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A first-principles computation of the zero-degree isotherm has been carried out for Re, employing

a linear muffin-tin orbital electron-band theory technique.

This computed isotherm departs

significantly from the isotherm derived from shock-wave data, but is in reasonable agreement with
those from empirical equations of states based on zero-pressure parameters. Consequently, it is sug-
gested that the 200-250-GPa pressures achieved by Vohra, Duclos, and Ruoff in recent diamond-
anvil-cell experiments are underestimated by about half a megabar.

Recently, there has been interest in the high-pressure
behavior of Re (Z =75). It has been used as a gasket ma-
terial in high-pressure diamond-anvil-cell experiments. !>
Because of its higher yield strength, it is expected to
avoid “punchthrough” at the corners of the diamond un-
til higher pressures are reached. Vohra, Duclos, and
Ruoff’ have shown that this material is stable in its
ambient-pressure crystal structure (i.e., hexagonal close
packed, hcp) up to 216 GPa and the axial ratio (c /a) is
independent of pressure within the experimental errors.
More recently, they have used Re to calibrate the ruby
fluorescence method for pressure determination using x-
ray-diffraction methods. It has been suggested that above
200 GPa the extrapolation of the ruby sale, previously
calibrated up to 180 GPa, is erroneous.? In all these ex-
periments, Vohra et al. used the isothermal equation of
state (EOS) of Re, derived from shock-wave data.® This
is, in turn, based on shock-wave data up to 135 GPa. To
check how far extrapolations of this EOS above 200 GPa
are valid, we have carried out a first-principles computa-
tion of the zero-degree isotherm of Re. Comparisons are
also presented with isotherms based on parameters de-
rived from ultrasonic measurements.

For the first-principles calculation, based on an
electron-band —theory method, the pressure was written
as the sum of three terms,®

P(V)=Prmro+Pmr +Peore - M

Here, P}y is the electronic pressure corresponding to
the conduction electrons, evaluated in the atomic-sphere
approximation (ASA) by the linear muffin-tin orbital
(LMTO) method of Andersen.” It is given by
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where N,(E) is the projected density of states of angular
momentum / and ¢,(E) is the amplitude at the sphere ra-
dius S of the normalized radial wave function at energy
E. D/(E) is the logarithmic derivative and g,. is the
exchange-correlation energy density at the sphere radius
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(S) in the local approximation. In our calculations, using
Skriver’s programs,8 we included all relativistic contribu-
tions except spin orbit, employed the exchange-
correlation potential of von Barth and Hedin,’ and re-
tained angular-momentum components up to / =3. The
electron states corresponding to the Xe core in Re were
kept frozen. However, at higher compressions, the pres-
sure contribution due to 5p-core states was evaluated sep-
arately by the method of Sikka and Godwal'® [this is the
P, term in Eq. (1)]. This contribution is small. It
ranges from 0.6 to 4 GPa for the compressions con-
sidered here.

Py in Eq. (1) is due to intercellular Coulomb interac-
tion beyond ASA, commonly known as the muffin-tin
(MT) correction'! and is given by

agX(S)(1—2S8q! /q,)
MT ™ sV :

Here g, is the charge per atom corresponding to electron
density n (S) and a=8.25 mRy for the fcc lattice, which
was assumed for all the calculations in this paper.'> Py
increases from 12.3 to 18.0 GPa at V/V,=1 to
V/Vy=0.725 (V(;=99.2 a.u. is the low-temperature

(3)
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FIG. 1. Various zero-degree isotherms of Re.
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TABLE 1. Comparison of pressure values from different
methods at the compression point (V' /V;,=0.734) measured by
Vohra et al. (Ref. 3).

P (GPa)
Shock isotherm 216
Birch-Murnaghan fit 266
(By=372 GPa and By=5.41)
Universal EOS 257
(Bq=372 and B;=5.41)
Our value 264
equilibrium volume'3).

The calculated pressure at S, =2.872 a.u. corre-
sponding to experimental V; is 1.3 GPa, and the calculat-
ed equilibrium radius is 2.875 a.u. The agreement be-
tween the two is remarkably close, considering that Re is
one of the least compressible materials and a slight error
in calculations will produce large changes in pressure.
The theoretical P-V curve is presented in Fig. 1, where it
is compared with shock-derived zero-degree isotherm
from Ref. 3. The numerical values corresponding to the
compression, V/V;=0.734 (S =2.591 a.u.), obtained by
Vohra et al. are given in Table I. These show that the
theoretical and shock-derived isotherms differ systemati-
cally, and at higher compressions the deviations are out-
side the accepted limits (e.g., ~10%) for the agreement
between such first-principles theories and experiments.'*

The reasons for the above deviations may be as follows.
(i) Re is a spd transition metal and a LMTO calculation
may not place correctly the s, p, and d bands with respect
to each other because of approximations in the LMTO
procedure such as the local-density approximation. A
consequence of the error in the placement of bands of
different angular momentum is that the pressure contri-
bution is different. However, changes of exchange-
correlation expressions to other forms in our calculations
did not produce any significant difference in the pressure
values. (ii) The extrapolation of the shock data is not ap-
propriate due to some electronic-structure changes (e.g.,
s —d transition, leading to a softening of the P-V curve)
which occur beyond the range of available shock data.
We rule this out, as our LMTO results (see Fig. 2) show
that the respective populations of sp and d bands are re-
markably constant up to V/V;=0.72. (iii) There are
some systematic errors in shock-wave data or in reduc-
tion procedures to zero-degree isotherm.

In connection with the last point, it is interesting to
note that the computed Hugoniot curve of Walzer,'> us-
ing a semitheoretic approach, is harder than the experi-
mental data. Further, this calculation uses the experi-

10 927
_. 53
£ Re
8
<
~
% 52 -
c \
[e]
—
o
@ 514
w
©o
c
50 T T T T T T v T v T T T T
0.72 0.76 0.8 0.84 0.88 092 0.96 1

V/ Vo

FIG. 2. d population vs V' /¥, of Re sp electrons at a given
V/V,willbe 7—n,.

mental value of the bulk modulus (B,) at V/V,;=1 and
predicts the value of the pressure derivative of the bulk
modulus (Bj). Walzer’s value of By =5.388 is in agree-
ment with the ultrasonic measured value of 5.41, quoted
by Steinberg,'® but differs from the value 4.05 from a
Birch-Murnaghan fit'” to the shock isotherm. Again,
Rose et al.'® have related B to other zero-pressure
quantities, namely cohesive energy (AE,), B, and equi-
librium Wigner-Seitz radius (ryg),

2.3 'ws
By=1+=>-"2 4
o=1+ 3 s, (4)
where
AE, 172 5
" 1 127Byrys

Using (4) and (5), they get B,=5.72. In view of the
above, we accepted B;=372 GPa and B;=5.41 and
computed isotherms by Birch-Murnaghan fitting and use
of the universal form'® of equations of state.’> These are
also included in Fig. 1 and Table I. These support our
theoretical curve and strongly indicate that the use of the
shock isotherm of Re underestimates the pressure, when
used as a standard in diamond-cell-based x-ray-diffraction
experiments. In fact, Vohra et al.>* might have
achieved more than 300-GPa rather then 250-GPa pres-
sures in their experiments—the highest so far in x-ray-
diffraction experiments. Our study also suggests that (i)
B, be remeasured, and (ii) that shock Hugoniot points on
crystal-density samples be measured above the currently
available data up to 135 GPa.

The authors are thankful to Dr. R. Chidambaram and
Dr. Y. K. Vohra for helpful discussions.
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