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We present a microscopic theory of the effects of the electron-electron interaction on the effective
mass and the anomalous Landé g factor in an inversion layer. We find that the inclusion of previ-
ously neglected many-body effects, associated with charge- and spin-fluctuation-induced vertex
corrections, is crucial. The present approach is based on a new self-consistent determination of the
many-body local fields. Our theory has no free parameters and the results are in good agreement

with the established experimental findings.

Several years have passed since the experimental work
of Fang and Stiles' and Smith and Stiles? on the quasipar-
ticle effective mass m * and the anomalous Landé g factor
g* in Si inversion layers, but the theoretical understand-
ing of these phenomena is still only qualitative at best.
Although it is widely recognized that many-body effects
are largely responsible for the observed behavior a quan-
titative, detailed description resting on firm theoretical
ground is currently lacking.

As it turns out even a simplistic theory is at least cap-
able of predicting the correct behavior of m* in reason-
able, albeit perhaps fortuitous, agreement with the exper-
imental results. The situation for g* is however far more
complicated.

The basic idea was first put forward by Janak who
developed an elegant theory of g*.> Further work along
similar lines has been also reported in references 4 and 5.
All these theories suffered unfortunately from some seri-
ous problems, and, more importantly, were based on a
statically screened exchange approximation to the quasi-
particle self-energy which we find to be unreliable. In
any case as clearly pointed out in Ref. 5, these early cal-
culations were unable to explain the main feature of the
anomalous Landé g factor, i.e. its strong dependence (a
decrease) with respect to the electron density.

The most sophisticated theory to date is the one of
Quinn and co-workers.>’” These authors used a Fermi-
liquid interaction approach to evaluate the quasiparticle
self-energy. Within this framework both screened-
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where the symbol P mandates that the principal value of
the integral must be taken. Here g, is the unperturbed
kinetic energy, p?/2m,, m, being the appropriate value
for the band mass. The second and third terms are re-
spectively the screened- exchange and the (necessary) cor-
responding Coulomb-hole contribution. In Eq. (1),
Ac(q,w) and Ag(q,w) are effective potentials defined as
follows:
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exchange and Coulomb-hole contributions to the self-
energy, as well as some of the vertex corrections, were in-
cluded within a simple Hubbard-type approximation.
The major shortcoming of this work is, however, that a
qualitative agreement with the experimental data could
only be reached by arbitrarily neglecting the Hubbard
corrections. In particular these authors found that in-
clusion of the latter leads to an anomalous g factor which
strongly increases with the carrier density, in clear con-
trast with the observed behavior (see Fig. 2 of Ref. 6).

In this paper we report the results of a theoretical mi-
croscopic investigation of the effects of the electron-
electron interaction on m* and g* in the quasi-two-
dimensional electronic gas (2D EG) of an inversion layer.
Our approach is the first attempt to properly include both
charge- and spin-fluctuation-induced vertex corrections
which will be shown to be crucial in attaining a satisfac-
tory description of these many-body phenomena. As will
be discussed below our results are in encouraging qualita-
tive and quantitative agreement with the established ex-
perimental findings.

Our approach is based on a recently derived expression
for E (p), the (fully renormalized) quasiparticle energy in
an interacting electron liquid in its normal state. As it is
well known both m* and g* can in general be evaluated
once E(p) is known. We find that in the electric quan-
tum limit and at zero temperature a suitable expression
for E (p) is given by 8

| Im[Ac(q,@)]| +3 | Im[Ag(q,0)] |

w—Ep+8p_q

Ac(q,0)=v(q)+v(q)[1-G"Y(q,0)]Xc(q o), @)
and
As(q0)=—pz (@) [GY(q,0)]Xs(q,0), 3)

where X-(q,w) and Xs(q,w) are respectively the intra-
valley charge and spin response functions of a 2D EG in-
teracting via the potential v(q)=2me?L(q)/€,q. Here
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L(q) is a suitable form factor which accounts for the
presence of the oxide region and the metallic gate in the
structure.’ The effect of the finite thickness of the elec-
tronic inversion layer is also accounted for in L(q) via
the Stern-Howard envelope wave function.'® It is impor-
tant to emphasize that interaction effects beyond the sim-
ple random-phase approximation (RPA) are explicitly
taken into account here by means of the many-body local
fields G(t”)(q,co),11 which are a simple generalization to
the multivalley case of the fields introduced by Niklas-
son.!? These quantities are the many-body analogues in
the electron liquid of the familiar Clausius-Mossotti local
fields of electromagnetism. This can be seen from the
fact that these quantities also determine the response
functions X(q,®) and Xs(q,®) as follows:'?

nUXo(q,w)
Xc(qo)= ) ’
1—n,v(q)[1-G}(q,0)Xo(q,0)
and
n,Xo(q,w)
14n,0(q9)GY(q0)Xo(q0)’

Xs(q0)=—pj

where n, is the number of the relevant degenerate valleys,
and X,(q, ) is the Lindhard susceptibility for a 2D EG.'*

It should be stressed that the above expression for E (p)
explicitly contains all the necessary exchange and corre-
lation corrections associated with the hitherto neglected
spin fluctuations which are found to significantly contrib-
ute toboth m™* and g* .

From E(p), m* is then simply obtained by evaluating
the quasiparticle group velocity at the Fermi energy via
the well known relation

PF J0E (p)
Vyy=—"= . (6)
ap m* ap Pr

The evaluation of g* is slightly more involved since it
entails an analysis of the effects of a small magnetic field
on E (p). By a straightforward generalization of Janak’s
procedure® we have obtained the following expression for

*

g

g * 2m 1 ’
2—=1-m dé——Re[A(pr—pF,0)
g* fo ¢(2ﬂ)2 [Ac(pr—PF

+3A5(pr—pr,0)], (D)

where ¢ is the angle between a fixed vector py and a vari-
able vector py both of which lie on the Fermi surface.
Equations (6) and (7) together allow a direct evaluation of
the many-body enhancement of the spin susceptibility of
the system so that the problem at hand acquires a self-
consistent character which we have exploited (see below).

In order to perform any calculations a satisfactory and
explicit expression for the many-body local fields G
must be assumed. In general G'¥’ should be taken as fre-
quency dependent. In the present calculation however
we have, as is frequently done, approximated the G /s
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with appropriate static Hubbard-type functions. In this
case the presence of a multivalley structure leads however
to a further complication that has to be dealt with. We
find that the simplest suitable expression for G\’ is pro-
vided by'®

LG +k3)'"]

G(v)(oo)
GV (q)= o + lq]

{q2+[BiG(iU)( @ )]‘1-*]2}1/2 ’

(8)

where the form factor L (q) has been defined above and
B+ and G'Y( ) are functions of the electronic density to
be determined. In obtaining Eq. (8) we have neglected
the (small) intervalley exchange. As it turns out the
G'Y( ) can be expressed in terms of g(0), the value at
the origin of the pair correlation function in a quasi-2D
EG. In particular, by making use of the recently calcu-
lated exact asymptotic expressions for the many-body lo-
cal fields of a 2D EG,'® we have

G‘j)(oo):[1+(n;1—2)g(0)], 9
and

G(w)=n,g(0). (10)

As is well known g (0) is a function of the electronic den-
sity, and its values can be taken from Jonson’s work.!?

Furthermore, and most importantly, we have deter-
mined the coefficients B via the following self-consistent
procedure. We first impose that, at any given density, in
the ¢ —0 limit the value of the static charge-response
function X(q,0) be consistent with the compressibility
sum rule.'”!® This establishes the value of B,. Then,
starting with a trial value for B_, m*, and g* are calcu-
lated from Egs. (6) and (7), so that a value for the long-
wavelength static spin susceptibility is determined. By
equating such a value to X5(q—0,0) , as given by Eq. (5),
a new f_ is then obtained. This procedure is repeated
until convergence is reached.'” Once B, and B_ are
determined our theory is free of arbitrary parameters.

Our results for B, and B_ are plotted in Fig. 1 as a
function of the density parameter rg, the average elec-
tronic distance measured in terms of the effective Bohr
radius aj =#%,,/mye?, €,, being the average of the
dielectric constants of the semiconductor host and the
oxide. These two curves, as well as the results reported
below, have been obtained by making use, for the various
specific parameters, of the values appropriate to a [100]
surface Si inversion layer like the one studied in Ref. 1
and given in the caption of Fig. 1. Furthermore the
specific values of g(0) used in the present calculations
were taken from Ref. 17.

We have evaluated m* and g* making use of Egs. (6)
and (7) and have investigated their dependence on the
electronic density. We have also analyzed the effect on
these quantities of both charge- and spin-fluctuation-
induced vertex corrections as accounted for by means of
the many-body field G’ and G’ . The results of our
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FIG. 3. Plot of the ratio g* /g versus the electron areal den-
FIG. 1. Theoretical self-consistent results for the coefficients

B, and B_ , defined in Eq. (8), versus the effective rg, also
defined in the text. We have chosen for our calculation the fol-
lowing parameter values: 0.19 for the band mass, 2 for the valley
degeneracy, 3.8 and 11.8, respectively, for the oxide and semi-
conductor dielectric constants, 5330 A for the thickness of the
oxide layer. For comparison rg=2 corresponds here to an
areal density of 1.7 10" cm 2.

study are summarized in Figures 2 and 3, where we have
also reproduced the corresponding original experimental
data from Refs. 1 and 2, and for clarity we have plotted
the two quantities as a function of the areal density ng.2°
It is clear that the present parameter free theory for g*
leads to an unprecedented and rather encouraging agree-
ment with the established experimental findings. Our
values for the effective mass, on the other hand, deviate
from the Shubnikov—de Haas data by a few percent in the
small density regime, but are, however, closer to the cy-
clotron mass determination.”® We believe that the devi-
ations from the actual data (as well perhaps the some-
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FIG. 2. Plot of the ratio m*/m versus the electron areal
density ng. The parameters are the same as in Fig. 1. The cir-
cles are the original large-field data set of Smith and Stiles taken
from Ref. 2(a). The meaning of the three curves is explained in
the text. The solid curve corresponds to our full theory.

sity ng. The parameters are the same as in Fig. 1. The circles
are the original data set of Fang and Stiles taken from Ref. 1(a).
The meaning of the three curves is explained in the text. The
solid curve corresponds to our full theory.

what fortuitous perfect agreement of g*) can be safely at-
tributed, at least in the intermediate density range, to the
lack of more specific knowledge of the functions G”s in
the intermediate momentum and frequency regime. It
must also be remarked that the theoretical results are also
sensibly dependent on the specific values used for g (0). In
any case it is clear that our theory appears to be capable
of describing most of the physics of the mass and g-factor
renormalization and that this effect is rather sizable.

An important conclusion which can be drawn from our
study is that the final values of both m* and g* result
from a subtle balance between various competing effects
and that the simple RPA, although providing a reason-
able starting point, does not account for much of the
many-body physics of the phenomenon at hand and is
therefore unreliable. It should also be stressed however
that it is not enough to go beyond the RPA just by intro-
ducing the symmetric local field G(+”) while altogether
neglecting the effects of the spin fluctuations; in general
such a procedure tends in fact to make things worse.
Both charge- and spin-fluctuation-induced vertex correc-
tions must be included. This is particularly made clear in
Figs. 2 and 3 where the different results corresponding to
the three cases () GY=G"”=0 (RPA)," (i)
G'"'£0, G =0 (no spin fluctuations), and (iii)
G50, G540 (full theory), are displayed.”! A detailed
account of the present analysis will be reported else-
where.?

Finally we would like to point out that our study al-
lows one to obtain an explicit microscopic derivation of
some of the most relevant Landau parameters. Work on
this subject is in progress.
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