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Nonlinear quantum transport coefficients are discussed in terms of nonequilibrium Green's func-

tions, and are finally expressed in terms of retarded Green's functions alone for the case of impurity
scattering. These results are well adapted to describe nonlinear steady state dc- and ac- as well as
transient-current response (linear and bilinear) to time-dependent and spatially inhomogeneous elec-
tric fields, and can also accommodate an ambient magnetic field.

I. INTRODUCTION AND FORMULATION

This work is concerned with the examination of an al-
ternative procedure for the construction of nonequilibri-
um Green's functions appropriate to the analysis of non-
linear quantum transport theory. Our considerations
here are focused on the case where the only electron
scatterings are due to impurity scattering centers at fixed
sites. This constitutes a genuinely one-particle dynamical
situation as there is no coupling of the second quantized
electron field operator P(x, t) to any other dynamical
field, and its time development is governed by (Pi~1,
c~l)

i ~ [V iea(x—) ie A, (x—, t)]
1

dt 2m

—[U(x)+ V, (x, t)] 1((x,t)=0, (1)

where a(x) is the vector potential of a time-independent
ambient magnetic field, U(x)=g, V(x —r;) is the poten-
tial of impurity scatterers centered at r„and A, (x, t) and

V, (x, t) are electromagnetic vector and scalar potentials
for fields which drive the system out of equilibrium. We
note that the time development of g(x, t) associated with
single-particle dynamics is described by

g(x, t)=i jd x'G"(x, t;x', t')lit(x', t'), (2)

where the retarded Green's function G'(x, t;x', t')
satisfies the equation

by Eq. (2) correctly propagates the equal-time canonical
commutation relations forward in time as

[g(x, t), t)'j (x', t)]+ ——[g(x,0), l( (x', 0)]+

=5'(x —x'),

( + denotes commutation and anticommutation relations
for bosons and fermions). In transport, the focus is on
the current density operator

j(x, t)= [i [Vp (x, t)]f(x, t) —p (x, t)iVQ(x, t)
2172

—2e [ A, (x, t)+a(x)]l( (x, t)g(x, t) I,
which we consider to be averaged in an initial equilibri-
um ensemble exp[ 13(Ho gN—)], w—here the initial Ham-
iltonian Ho contains a(x) and U(x) [before A, (x, t) and

V, (x, t) are turned on], N is the number operator, and P
and g are the inverse thermal energy I /k~ T and chemical
potential of the initial equilibrium state, respectively.
Such initial equilibrium ensemble averaging of an opera-
tor X is given by

(X)=Tr(e X)/Tre

and the associated physical nonequilibrium Green's func-
tion is given by (Wick time ordering is indicated by the
symbol T, which we understand to include + accompany-
ing the "lesser" time order for bosons and fermions)

g(x, t;x', t') = i ( T[f(x—, t)1( (x', t')]),
i +[V iea—(x) i—e A, (x, t—)] —[U(x)+ V, (x, t)]

Bt 2m
with

g, (x, t;x', t') =i (g (x', t')g(x, t) ),
X G "(x,t;x', t')=5'(x —x')5(t t'), —

subject to the initial retardation conditions
G "(x,t;x', t'& t)=0 and G "(x,t+;x', t) = i5 (x x—'). It-
is readily verified that for t & t', 1((x,t) given by Eq. (2)
satisfies Eq. (1), and that for t =t'+e, Eq. (2) correctly
reproduces the initial value; moreover, in its role as
time-development operator S (t, t') we have

G "(x,t;x', t')= i(x
~

S(t—, t')
~

x') (4)

for single-particle dynamics. Moreover, the retarded
Green s-function description of time development given

etc. Of course the time development of 1it(x, t) is
governed by the full Hamiltonian including A, (x, t) and

V, (x, t), not Ho associated with the initial equilibrium
averaging. The average current ( j(x, t)) which evolves
by the action of A, (x, t) and V, (x, t) driving the system
out of the initial equilibrium state is given by

( j(x, t)) = — lim [V —V' —2ie [ A, (x, t)+a(x)] I2m x' x

Qg (x, t;x', t) .

We note that we may rewrite Eq. (8) using Eq. (2) as
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g&(x, t;x', t')= f d x, fd x2G'(x, t;xiO)g' '(x„O;x2,0)G"*(x',t', x2, 0), (10)

where the retarded Green's function 6" has been em-

ployed to refer the time arguments of g, gt, and g back to
the initial time (0) when the system is in equilibrium, and
the initial equilibrium Green's function is denoted by g' '.
Equation (10) has the interesting property that the highly
complex problem of nonequilibrium statistical mechanics
(the determination of g ), which involves statistical and
dynamical considerations jointly in nonequilibrium pro-
cesses, is divided by Eq. (10) into two distinct and
separated parts such that only one part involves statisti-
cal averaging in the context of the equilibrium Green's
function g' ', while the other part is devoid of statistical
averaging, and involves only single-particle dynamics in
external fields in the context of the retarded Green's
function G", G"". This is to say that Eq. (10) serves to
break down nonequilibrium statistical mechanics into the
following parts —to all orders in the external fields —(1}a
problem of equilibrium statistical mechanics (the deter-
mination of g' ') and (2) a problem of nonlinear single-
particle dynamics in external fields, devoid of statistical
averaging (the determination of G"). (Scatterings are
present in both g' ' and G".) The formulation of Eq. (10)
is particularly useful if the fields of A, (x, t) and V, (x, t)
are abruptly turned on at initial time 0, and we wish to
trace the time development of transient currents under
conditions where there is no transfer of energy to a heat
bath. It should be noted that while g(x, t;x', t') and
G "(x,t;x', t') obey the same equation of motion [both
obey Eq. (3)], their difference in initial conditions is cru-
cial in determining the diSculty of solution —6 is sub-
ject to the initial condition of retardation, whereas g is
subject to initial equilibrium state averaging. In the spe-
cial case when A, (x, t) and V, (x, t) vanish identically, g
is an equilibrium thermal Green's function' at all times,
with initial Harniltonian Ho identical to the Hamiltonian
generator of time translations, and this yields the charac-
teristic periodicity-antiperiodicity conditions for tirne-
difference variables with imaginary period iP leading to
the appearance of Fermi-Bose distribution functions in
the spectral structure of g' '. With time-variable fields

turned on, Ho is no longer the generator of time transla-
tions, and greater complexities of g in regard to its initial
equilibrium state averaging have been described in the
literature. ' An exact relation of the physical none-
quilibrium Green's function g to a corresponding "gen-
erating" Green's function employed by Martin and
Schwinger' has been derived by Kadano8' and Bayrn,
and it has been employed in the development of transport
equations which embody the diSculties of determining g
(which difficulties also permeate the corresponding for-
mulations of perturbation theory for nonequilibrium
Green's functions). ' The "generating" Green's func-
tion replaces the canonical weight factor exp( 13Hp) —by
the time-ordered exponential which actually generates
time displacements through iP in time-dependent exter-
nal fields, and thus has periodicity properties in each time
index separately. This generating Green's function is
given in the full Heisenberg picture by

G(x, t;x', t', t, )

i Tr—IS(t, —iP, t p)T[g( xt)g (x', t')]I
Tr[S(tp —t'P tp)]

i Tr[—T[S(tp I I3 tp)gt(x 't)gt(x t )]]
Tr[S(tp iP, tp)]—

(12)

where the subscript I indicates interaction-picture opera-
tors and subscript S will indicate Schrodinger-picture
operators (and all operators with no such subscripts are
of the full Heisenberg picture). Suppressing the explicit
appearance of the chemical potential as energy reference
level, the imaginary time-displacement operator
S ( tp iP tp ) has the equivalent forms

which is equivalent to the more frequently used
interaction-picture form (corresponding to the separation
of the time-dependent external field Hamiltonian
H, =H Hp ass—ociated with A, and V, )

G(x, t;x', t', t, )

'0 —'P
S (tp iP, tp ) =—exp i f —dt'Hs(t')

'0
t0 —iP

exp i dt'H —( t')

t0 —iP
=exp( 13Hpl ) exp —i f d—t'H, I(t')

0
(13)

where the subscripts (+,—) mean time ordering in the
(positive, negative) sense. The imaginary time-periodicity
properties of the generating Green's function have been
demonstrated by Ashby and Kadanoff and Baym, in the
form

G, (x, tp;x', t';tp)=+G (x, t, iP;x', t', tp), —

G, (x, t;x', tp;t, }=+G,(x, t;x', t, iP;tp) . —(14)

It is well known' that G (x, t; x', t'; tp ) has the useful
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property' that its variational derivatives with respect
to external potential generate higher-order nonequilibri-
um generating Green's functions of the same type, and its
relation to the physical nonequilibrium Green's function
g(x, t;x', t')—which lacks such a convenient variational
differential property —is given by

G "(x,t;x', t') =Go(x, t;x', t')

d x dt Go I t'I

lim 6(x, t;x', t';to}=g(x, t;x', t') .~ —oo0

(15) XX,„(x",t")G"(x",t";x', t'), (16)

Notwithstanding the attractive features of the generat-
ing Green's function 6, our focus is upon the physical
nonequilibrium Green's function g directly. The present
decomposition of the problem of nonequilibrium statisti-
cal mechanics into one of equilibrium statistical mechan-
ics and another of nonlinear single-particle dynamics de-
void of statistical averaging for the case of impurity
scattering (single-particle dynamics) —as represented by
Eq. (10)—offers an alternative point of view which may
hold some advantage in dealing with the severe complica-
tions cited above due to the fact that there is no corre-
sponding problem of dealing with the initial condition on
G, as it is simply one of retardation. With this in view
we rewrite Eq. (3) as an integral equation

X,"'(x, t) = [V A, (x, t}]+—A, (x, t) V,
2

X'2'(x, t)= — A, (x, t) .
2@i

(17)

[Note that V A, (x,co)-V E(x,co)-p, (x,co)~0 for im-
pressed fields due to far-off sources p, in frequency repre-
sentation. ]

where Go is the retarded Green's function in the absence
of A, and V, . Taking the gauge in which V, ~0,
X,z(x, t) is given by X, (x, t)=X,'z'(x, t)+X' '(x, t) where

II. LINEAR AND BILINEAR CONDUCTIVITY COEFFICIENTS IN TERMS OF RETARDED GREEN'S FUNCTIONS

Iteration of Eq. (16) may be used in conjunction with Eqs. (9) and (10) to generate nonlinear transport coefficients
which are variants of Kubo-type response formulas" generalized to nonlinear response' ' and expressed in terms of
retarded Green's functions [note that X," '(x, t) is simply related to the electric field in frequency-co representation
since E(co)=i co A, (co)]. For example, to second order in the field [1= (x, t},f d 1=fd x fdt ],

6"(1,1')= 60(1,1')—fd 2GO(1, 2)X,"'(2)60(2, 1')—f d 26O(1, 2)XI '(2)60(2, 1')

+f d42 fd'3 Go(1,2)X,"'(2)60(2,3)X,"'(3)60(3,1') . (18)

In employing Eq. (18) to construct the nonequilibrium Green s function of Eq. (10), g (1, 1 ), we use the identity
representing the propagation of the equilibrium Green's function forward in time as

g', '(x, t;x', t')= fd'x, fd'x2GO(x, t;x„0)g', '(x, , O;x2, 0)G,"'(x', t';x2, 0)

and in passing we note that the equilibrium Green s function is given by [fo(co) is the Fermi distribution function]

g' '(x, t;x', t')= — e '"" ' 'fo(co)ao(x, x';co),rm(t t )

7T

where the spectral weight function ao(x, x';co) is given by

ao(x, x', co) =60(x,x', co+i@) Go(x, x', co is—) . —

To second order in the field, we obtain g & (1, 1'), , as

[g. (1 1'}]= =[g'."(1 1'}],=, +[g'."(1 1'}],=, +[g'."(1 1')],=,

where the linear-response term g"'(1, 1'), , is given by

[g"'(l, l')], , = f d 260(1,2)X„"'(2)[g' '(2, 1')], , + fd"26O (1',2)X,'"(2)[g' l(1,2)].
and the bilinear response (second order) term is

[g' '(l, l')], , = f d 26O(1,2)X' '(2)[g' '(2, 1'}], , + f d 260 (1',2)XI' (2)[g' '(1,2)],

+ f d 2fd 3 Go(1,2)X,"'(2)GO(2, 3)X,"(3)[g', (3, 1')],

+ fd 2 fd 3 Go (1',2)X,"„' (2)60(1,3)X,"'(3)[g' '(3,2)],

+f d 2 fd 3 Go (1',2)X,'" (2)GO (2, 3)X,'" (3}[g' '(1,3)],

(20a)

(20b)

(21)

(22)
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The linear and bilinear current response functions ( j'") and ( j' ') follow from Eq. (9),
~ 2

(j"'(1))= lim A, (1)[g' '(l, l')], , — lim [V —V' —2iea(x)][g"'(l, l')],
m x~x 2m x'~x
~ 2

(j'2'(1)) = lim A, (1)[gI"(1,1')], , — lim [V—V' —2iea(x)][g', '(l, l')].
m x*—+x 2m x' x

(24)

(25)

and the corresponding quantum-transport coefficients
readily follow.

The distinctive feature of these current response
coefficients is that the time development of the system is

fully subsumed in the structure of the retarded Green's
function alone for the impurity scattering mechanism un-

der consideration. While our treatment of linear and bi-
linear response is exact and directly applicable to meso-
scopic systems, ' care must be exercised in averaging
over randomized impurity sites. The results above are

well adapted to describe steady-state dc- and ac- as well
as transient-current response to time-dependent and spa-
tially inhomogeneous electric fields, and can also accom-
modate an ambient magnetic field as well.
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