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We propose an approximate general method for calculating the effective dielectric function of a
random composite in which there is a weakly nonlinear relation between electric displacement and

electric field of the form D eE+XIEI2E, where e and X are position dependent. In a two-

phase composite, to first order in the nonlinear coefficients Xi and X2, the effective nonlinear

dielectric susceptibility is found to be X, P;-&,2(X;/p;)(8e, /8e;)OIBe, /Be;Io, where e, is the
effective dielectric constant in the linear limit (Z; O, i 1,2) and e; and p; are the dielectric
function and volume fraction of the ith component. The approximation is applied to a calculation
of Z', in the Maxwell-Garnett approximation (MGA) and the effective-medium approximation.
For low concentrations of nonlinear inclusions in a linear host medium, our MGA reduces to the
results of Stroud and Hui. An exact calculation of X, is carried out for the Hashin-Shtrikman

microgeometry and compared to our MG approximation.

I. INTRODUCTION

There are many phenomena in composite media in
which nonlinearity plays an important role. Among these
are dielectric breakdown in metal-insulator composites
and the nonlinear optical susceptibility of composite
media. In this paper we will be concerned with determin-
ing the effective nonlinear dielectric susceptibility of a
two-phase, weakly nonlinear, inhomogeneous composite.

For linear composites, the effective dielectric e, is a
function of the geometry of the composite, and the volume
fraction and the physical properties of each component.
There have been numerous approximations developed to
calculate e, in the linear regime. Two of the most widely
used methods are the Maxwell-Garnett approximation'
(MGA) and the effective-medium approximation
(EMA). Both methods involve an approximation which
results in a uniform field inside one or more of the pure
components.

In a nonlinear composite, unlike a linear one, the dielec-
tric function depends on the applied electric field. If the
applied electric field is sufficiently low, however, the
relevant nonlinear effective susceptibilities can be ob-
tained by a perturbation approach. This perturbation ap-
proach can be used to give an exact expression for the
nonlinear susceptibility in terms of the electric field distri-
bution in the related linear medium. Recently, Stroud
and Hui have used this result in the low-concentration
limit to obtain an exact expression for the cubic nonlinear

susceptibility of a composite medium in the limit of a
small concentration of nonlinear inclusions in a linear
host.

In this paper, we derive a more general type of approxi-
mation for the nonlinear susceptibility —one which is not
limited to a system of dilute nonlinear inclusions in a
linear host. The resulting approximation for nonlinear
media is similar in spirit to the well-known effective-
medium approximation for linear composite media. Be-
sides this generalization, we also present an exact calcula-
tion of the nonlinear susceptibility for a composite that
has the special geometry first discussed by Hashin and
Shtrikman.

The remainder of the paper is organized as follows. In
Sec. II, we present our general method of approximation,
and apply it to obtain a number of specific results. Sec-
tion III describes an exact calculation of the nonlinear
susceptibilities for the Hashin-Shtrikman microgeometry
and compares this result with the Maxwell-Garnett ap-
proximation. A brief discussion and summary follows in
Sec. IV.

II. GENERAL APPROXIMATION METHOD
AND ITS APPLICATIONS

We consider a two-component composite in which each
component is described by a weakly cubic nonlinear rela-
tion between the electric displacement D and electric field
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E of the form

D;=e;(0)E;+x;IEI'E.
Such an expansion will always be possible provided that
E;IEI «e; ) (i, 1,2). The term quadratic in electric
field will vanish unless the constituents lack inversion sym-
metry. The space-averaged fields and displacements &E&

and &D& are related by an equation of the same form:

that

~1, , ~1
x, - F) IFi I+ F2IF2I .

P1 P2
(10)

e. -e. + FI IF( IEo+ F2 IF2 IE0, (9)
Pl

' ' '
P2

'

(8e /8e ) (i=1,2). We now find that g, is
given by

(2)

Our goal is to find approximations for Z, .
Now in a binary composite, the linear effective dielec-

tric function can always be written in the form

(0) F( (0) (0) )

where p) is the volume fraction of the e) component, and
F is some function which will, in general, depend on the
geometry of the composite. In order to obtain our approx-
imation for X„we initially assume that only component 1

is nonlinear, so that t. 2 e2 . We then invoke an approxi-
mate nonlinear form of Eq. (3):

Equation (10) is our principal result. It is based on the
assumption that the fluctuations & I E; I &

—
& I E; I

within the ith component are small, compared to & I E; I

itself. This approximation will be most accurate in

geometries, such as the Hashin-Shtrikman geometry dis-

cussed below, for which the electric field is nearly uniform

within the nonlinear component, and less accurate when

these fluctuations are large, such as near a percolation
threshold. To illustrate its predictions, we proceed to ap-

ply this general formula to various binary composites with

different geometric configurations and different densities

of inclusions.

ee F(el eiipi) . (4) A. Low-density limit

Here e; e, +X;& I E; I & and & I E; I & is the mean square
of the electric field in the ith component in the linear lim-
it. Equation (4) is strictly valid only if ei and e2 are con-
stant in each component. Thus, our use of Eq. (4) here in-
volves making the approximation that the field E is uni-
form in the nonlinear component. This assumption is con-
sistent with the spirit of linear effective-medium approxi-
mations.

Next, we expand the function F in a Taylor series about
the linear e, , to obtain

e, =F(ei"',e2,p))+F'(ei"', e2 ',p))Z(& I E( I

'
&, (5)

We first consider a linear host containing a very small

volume fraction of nonlinear inclusions. In this case, we

recover the known results of the low-density theory. The
argument is the following: in the low-density regime, the
effective dielectric function of such a composite in the
linear limit is

(0)

&e &2+ 3&2P1 (p)
(p)

+282

where e2 is the host material and e) the nonlinear in-
clusion. 8e, /8eI is then

where X1 is the nonlinear coefficient of the component 1

and F' 8F/8e(. Now this partial derivative can be ex-
pressed exactly in terms of the average squared electric
field in component 1 in the linear limit; the relation is

p & I E I
'&/Eo'-(8e, /8e))(0)—:F'(e)' ', e2",p)), (6)

362
~e ~1@1 (p) +

' 2
362

~(P)+ 2~

2

8ee 3e2

8 el p e) + 2E'2(p)

Substituting Eq. (12) into Eq. (8), we obtain

(12)

(13)

where Ep is the external field. Therefore, we have This is the same as the result of Stroud and Hui.

e. =e'"+ F'I F'IEo,
P1

and by the definition of the effective nonlinear coefficient
Z„we obtain

Xi 8eg 8'
~e

p) 8e) () 8e] p

8. Maxwell-Garnett approximation

Next, we obtain X, for a composition which in the linear
regime is described by the Maxwell-Garnett approxima-
tion. As is well known, the MG approximation is most ap-
propriate for a composite in which one of the constituents
plays the role of a host medium and the other acts as an
inclusion. If medium 2 is then host, then the MG approxi-
mation takes the form

These considerations are easily generalized to the case
where both components are nonlinear. In this instance,
we simply expand Eq. (1) around both e( and e2, so

(0)e(0)(]+2p)+2e(0)(1 p)
e(0) (0)(1 p )+e(0)(2+p )

(14)
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From this we obta1n

8Eg' 9P1~2
(0)2

a.. . [e(')(2+p, )+e")(I—p )]' '

and

(is)

8Eg
F2=

(0)2 46 g2 pl+ 25(0)2 +4 (0)2+4tc(0)2+ p(0 + 6(0)2

From these two formulas, we can calculate X, using Eq.
(io).

for parallel cylinders and

&1P1 &2+2

[p + (p(0)ppp(0))] 4 [p + (&(0)p /&(0))] 4
(2o)

C. Exactly solvable microgeometry:
Parallel cyhnders and slabs

There exist a number of special microgeometries for
which e, can be calculated exactly. The first of these is
the case where the components are arranged in the fortn
of (not necessarily circular) cylinders parallel to the exter-
nal field. Another soluble geometry is one in which the
constituents are arranged in the form of flat slabs perpen-
dicular to the applied field. The effective dielectric con-
stant takes the form

(o) (o)+ (o)
P1~1 Pc~2

for parallel cylinders and

(0)
E'1 E'2~(0) ~(0)

for parallel slabs. These results are analogous to the
effective capacitance for capacitors in parallel and in

series.
Using Eq. (10), we obtain for the effective nonlinear

dielectric susceptibility

~e P 1~1+P2~2

for parallel slabs. Both of these results are exact for a
weakly nonlinear medium, since the local field is in fact
uniform in each component in these two cases, even if the
components are weakly nonlinear. [The local field may be
uniform in these geometries even if the components are
strongly nonlinear, but in su'ch cases the results (19) and

(20) will no longer apply. ]

D. Effective-medium approximation

In the effective-medium ap roximation ' (EMA), the
effective dielectric function e, is one of the solutions of
the quadratic equation

~(0) ~(0) 6(o) (o)

1 ~(0)+ (~(0) ~(0)) ~(0)+ (~(0) ~(0))

(2i)

Here g is a geometric factor related to the depolarization
factor of the inclusions and dependent on their shape. For
a three-dimensional composite with compact, roughly
spherical inclusions, g —,', while for a two-dimensional

composite with circular inclusions, g 2 . If eI and e2

are real and positive, then the physically relevant solution

is the positive one.
The required derivatives F1 and F2 can readily be com-

puted from this equation, with the results

F) ~ [[2(q, —
q2 )p +2(q —2q1 g)p(+2(q1 —e )g2g —I

+2e20 g]/(2[(&2(0) &(0))2 2+[2(~(0)2 ~(0)2) 2~2(0)2+2~((0)~2(0)]p1

+( (0) (0))2 2y2~(0)(~(0) ~(0)) +~(0)2] 1/2) y ] (22)

and

F2 [[2(E2 E)p +2(2e g —2c2 +'e1 )p1+2(e2 —e )g +2(e1 2e2 )g+2e—2 ]
2g —1

X (2 [(~2(0) ~(0)) 2 2+ [2( (0)2 ~(0)2) 2~2(0)2+ 2~1(0)~2(0)]p)

+ (~(0) ~(0))2 2y 2~(0)(~(0) (0)) + (0)2] 1/2) —1+ + I ] (23)

Given these formulas for F] and F2, one can readily calculate the effective dielectric nonlinear susceptibility X, using
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Eq. (10). The resulting expression for X, exhibits interest-
ing behavior, especially near the percolation threshold,
which will be discussed elsewhere.

(b)
E=Eo

&o =&eIO I

III. EXACT RESULTS FOR THE HASHIN-SHTRIKMAN

MICROGKOMETRY

dVX(r) (E/E()) (24)

In the Hashin-Shtrikman microgeometry, the entire
binary composite is composed of coated spheres with a
core made of one component e( and a concentric spherical
shell made of the other component e2 [see Fig. 1(a)].
These composite spheres must come in a variety of sizes in
order to fill up the entire volume, but all must have the
same ratio of core volume to shell volume. It is easy to
show that for this microgeometry the bulk effective linear
dielectric constant e,( ) is exactly equal to the MG result.
Furthermore, in the linear limit it is possible to evaluate
the local electric field E(r) exactly within both the cores
(where it is uniform but different from the average field

E()) and the shells [where it is not uniform; see Fig. 1(b)].
Given these fields, we can exactly evaluate the nonlinear
susceptibility X, from the expression 3

FIG. 1. (a) Schematic representation of the Hashin-
Shtrikman microgeometry. The cores are described by t. ],X&, the
shells by e2,X2. The ratio of core-to-shell volume is the same for
each composite sphere, and equal to the ratio of volume frac-
tions p~/(I —p~). (b) Schematic showing the solution for the lo-
cal electric field in the Hashin-Shtrikman microgeometry. The
field E remains undistorted and equal to the applied field Eo out-
side the inclusion, is uniform but WED in the core, and has a di-
polar form in the shell.

The result is

4
3E'2 x2(1 —p) )

(1 —pz)e( +(2+p))E2 [(1-p))e) +(2+p))e2 l

x [(et +2e2(o)) + 5
p)e((0)2(e(0)+2&2(0))2 p((1+p))e)(0)3(e)(0)+2e2(0))+ s p)(I+p yp2)e(0)4] (25)

Comparing this to the MG result found earlier, and
given implicitly by Eqs. (14)-(16),we can show that the
coefficient of X( is the same, but that of X2 is different.
This difference has a simple explanation: The MGA for
X, is based on the assumption that E is uniform in each
component, while in the Hashin-Shtrikman geometry E is
uniform within the cores but not the shells of the compos-
ite spheres.

IV. DISCUSSION AND CONCLUSIONS

We have presented a simple approximation for the non-
linear susceptibility X, of a weakly nonlinear dielectric
composite. The approximation consists of assuming that
the field is uniform in each of the nonlinear components.
Given this approximation, we have easily obtained expres-
sions for X, based on the MG and EM approximations for
a linear dielectric composite. We have also calculated 2',

exactly for several simple, solvable microgeometries.
Our results are applicable not only to nonlinear media

but also to 1/f noise or resistance fluctuations in compos-
ite conductors. The connection arises because the mean-
square resistance fluctuations are given by an expression
similar to Eq. (24).3 7 s Our EMA result thus provides an
approximate calculation for the noise power spectrum.
The result proves to differ from that of Ref. 7. In particu-
lar, our result exhibits no divergence of the relative noise
at the EMA percolation threshold. A detailed compara-
tive discussion of the various types of effective-medium
approximations that can be developed for this problem
will be given elsewhere.
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