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We propose an approximate general method for calculating the effective dielectric function of a
random composite in which there is a weakly nonlinear relation between electric displacement and
electric field of the form D=¢E+x|E|?E, where ¢ and X are position dependent. In a two-
phase composite, to first order in the nonlinear coefficients X, and X, the effective nonlinear
dielectric susceptibility is found to be X.=X;=12(Xi/pi)(d¢./8€:)o| de./d¢€i | o, where € is the
effective dielectric constant in the linear limit (¥; =0, i=1,2) and ¢ and p; are the dielectric
function and volume fraction of the ith component. The approximation is applied to a calculation
of X. in the Maxwell-Garnett approximation (MGA) and the effective-medium approximation.
For low concentrations of nonlinear inclusions in a linear host medium, our MGA reduces to the

results of Stroud and Hui. An exact calculation of X, is carried out for the Hashin-Shtrikman
microgeometry and compared to our MG approximation.

I. INTRODUCTION

There are many phenomena in composite media in
which nonlinearity plays an important role. Among these
are dielectric breakdown in metal-insulator composites
and the nonlinear optical susceptibility of composite
media. In this paper we will be concerned with determin-
ing the effective nonlinear dielectric susceptibility of a
two-phase, weakly nonlinear, inhomogeneous composite.

For linear composites, the effective dielectric ¢, is a
function of the geometry of the composite, and the volume
fraction and the physical properties of each component.
There have been numerous approximations developed to
calculate ¢, in the linear regime. Two of the most widely
used methods are the Maxwell-Garnett approximation'
(MGA) and the effective-medium approximation?
(EMA). Both methods involve an approximation which
results in a uniform field inside one or more of the pure
components.

In a nonlinear composite, unlike a linear one, the dielec-
tric function depends on the applied electric field. If the
applied electric field is sufficiently low, however, the
relevant nonlinear effective susceptibilities can be ob-
tained by a perturbation approach. This perturbation ap-
proach can be used to give an exact expression for the
nonlinear susceptibility in terms of the electric field distri-
bution in the related /inear medium.? Recently, Stroud
and Hui> have used this result in the low-concentration
limit to obtain an exact expression for the cubic nonlinear
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susceptibility of a composite medium in the limit of a
small concentration of nonlinear inclusions in a linear
host.

In this paper, we derive a more general type of approxi-
mation for the nonlinear susceptibility—one which is not
limited to a system of dilute nonlinear inclusions in a
linear host. The resulting approximation for nonlinear
media is similar in spirit to the well-known effective-
medium approximation? for linear composite media. Be-
sides this generalization, we also present an exact calcula-
tion of the nonlinear susceptibility for a composite that
has the special geometry first discussed by Hashin and
Shtrikman. *

The remainder of the paper is organized as follows. In
Sec. I1, we present our general method of approximation,
and apply it to obtain a number of specific results. Sec-
tion III describes an exact calculation of the nonlinear
susceptibilities for the Hashin-Shtrikman microgeometry
and compares this result with the Maxwell-Garnett ap-
proximation. A brief discussion and summary follows in
Sec. IV.

II. GENERAL APPROXIMATION METHOD
AND ITS APPLICATIONS

We consider a two-component composite in which each
component is described by a weakly cubic nonlinear rela-
tion between the electric displacement D and electric field
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E of the form
D, =¢YE;+1 |E|2E. 1)

Such an expansion will always be possible provided that
% |E|? <ef® (i,1,2). The term quadratic in electric
field will vanish unless the constituents lack inversion sym-
metry. The space-averaged fields and displacements (E)
and (D) are related by an equation of the same form:

(D)=¢.{E)+2. |(E)| 2(E). (@)

Our goal is to find approximations for Z,.
Now in a binary composite, the linear effective dielec-
tric function can always be written in the form

68(0)"F(61(0),6§0),p1) , (3)

where p; is the volume fraction of the ¢, component, and
F is some function which will, in general, depend on the
geometry of the composite. In order to obtain our approx-
imation for X, we initially assume that only component 1
is nonlinear, so that ¢, ==62(°). We then invoke an approxi-
mate nonlinear form of Eq. (3):

€e =F(61,Ez,p1). (4)

Here €; =€+ 2| E;|?) and (| E;| 2) is the mean square
of the electric field in the ith component in the linear lim-
it. Equation (4) is strictly valid only if ¢| and ¢, are con-
stant in each component. Thus, our use of Eq. (4) here in-
volves making the approximation that the field E is uni-
form in the nonlinear component. This assumption is con-
sistent with the spirit of linear effective-medium approxi-
mations.

Next, we expand the function F in a Taylor series about
the linear 68(0), to obtain

€e zF(El(O),Ez,pl)+F'(61(0),62(0),p])X]( l E1 l 2 ) ’ (5)

where X is the nonlinear coefficient of the component 1
and F'=0F/d¢). Now this partial derivative can be ex-
pressed exactly in terms of the average squared electric
field in component 1 in the linear limit; the relation is®

P |Ei| 2YES =(¢€./9€) ) =F' ({6l p)), (6)
where E is the external field. Therefore, we have
X
ee=€§°)+p—lF'|F'|E§, @)
1

and by the definition of the effective nonlinear coefficient
X., we obtain

de,

661 0

These considerations are easily generalized to the case
where both components are nonlinear. In this instance,
we simply expand Eq. (1) around both € and ¢, so

X

P

Ze

661

de. L ®)
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that
zl ? ’ xz ’ '
e,-e§°>+p—F. | Fi IE§+p—F2lF2|Eé, ©
1 2

where F/=(9¢./9¢;) (i=1,2). We now find that %, is
given by

V4 X
t.=2LF | Fi |+ 22 F5 | Fy) (10)
P P2

Equation (10) is our principal result. It is based on the
assumption that the fluctuations (|E;|*)—(|E;|?)?
within the ith component are small, compared to (| E; | *)
itself. This approximation will be most accurate in
geometries, such as the Hashin-Shtrikman geometry dis-
cussed below, for which the electric field is nearly uniform
within the nonlinear component, and less accurate when
these fluctuations are large, such as near a percolation
threshold. To illustrate its predictions, we proceed to ap-
ply this general formula to various binary composites with
different geometric configurations and different densities
of inclusions.

A. Low-density limit

We first consider a linear host containing a very small
volume fraction of nonlinear inclusions. In this case, we
recover the known results of the low-density theory.® The
argument is the following: in the low-density regime, the
effective dielectric function of such a composite in the
linear limit is

e —e

—_ an
61(0)+2€2

650) -‘62+3€2p|

where ¢, is the host material and ¢, the nonlinear in-

clusion. 9¢2/9¢( is then
de, 3e; 2
- T 12
[361 ]0 p 61(°)+262 (12)
Substituting Eq. (12) into Eq. (8), we obtain
2
362 362
Xe =X . 13)
¢ 1 61(0)+262 ] 61(0)+262 l

This is the same as the result of Stroud and Hui.?3

B. Maxwell-Garnett approximation

Next, we obtain X, for a composition which in the linear
regime is described by the Maxwell-Garnett approxima-
tion. As is well known, the MG approximation is most ap-
propriate for a composite in which one of the constituents
plays the role of a host medium and the other acts as an
inclusion. If medium 2 is then host, then the MG approxi-
mation takes the form®

el _ QU +2p)+2620—py)
0 QU -p)+e20Q+p))

(14)
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From this we obtain
=t | o 9p1er’” (15)
1786 |, [e@Q+p)+e@U-p1?°
and
. aee 2650)2p|_46(0)E§O)p]+26(0)2 +46§0)2+46l(0)2+650)_*_6](0)2 (16)
1= b 2 .
de |, [9CQ+p)+e@0 —p]2
r
From these two formulas, we can calculate X, using Eq. for parallel cylinders and
(10).
ipy Xap2 (20)

C. Exactly solvable microgeometry:
Parallel cylinders and slabs

There exist a number of special microgeometries for
which € can be calculated exactly. The first of these is
the case where the components are arranged in the form
of (not necessarily circular) cylinders parallel to the exter-
nal field. Another soluble geometry is one in which the
constituents are arranged in the form of flat slabs perpen-
dicular to the applied field. The effective dielectric con-
stant takes the form

€O =p el +pres® amn

for parallel cylinders and

0)_1/

for parallel slabs. These results are analogous to the
effective capacitance for capacitors in parallel and in
series.

Using Eq. (10), we obtain for the effective nonlinear
dielectric susceptibility

Pl+p2

(0) (O) (18)

—————

X = +
o1+ (E@p /e T [pat (e9p1/ef)]*

for parallel slabs. Both of these results are exact for a
weakly nonlinear medium, since the local field is in fact
uniform in each component in these two cases, even if the
components are weakly nonlinear. [The local field may be
uniform in these geometries even if the components are
strongly nonlinear, but in such cases the results (19) and
(20) will no longer apply.]

D. Effective-medium approximation

In the effective-medium approximation>¢ (EMA), the
effective dielectric function € is one of the solutions of
the quadratic equation

€0 — @ o) 0 —©
—Pi
D 1o ((V = ) p 6e(0)+g(62(0)—6¢(0))

D1 =0,

030

Here g is a geometric factor related to the depolarization
factor of the inclusions and dependent on their shape. For
a three-dimensional compos1te with compact, roughly
spherical inclusions, g = 3, while for a two-dimensional
composite with circular inclusions, g = — If g © and 6(0)
are real and positive, then the phys1cally relevant solution
is the positive one.

The required derivatives Fi and F3 can readily be com-
puted from this equation, with the results

(O)g)p1+2(6(0)_620))g

24 [2(ef92 — £(02)g — 26024 20 {0] p,

+ (e — ) 22+ 2650 (60 — ) g + €573 12) —p 41, (22)

Xe=piX+piXy (19)
|
Flom—— ) _ _(0) 0) _
i 2(g [[2(6 eMpl+2(ef
+268921/{(f” — () 2p
and
1
F' -—
2 2(g-1)

x 2{(e9 — () ?p

[12€ef” — e)p2+22efV8 =268+ €{)p | +2(e0 — () g 24 2(£{® — 26{) g + 26§01

+[2(€2(0)2—6]0)2)g 26(0)2+26](0) O)]pl

+(e5” =€) 282+ 26f0(e{V — fM)g + €593 12) T+ py +g —1]. (23)

Given these formulas for Fi and F3, one can readily calculate the effective dielectric nonlinear susceptibility X, using
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Eq. (10). The resulting expression for X, exhibits interest-
ing behavior, especially near the percolation threshold,
which will be discussed elsewhere.

ITII. EXACT RESULTS FOR THE HASHIN-SHTRIKMAN
MICROGEOMETRY

In the Hashin-Shtrikman microgeometry,* the entire
binary composite is composed of coated spheres with a
core made of one component ¢, and a concentric spherical
shell made of the other component ¢, [see Fig. 1(a)l.
These composite spheres must come in a variety of sizes in
order to fill up the entire volume, but all must have the
same ratio of core volume to shell volume. It is easy to
show* that for this microgeometry the bulk effective linear
dielectric constant ¢ is exactly equal to the MG result.
Furthermore, in the linear limit it is possible to evaluate
the local electric field E(r) exactly within both the cores
(where it is uniform but different from the average field
E) and the shells [where it is not uniform; see Fig. 1(b)].
Given these fields, we can exactly evaluate the nonlinear
susceptibility X, from the expression®

te= Java© E/E0)*. 24)

The result is

4
362(0)

RAPID COMMUNICATIONS

10973

FIG. 1.

(a) Schematic representation of the Hashin-
Shtrikman microgeometry. The cores are described by €,%; the
shells by €3,%2. The ratio of core-to-shell volume is the same for
each composite sphere, and equal to the ratio of volume frac-
tions p1/(1 —p1). (b) Schematic showing the solution for the lo-
cal electric field in the Hashin-Shtrikman microgeometry. The
field E remains undistorted and equal to the applied field Eo out-
side the inclusion, is uniform but =Ej in the core, and has a di-
polar form in the shell.

2,71 -p1)

Xe=ZX1pi

(1=p)el®+Q2+p)ef®

[Q=-p)e@+Q+p)eP)*

X[ +268) 4+ 2 p1eO2(ef” +26f)2 = £ p 1 (14+p) (@ +26) + § p 1 (14 p1+p D], (25)

Comparing this to the MG result found earlier, and
given implicitly by Egs. (14)-(16), we can show that the
coefficient of X, is the same, but that of X, is different.
This difference has a simple explanation: The MGA for
X. is based on the assumption that E is uniform in each
component, while in the Hashin-Shtrikman geometry E is
uniform within the cores but not the shells of the compos-
ite spheres.

IV. DISCUSSION AND CONCLUSIONS

We have presented a simple approximation for the non-
linear susceptibility X, of a weakly nonlinear dielectric
composite. The approximation consists of assuming that
the field is uniform in each of the nonlinear components.
Given this approximation, we have easily obtained expres-
sions for 2, based on the MG and EM approximations for
a linear dielectric composite. We have also calculated 2,
exactly for several simple, solvable microgeometries.

Our results are applicable not only to nonlinear media

but also to 1/f noise or resistance fluctuations in compos-
ite conductors. The connection arises because the mean-
square resistance fluctuations are given by an expression
similar to Eq. (24).%"® Our EMA result thus provides an
approximate calculation for the noise power spectrum.
The result proves to differ from that of Ref. 7. In particu-
lar, our result exhibits no divergence of the relative noise
at the EMA percolation threshold. A detailed compara-
tive discussion of the various types of effective-medium
approximations that can be developed for this problem
will be given elsewhere.?
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