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The nature of the Hall effect in one-dimensional ballistically conducting quantum channels is
clarified by considering the current-induced transverse polarization of the channel, and by gen-
eralizing the concept of a Hall voltage to one dimension. The one-dimensional Hall effect can be
observed noninvasively, is quantized, and is not quenched at low magnetic fields. A surprising
conclusion is that the quantized resistance of narrow ballistic channels at B =0 recently reported
by Wharam et al. is a limiting case of the quantum Hall effect.

In the past few years there have been many exciting de-
velopments in the study of the Hall effect in two-
dimensional systems.' In the case of one-dimensional
(1D) systems, however, it has been unclear whether a
Hall effect could be observed experimentally or is even
conceptually reasonable. This fundamental problem is of
particular interest today because it has recently become
possible to fabricate narrow conducting channels in semi-
conductor heterostructures, with only a few of the trans-
verse quantum states (and associated 1D subbands) popu-
lated with electrons, making these channels a precise 1D
analog of the familiar 2D electron systems.?~* Further-
more, the channels are of such high quality that the elec-
tron mean free path can exceed the channel length, mak-
ing electron transport through the channel ballistic.

Roukes et al.* have recently measured a Hall resistance
by connecting Hall voltage leads directly to the sides of
such a 1D conduction channel, and observed Hall plateaus
as well as complete quenching of the Hall effect at low
magnetic fields. However, Peeters® has shown that in this
arrangement the physics is strongly influenced by electron
scattering at the junction with the Hall leads. Thus, while
this phenomenon is very interesting in its own right, its
implications for the Hall effect intrinsic to a 1D conductor
are not obvious. As an alternative to disturbing the chan-
nel by contact with Hall probes, Stormer has suggested
studying the 1D Hall effect by measuring the transverse
polarization of the current-carrying channel in a magnetic
field, possibly by a capacitive technique. But, in the ab-
sence of any theory, it has been unclear how to interpret
such a measurement.

In this article I examine the question of an intrinsic 1D
Hall effect in ballistic channels theoretically. The trans-
verse polarization of a channel associated with an electric
current in a magnetic field is calculated and its relation-
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ship to the Hall effect is clarified. In particular, the in-
trinsic Hall effect is not quenched in narrow channels at
low magnetic fields. The proper generalization of the con-
cept of a Hall voltage to the case of 1D ballistic systems is
introduced by making an analogy with the theory of the
Hall effect in 2D systems. This intrinsic 1D Hall voltage
can be measured experimentally without perturbing the
1D channel in any way, under certain conditions. It turns
out that in a 1D ballistic channel, the intrinsic Hall pla-
teaus not only are not quenched at low fields, but extend
to zero magnetic field where they manifest themselves as
the zero-field quantization of the channel resistance re-
cently observed by Wharam et al.*

Consider a heterostructure in the x-y plane with a nar-
row ballistically conducting channel running in the y
direction formed by means of electrostatic confine-
ment.2~* There is an in-plane potential ¥ (x) confining
electrons to the channel, and a magnetic field B in the z
direction. For convenience I assume that in addition to
the confining potential ¥ (x), there is an electric field E,
in the x direction. Strong confinement in the z direction
will be implicit throughout. The electron Hamiltonian in
the Landau gauge is

H=[pl+(p, —q.Bx)/2m+V(x) — xq.Ex

where ¢, is the electron charge, m the effective mass, and
the effect of the magnetic field on the spin variables is not
shown explicitly. Eigenstates of H are of the form
Vin =e®Uy, (x) with eigenvalues &, satisfying Hyn
= cxnWkn. The current operator is

Jy=qely,Hl/ihL =—¢q,(ihd/dy+ Bg.x)/Lm ,

where L is the channel length. The current carried by the
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channel is
J,v -kz('l’kn I]y I Wkn>fkn
’kz(ﬁkth — BgXin | x | Wkn)) fin/Lm , 1)

where fi, is the number of electrons in state yy, and a
suitable summation over spin indices is understood here
and throughout this paper.

In order to obtain a physical picture of the nature of the
current-induced transverse polarization P, of the 1D
channel, let us consider the exactly soluble case of a har-
monic confining potential ¥(x) =cx2. The self-consistent
numerical calculations of Laux, Frank, and Stern® suggest
that this should be a good approximation for very strong
electrostatic confinement, i.e., for the case of interest here.
(For wider channels the confining potential is no longer
harmonic, and P, can be calculated perturbatively or nu-
merically, by methods analogous to those used by Stern’
to calculate the transverse polarization of 2D systems.)
The electron Schrédinger equation for harmonic confining
potentials takes the form

2 a2
—,L—'a—z —¢(x_[lk)2+8k,, — Yk Uk,,(x) =0, )
2m 9x

where
o=cm/m ,
ux=(Bhq.k +E,mgq.)/2crh ,
vk =h*(k —ko)?/2m — E2q?/4c,
m=m+B%q2/2c,
ko=BE q’/2ch .

Since the effective confining potential in (2) is harmonic,
ik ={win | x | win). Using the two expressions for ux, one
can eliminate k from the form (1) for J, in favor of
(Win | x | in), yielding
2c P, — E.q.
Bg. B
which holds for any population {fi,} of the current-
carrying states. In (3),

P, =k2qefkn(wn | x | wkn)/L
n

J,= N, A3)

is the transverse polarization and N =% , fin/L is the 1D
electron density.

Notice that (3) is exactly the result which would be ob-
tained classically by balancing the Lorentz force on an
electron moving along the channel against the restoring
force of the confining potential. The electric field E,o
which nulls the polarization in (3) satisfies the usual Hall
form J,/E o= —q.N/B. Thus the transverse polarization
described by (3) is clearly a manifestation of the Hall
effect. Equation (3) is an exact result (within one-
electron theory) and shows no quenching of the Hall effect
at low B.

The transverse polarization could, at least in principle,
be measured noninvasively. For example, a polarization
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P, in the conducting channel would induce a potential
difference ~ P,/ned between two parallel conductors ly-
ing in the x-y plane on opposite sides of the channel, each
separated from it by a distance 4. If d is sufficiently large,
the influence of the two “probe” conductors on the 1D
channel will be negligible and the measurement nonin-
vasive.

Having shown above that an intrinsic 1D Hall effect ex-
ists in narrow ballistic channels and is not quenched at low
magnetic fields, I will now address the question whether
there is an analog of the 2D quantum Hall effect which is
intrinsic to a 1D channel. Observing the 2D quantum
Hall effect involves measuring a Hall voltage Vj in order
to obtain a Hall resistance. However, attaching conven-
tional Hall probes to a 1D channel to measure the Hall
voltage destroys the 1D character of the channel at the
point where the measurement is made. Thus a 1D analog
of the 2D Hall voltage, which can be measured nonin-
vasively, needs to be identified.

The ratio J,/Exo= —gq.N/B is not quantized in one di-
mension. For E, =0, J,/P,=2c/Bgq. is independent of
the number of populated subbands for harmonic confine-
ment. This means that neither P, nor E,( can play the
role of the Hall voltage in an experiment attempting to
observe an intrinsic 1D quantized Hall effect. We thus
turn to the theory of the 2D quantum Hall effect for
guidance.

In a 2D system, q.Vy is equal to the difference in the
chemical potential between electrons at the two edges of
the sample which run parallel to the direction of the
overall flow of the electric current. This was most recently
used by Streda, Kucera, and MacDonald® and Jain and
Kivelson® in their work which demonstrated the funda-
mental relationship between the quantum Hall effect and
the Landauer'® formulation of transport theory. Al-
though the Landauer theory is one dimensional, both of
these treatments considered the system to be essentially
two dimensional in that the two sample edges were as-
sumed to be well separated spatially. Thus the electron
states at the opposite edges did not overlap with each oth-
er, and each edge could have its own quasiequilibrium
state with its own well-defined (and measurable) chemical
potential.

Here we are considering a true 1D quantum channel,
where there is no clear spatial separation between any of
the electron states, although {wy, | x | yx.), the “guiding
center” of the wave function ({win |x | wiks) =pux in the
case of harmonic confinement), moves across the channel
with changing k. Now suppose that (i) electrons are in-
jected into the channel at its two ends [labeled left (L)
and right (R)] up to energies & and g respectively, (ii)
the channel is perfectly ballistic so that the electrons pass
through without any scattering, and (iii) all leftward-
(rightward-) moving states in the channel are filled up to
the energy er (¢,) and are empty above that energy.

The guiding centers of the occupied states with energies
€1 and g occur at opposite sides of the channel so that by
analogy with the 2D case we can in one dimension define
Vu=|(eL —er)/q.|, even though there is a spatial over-
lap between the states at opposite sides of the channel, and
thus & and g cannot be thought of as local values of a
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chemical potential. Notice that for a wide ballistic chan-
nel which is effectively two dimensional, this definition of
the intrinsic Hall voltage ¥y reduces to the usual Hall
voltage.

The current J, is now easy to calculate by standard
techniques! without assuming that the confinement is har-
monic

Jy -kakn(an |]y ‘ V’kn>
n

= finqe Vexn/dk)/ WL =3 q.h "fSLde.
k,n n R

This yields the quantized 1D Hall resistance
Ry = |VH/Jy| -h/quza “)

where v is the number of 1D subbands (counting spin)
which contain electrons.

This shows that the concept of a quantized Hall resis-
tance can, in principle, be extended to the case of a 1D
ballistic quantum channel, but this would be moot if the
effect were not observable. To demonstrate that it is ob-
servable, it is sufficient to show that conditions (i) and
(iii) can be satisfied and Vy, as defined above, can be
measured in the same system.

A suitable system is one such as that studied by
Wharam et al.* This consists of a narrow 1D ballistic
channel connecting two wide regions of the usual 2D elec-
tron gas. The resistance of the 2D regions is negligible*
compared to that of the channel so that the two-terminal
potential difference across the device is equal to the poten-
tial difference ¥ between the two ends of the channel.
Thus condition (i) is satisfied with ¥ = | (¢, —er)/q. |, at
least for T=0 and weak magnetic fields for which the
Hall voltage Vy2p across the 2D regions is small, satisfy-
ing Vy2p <V, so that the potential difference between the
two ends of the channel is uniquely defined. Condition
(iii) is usually assumed to be satisfied if condition (i) is in
Landauer-type theories of 1D transport. An examination
of its accuracy for the present system has been carried out
but is quite involved and will be presented elsewhere. The
main result is that while condition (iii) is not met exactly
under any conditions, it is fulfilled approximately to a
high degree of precision for physically reasonable
confining potentials provided that V is small and ¢, and eg
are well separated in energy from the bottom of every 1D
subband of the quantum channel. That is, condition (iii)
is met provided that one is not too close to the transition
;eg)ions between the different Hall plateaus described by

4).

Thus the conditions for observing the intrinsic 1D ana-
log of the 2D quantum Hall effect should be satisfied by
ballistic systems such as that of Wharam ez al.* near the
centers of the Hall plateaus, at low temperatures, for
weak magnetic fields. Note that it is precisely for weak
magnetic fields that the system is effectively one dimen-
sional since at high fields the electron states at the oppo-
site sides of the channel become well separated spatially
and the accepted theoretical and experimental ways of
handling the 2D quantum Hall effect apply.®?®

The above argument shows that the intrinsic 1D Hall
voltage which was introduced, somewhat abstractly,
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through the definition ¥y = | (e, —&r)/q. |, is measurable
as an actual physical voltage, the two-terminal voltage V'
across the device. To understand this intuitively, recall
that the guiding centers of the wave functions of the elec-
trons injected into the channel by the two 2D reservoirs at
their respective Fermi levels travel along opposite sides of
the channel. Thus the 2D reservoirs themselves act as the
Hall probes measuring the Hall voltage in the channel.
The measurement is clearly noninvasive. Alternatively,
one can think of the Hall voltage in terms of the net work
involved in moving an electron from the highest occupied
state whose guiding center is on one side of the channel to
the lowest unoccupied state on the other side. Under the
above conditions, this is the same as the net work involved
in moving an electron between the two reservoirs. It fol-
lows that ¥y =V. Interestingly, the two-terminal resis-
tance of 2D electron systems at high magnetic fields is
also equal to the Hall resistance, as was demonstrated ex-
perimentally by Fang and Stiles,'! who used two-terminal
measurements to observe the quantized Hall effect.

Another important conclusion is that the quantized in-
trinsic 1D Hall effect is not quenched at low magnetic
fields but in fact persists down to B=0. This is because
the result (4) is valid for weak magnetic fields, and the
quantization index v remains finite as B— 0 due to the
finite 1D subband splitting resulting from the confining
potential of the channel.

Since ¥y =V, the quantized resistance R =h/vg? of
narrow ballistic channels observed by Wharam et al.* at
zero magnetic field is thus seen to be a limiting case of the
quantum Hall effect, and provides striking experimental
evidence in support of the above ideas.

In common with the earlier work of Streda, Kucera,
and MacDonald? and Jain and Kivelson® on the quantum
Hall effect associated with 2D conduction, the present
theory of the intrinsic 1D Hall resistance is based on the
Landauer approach to transport problems. However,
some differences are apparent between the present 1D re-
sults and those obtained for the 2D case.®® For example,
the results of Streda et al.® reduce to the familiar 2D form
Ry =h/29} and R=0 for dissipationless transport with
one Landau level occupied and ignoring spin splittings,
whereas the corresponding 1D result obtained above for
weak magnetic fields is R=Ry=h/ 2qez. These results
are in fact not inconsistent with each other because the 2D
formulas apply to the usual four-terminal Hall measure-
ments, whereas the 1D results are for two-terminal mea-
surements.

Very recently, Beenakker and van Houten'? have ar-
gued that the Hall effect should be completely quenched
and the Hall resistance should vanish as soon as the mag-
netic field is small enough for the electron edge states at
the opposite sides of the channel to begin to overlap spa-
tially. It should be emphasized, however, that the experi-
ments to which their theory applies are similar to those of
Roukes ef al.,> with Hall probes attached to the sides of
the channel. Here I have shown that in experiments
which use noninvasive techniques, the results are very
different.

So far I have considered only ballistic channels where
there is no electron scattering. In a channel with isolated
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scattering centers (but no localized states) the derivation
of expression (3) relating the transverse polarization to
the current for harmonic confinement still holds, so that
the intrinsic 1D Hall effect still exists and is not quenched.
However the scattering breaks the symmetry between V
and Vy. Jain and Kivelson® have recently shown that for
quasi-one-dimensional channels (which are, however,
wide enough to have well-separated edge states so that a
2D-like Hall effect can be observed), resonant impurity
scattering can lead to fluctuations in the channel resis-
tance R while the Hall resistance Ry is relatively
unaffected. Thus, although scattering does not destroy
the quantization of the 2D Hall effect, its influence on the
quantization of the intrinsic 1D Hall effect cannot be
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determined by a two-terminal experiment measuring
V/J,. It also follows that the accuracy of the quantization
of the B=0 channel resistance depends on the degree of
perfection of the ballistic channel.
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