high-temperature relaxation rate data for 1,3-DTB
is fitted quite well by three models: a one-~ model for A-
type t-butyl groups whose dynamics is characterized by a
Davidson-Cole spectral density; a two-v model for B-type
t-butyl groups whose dynamics is characterized by a
Bloembergen-Purcell-Pound spectral density; and a two-
', two-site model where the dynamics is again character-
ized by a Bloembergen-Purcell-Pound spectral density.
The fitted parameters for the first two cases agree very
well with theoretically predicted parameters from quite
specific models whereas it is not clear how to interpret
the parameters for the third case in the absence of the de-
tails of the crystal structure.

features of the 8.50-MHz data but quantitatively the fit is
poor. The uncertainties in the parameters in Table I are
significant for this low-temperature phase.

The value of A, /A, = 1.6+0.6 for the low-
temperature phase suggests that intermolecular proton
dipole-dipole interactions are strong. This suggests that a
significant number of t-butyl groups on different mole-
cules are very close to one another. (This could be the
situation in a glass. ) This, in turn, is consistent with a
nonzero value of 5 which suggests that the motions of
groups of methyl and t-butyl groups are correlated.

I'(C, E,x2,xi, . . . )d6'=A(g, r, xz, xi, . . . }dg, (42)

but until the relationship between the correlation time g
and the activation energy 8 is modeled, I cannot be
determined. On initial inspection, it might seem reason-
able to relate g to the activation energy 8 via

(&/kT (43)

D. Distributions of activation energies

We have only used non-BPP spectral densities with
one-~ models. The non-BPP behavior can be interpreted
in terms of a nonexponential correlation function, in
which case ~ (~, in the examples used) is a unique corre-
lation time. On the other hand, the non-BPP behavior
can also be interpreted in terms of a distribution of ex-
ponential correlation functions exp(

~

t
~

/g) via Eq. (28)
where the distribution A((, 7.,x2, xi, . . . ) is at least par-
tially characterized by a correlation time ~. Thus ~ can
be a cutoff correlation time as in the case of the DC spec-
tral density [see Eq. (33)] or it might be a mean correla-
tion time in other models.

Corresponding to a distribution of correlation times g,
there will be a distribution I ( C,E,xz, xi, . . . ) of activa-
tion energies 6 with the cutoff or mean activation energy
E corresponding to the cutoff or mean correlation time ~.
The relationship between I'(C,E,xz, x&, . . . ) and the dis-
tribution of correlation times A(g, ~,x„x2, . . . ) can be
defined formally via

C. Data analysis: The low-temperature phase

For the low-temperature phase of 1,3-DTB, limiting
linear R-versus-T behavior at high temperature is not
observed because the solid transforms to the high-
temperature phase. All attempts at fitting the data with
one-~ and two-~ models with the BPP and DC spectral
densities failed. We use the HN spectral density with the
one-~ model assuming the t-butyl groups are 3 type. A
fit is shown in Fig. 8. The fitting parameters are A, 23, C,
and 2) in Eqs. (36)—(41). A fifth parameters is required
and the product 6e is chosen for computational conveni-
ence. The data at both 22.5 and 53.0 MHz are used for
the fitting procedure, with A, %, C, and X) determined
from the 22.5-MHz data and 5e determined from the ra-
tio R(22. 5 MHz)/R(53. 0 MHz) at the lowest tempera-
tures since R is proportional to co "+ '. The 8.5-MHz
data has considerable scatter and the low-temperature
linear regime is less precise. The At, based on the 22.5-
and 53.0-MHz data, reproduces, qualitatively, the general

sin(air ) 1

I (g Q p) ~(k7 ) e(E @llkT 1—
0, N)E .

@&E

This model has two problems associated with it. The first
is that since the lower limit for g is taken as 0 [Eq. (33)],
the lower limit for 6 is —~ rather than 0. This makes

in analogy with Eq. (34) for 7., which is the cutoff or mean
value of g. The precise nature of g„ in Eq. (43) is not
known, so d 8/dg cannot be determined even if
A(g, ~,x2,xi, . . . ) is known. So, I'(C, E,E) in Eq. (42)
cannot be determined. However, as a first step, the
dependence of g„on A' and T can be presumed to be
weak compared with the dependence of g on 6' and T via
the exponential in Eq. (43). We use the DC spectral den-
sity as an example. If it is assumed that g„ in Eq. (43) is
constant and equal to the cutoff ~„ then Eqs. (33), (42),
and (43) give
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no sense but is not a serious problem in that the number
of rotors with —0e & 6' &0 is completely negligible com-
pared with the number with 0&8&E. This has been
determined numerically. To put it another way, the dis-
tribution in Eq. (33) should really span the range
r„&g' & ~ rather than 0 & g & ~ if an Arrhenius relation
like Eq. (34) is to be used but it does not really matter.
The second problem is far more serious. The distribution
I (C,E,e) in Eq. (44) is strongly temperature dependent.
This seems totally unphysical and is sufficient reason for
rejecting Eq. (43) for g with a constant g„. There are
other more satisfying models but they seem to have little
physical basis.

For completeness, we note that a recent incoherent
neutron scattering experiment in a glass has used a
Fuoss-Kirkwood (FK) spectral density6' to model a dis-
tribution of correlation times. The FK spectral density
will not fit the 1,3-DTB in either phase within the
confines of a one-~ model nor are we aware that it has
ever successfully fit any NSR data.

V. SUMMARY

We have measured the temperature and Larmor-
frequency dependence of the proton Zeeman relaxation
rate in the 1,3 isomer of DTB. There is a phase transition
in the vicinity of 200 K and the temperature and
Larmor-frequency dependence of the Zeeman relaxation
rate are very different in the two phases.

We are able to interpret the high-temperature phase
data in terms of several models which differ in the num-
ber of distinct characteristic correlation times and the
form of the spectral density. In turn, these different mod-
els can be interpreted in terms of the different possibilities
for the symmetry of the environment of the t-butyl
groups. If the spectral density characteristic of random
motion is used then a two-correlation-time model is need-
ed. We discussed two examples of such models. On the
other hand, if a one-correlation-time model is assumed
then the form of the spectral density implies a distribu-
tion of correlation times which describe methyl and t-

butyl reorientation, or, it implies a nonexponential corre-
lation function. The parameters which quantitatively de-
scribe the overall strength of the local proton dipole-
dipole interactions fit very well with the various models
and cannot be used to distinguish between them. When
both temperature and Larmor frequency are varied, one
can distinguish between dynamically equivalent rotors
whose correlation times are distributed and a small num-

ber of dynamically inequivalent rotors each with their
own correlation time.

The low-temperature phase relaxation rate data is
unusual. The fit of the data implies a very considerable
distribution of activation energies even though the pre-
cise relationship between correlation time and activation
energy is not known. The detailed form of the spectral
density used to fit the data is nearly equivalent to, if not
mathematically identical to, that developed by Dissado
and Hill (DH) to interpret dielectric relaxation (DR)
data. In the DH model, one parameters is a measure of
correlated motions of electric dipoles and another param-
eter is a measure of a spread in activation energies. It is
not clear how to interpret these parameters for NSR ex-
periments and when the appropriate theory is done for
the NSR case, there will, no doubt, be considerable
modifications to the model. In the meantime, we use the
DR-NSR analogy as a phenomenological guide. If the
DR theory is interpreted literally, it also implies strongly
correlated motions of groups of methyl and t-butyl
groups in the low-temperature phase and this is con-
sistent with a proton dipole-dipole strength parameter
which is 60%%uo larger than that found in the high-
temperature phase. We suggest that the low-temperature
phase is most likely an amorphous, glassy state with no
long-range order. An x-ray study is needed but this
would have to be done both above and below 200 K.

Many interesting and useful conclusions concerning
the dynamics in molecular solids can be made with very
simple qualitative analyses of nuclear-spin relaxation data
so long as both temperature and Larmor frequency are
varied and both long- and short-correlation-time regions
are observed. Although important boundary conditions
can be placed on detailed models for the motion,
nuclear-spin relaxation rate experiments must be coupled
with other spectroscopies before definitive models can be
formulated.
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