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Singularity index of the core-level x-ra3 photoemission spectrum from surface atoms
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We calculate the singularity index of the x-ray photoemission spectrum that is excited from a core
level near a simple metal surface. Although the surface singularity index is generally different from
the bulk singularity index, the former index has almost the same value as the latter. Moreover, us-

ing the Thomas-Fermi dielectric screening of point-charge-like core potentials, we investigate quali-

tatively the singularity index for physisorbed atoms.
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where 5i is the phase shift of the lth partial wave at the
Fermi level. a is closely related to the screening mecha-
nisrn of the core potential. Because of the different
screening mechanism, the singularity index of the surface
system is different from the bulk singularity index.

The singularity index has been calculated by several au-
thors, but these calculations have been done only for
homogeneous media. Even for inhomogeneous systems,
Eq. (2) probably still holds if we define the generalized
phase shifts appropriately. However, it seems difFicult to
deal with this type of equation in a direct manner.
Hence, we generalize Langreth's method to the surface
system. Although Langreth's singularity index is a low-
order calculation with respect to the screened potential,

Previous core-level x-ray photoemission spectra' (XPS)
from metals were insensitive to the surface. These experi-
ments showed that the observed spectral line could be
well fitted by the Doniach-Sunjic (DS) line-shape func-
tion. The DS line-shape function is
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where I (x) is the gamma function and e is the energy
measured from the edge of the unbroadened spectrum,
and y

' is the core-hole lifetime. Equation (1) has an
asymmetric shape depending on the value of the singular-
ity index, a, which is one of the parameters characteriz-
ing electronic excitations near the Fermi surface. Since
surface electronic properties are different from the bulk
properties, there is no reason to expect that the DS line-
shape function should describe the XPS from the surface
region. Even if the DS line-shape function is applicable,
it is not obvious that the singularity index for the surface
region should have the same value as the bulk singularity
index. However, recent core-level XPS experiments
with high surface sensitivity show that the DS line-shape
function with the same values of parameters y and a can
equally well fit both the bulk and the surface components
within experimental error. Nozieres and de Dominicis
showed that
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this method can be easily applied to the inhomogeneous
system, particularly to the planar surface system, and still
contain the essence of the physics involved.

We treat the metal using the jelliuin model. Let 5n (r)
and V(r) denote the induced electron density and the
Coulomb repulsive interaction potential, respectively.
We consider the Hamiltonian
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where r„r,*, and Z are defined in Ref. 6. We assume
that these parameters are independent of the core-hole
position, Rz. In the other part, we employ the point-
charge approximation. This approximation combined
with the Thomas-Fermi-type dielectric screening is rather
informative for obtaining physical trend of the singularity
index. In this treatment, r„r,*, and Z are set to zero, i.e.,

where c and c are the creation and destruction operators
for a core electron, respectively, f (r) and 1b(r) are
creation and destruction field operators for conduction
electrons, respectively, and E is the core-electron
eigenenergy. The interaction potential between the core
electron and the conduction electron (core potential),
U(r), is treated in the saine manner as Ref. 6. In this
treatment, U(r) can be expressed by

4m.eU(r)= — f d k ps (k) e
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where pit (k) is the Fourier transform of the dilference in
h

core-electron density associated with the change in po-
tential seen by the conduction electron when the core-
electron is removed, and Rz indicates the core-hole posi-
tion.

In the first part of this report, we use the Ashcroft
pseudopotential in order to describe the core potential.
In this case, we have
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where e(x) is the step function and

cz(R&,co) = Im[S(Rh, co)] .
1

a(Rs, co) is named the dynamical singularity index. The
singularity index is defined by the static limit of a(R&, co).
In Eq. (4), S(Rh, co) is given by

S(RI„co)=—Jd r f d r'U{r)P(r, r', co)U(r'), {6)

(5)

p(k) = l.
Under the sudden approximation, it is sufficient to

know the core-electron Green function, G, (i)
—i ( Tc (t)c (0) ), in order to study the intrinsic

effect. ' In what follows, we assume the system at the ab-
solute zero for simplicity. By means of the standard
method, we obtain

where P(r, r', co) is the electronic polarization. Hence,
S(Ri„co) is the self-energy of the charge distribution
given by the Fourier inverse transform of Eq. (4).

We deal with $(Rl„co) by the dielectric response
theory, and we treat the surface system as a semi-infinite
degenerate electr'on gas bounded by an infinite step bar-
rier" at z =0 (infinite barrier model). Then, S(R„,co)
can be expressed in terms of the bulk dielectric function.
This model well describes the actual surface system
which has a large work function. However, we note that
the infinite barrier model may be a poor approximation
for high electron density metals (the electron density pa-
rameter, r, g 2)."

Because of the translational invariance along the sur-
face, S(R&,co) is a function of the core-hole distance
from the infinite barrier. Let a metal occupy the half
space z &0, and let z& denote the position of the core
hole. We decompose the wave vector k into k=(K, q).
When we employ the Ashcroft pseudopotentials, we con-
sider only the region of z& &r„r,*. Using the electro-
dynamical image charge method, ' we obtain
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where EapA is the ran'dom-phase approximation dielectric
function and f (k) is the local correlation function. For
numerical simplicity, we use Hubbard's expression of

13

Equations (5)—(8) yield the singularity index. Figure 1

shows the zz dependence of the singularity indices,
a(z&, co=0), of Li, Na, and Al. Here we used the same
values of XPS parameters (r„r,', Z, r, ) as used in Ref. 6.
The bulk singularity index ab is given by
lim, „a(z&,0). The calculated values of a& for Li, Na,

and Al are 0.235, 0.207, and 0.109, respectively. As
shown in Fig. 1, a(z&, 0) is enhanced near the metal sur-
face. This enhancement is attributed to that of the elec-
tron density near the surface. However, a(z&, 0) shows
ao oscillation such as the Friedel oscillation. We note
that the infinite barrier at z =0 is not the position of
first-layer atoms but the surface of electron gas. Accord-

where e=e(k, co ) is the bulk dielectric function, and

1 1I = dq
K+q

For explicit calculation, we use the dielectric function,

ing to Ref. 11, in which the electron density calculated by
the infinite-barrier model is compared with that calculat-
ed by the local-density functional theory, ' we find that
the first-layer atom is located at a distance of about 5ao
for Li, 6ao for Na, and 4ao for Al from the surface of
electron gas, where ao is the Bohr radius. Therefore, the
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FIG. 1. The normalized singularity indices, a(z&, 0)/ab, as a
function of the core-hole position, z&. Each line is calculated
with the same values of XPS parameters, r„r,*, Z, and r„as
used in Ref. 6. The bulk singularity indices, a&, of Li, Na, and
Al are 0.235, 0.207, and 0.109, respectively. ao is the Bohr ra-
dius.
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singularity index of the first layer atom is at most 5%
larger than the bulk singularity index (see Fig. 1).

Figure 2 shows the dynamical singularity index of a Na
atom which is located at zz ——5ao. Since a(zz, co) is nearly
constant up to the surface-plasmon frequency,
co, =co /&2, the DS line-shape function for simple metals p

15surface atoms is fairly well defined.
In the following, we employ the Thomas-Fermi-type

dielectric screening of point-charge-like core potentials.
I

This treatment is simple and, moreover, useful in study-
ing the zj, dependence of the singularity index. However,
we note that the point-charge approximation becomes a
good approximation in the case when a characteristic
screening length is large compared with the core-hole
size. In the point-charge limit, the singularity index does
not depend on the detailed structure of the core potential,
but only depends on the conduction electron density.
Then, we have

a "(zq, co)= .
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Here e represents the generalized Thomas-Fermi dielec-
tric function

kTF
2

k [1 t (neo/—2k'u„)e(2k —k)]
(10)

where kT„and kF are the Thomas-Fermi and the Fermi
wave numbers, respectively, and vF is the Fermi velocity.
Since Eq. (10) is appropriate only for small k and a& (see
below), we will not discuss the dynamical singularity in-
dex but will study the static case only. For the bulk

~
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FIG. 2. The dynamical singularity index of a Na atom which
is located at zz ——5ao. co~ is the bulk-plasmon frequency. The
surface-plasmon frequency, co, (=co~/&2), is indicated by the
arrow. The main peak at co, is ascribed to the surface-plasmon
excitation, and the shoulder at co~ corresponds to the plasmon
excitation. Taking account of a finite lifetime of plasmon, the
curve is smoothed with a Gaussian, and full width at half max-
imum is 0.1 eV.

I

singularity index we obtain the compact expression:

TF 1 1
CXb

—
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In the static (co=0) and small-k limits, eTF of Eq. (10)
agrees with the more realistic dielectric function e(k, co)
of Eq. (8). But for large k, 1/eTF underestimates the
screening effect. On the other hand, for large k, p(k) of
the point charge [p(k)=1] is overestimated compared
with the more realistic one calculated from the Ashcroft
pseudopotential [Eq. (4)]. Thus, some error cancellation
between the underestimate of 1/e and the overestimate of
p(k) for large k takes place when we calculate Eqs.
(9)-(11). The calculated values of ab of Na (r, =3.93)
and Al (r, =2.07) are 0.198 (experimental value' of 0.20)
and 0.128 (expt. ' of 0.12), respectively. This good agree-
ment with the experimental data is due to this error can-
cellation, although accidentally. However, it is rather
effective over a wide range of electron density as shown
by Fig. 3. We, thus, conclude that the present treatment,
i.e., using the Thomas-Fermi dielectric function and a
point charge for the core potential, is fairly good. Ac-
cording to Eq. (2), a must be less than 0.5 because of the
Friedel sum rule. Equation (11) tends to 0.5 at the low
electron density limit, which means that screening elec-
trons are ascribed to only s wave electrons.

Figure 4 shows that the z& dependence of the singulari-
ty indices, a "(zz ). Inside the metal a "(zz ) is enhanced
near the metal surface just as shown in Fig. 1. As rnen-
tioned earlier, the first layer atom is located at a relatively
large distance from the surface of electron gas. Hence, as
with Fig. 1, we have the same conclusion about the sur-
face singularity index; it is at most 5% larger than the
bulk singularity index. Qualitatively speaking, the sur-
face effect enhances the value of the singularity index but
the surface effect is significant only when the atom is lo-
cated within the characteristic screening length
(k-kTF') from the surface of electron gas. Actually,
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FIG. 4. The zz dependence of the normalized singularity in-

dices, a "(zz)/ab", for three different electron densities. The
calculation was carried out by Eqs. (9)—(11) (the Thomas-Fermi
dielectric function and the point-charge limit).
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FIG. 3. The r, dependence of the bulk singularity index, ab",
calculated with the Thomas-Fermi dielectric function and the
point-charge limit [Eq. (10)]. The triangles indicate the experi-
mental data (Ref. 1).

however, the first layer atom is usually located deeper
than k from the surface of the electron gas. Therefore,
the surface singularity index is almost the same as the
bulk singularity index. This argument probably holds
even for the case of the monovalent metals such as Au,
Ag, and Cu.

In the vacuum (zs &0), the induced charge at the sur-
face remotely screens the core-hole potential. Hence,
a "(zs ) reduces its tnagnitude and approaches zero as the
core-hole is away from the surface. a=0 means no asym-
metry in the XPS line shape, i.e., the isolated atom limit.

Figure 4 is informative for estimating the singularity in-
dex of adsorbed atoms, particularly of physisorbed atoms
such as Xe, ' where the bonding is due to weak van der
Waal's force and has no significant charge transfer.

In conclusion, the DS line-shape function holds even at
simple metal surfaces (Fig. 2), and the singularity index of
the first layer atom is at most 5% larger than the bulk
singularity index (Figs. 1 and 4). We expect the XPS
from a physisorbed atom to show an asymmetric line
shape in accordance with the z& dependence with the zz
dependence shown by Fig. 4.
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