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Monte Carlo and lattice-dynamics studies of the thermal and elastic properties
of a rigid-ion model of sodium chloride
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We have calculated the thermodynamic properties and elastic constants of a rigid-ion model of
sodium chloride, at zero pressure, using a combination of Monte Carlo simulations at high tempera-
tures (300-1050 K) and anharmonic perturbation theory at low temperatures. While the results
were intended as a benchmark for the simple model we have used, the agreement with experiment is

remarkably good.

I. INTRODUCTION

In this paper we report benchmark results on the
thermal and elastic properties of a rigid-ion model of a
typit:al solid alkali halide, NaC1, using a combination of
anharmonic perturbation theory and Monte Car1o simu-
lation. A combination of this type has been shown to be
capable of providing a complete description of the corre-
sponding properties of the inert-gas solids, for either a
simple I.ennard-Jones model, ' or for more realistic po-
tentials. The alkali halides are probably the next-
simplest materials to study, and good experimental data
are available for them. We have shown previously that
anharmonic perturbation theory can give an excellent
description at low to moderately high temperatures. '

In the interests of simplicity, we have used a rigid-ion
model of sodium chloride, in which contributions to the
interatomic potential arising from the polarizabilities of
the ions are ignored. Since these contributions are
known to play a large role in determining the optical
normal-mode frequencies, the question arises of whether
or not we can reasonably compare our results with exper-
iment, and, if not, how we are to judge them. This is it-
self an interesting question since many other calculations
of the thermodynamic properties of the alkali halides also
used the rigid-ion formalism. If an approximate method
of calculation is used even agreement with experiment is
not a conclusive test since there may be a cancellation of
errors arising from the model and from the method of
calculation. In this connection, it is important that the
Monte Carlo method is exact within the statistical uncer-
tainties at high temperatures, and that anharmonic per-
turbation theory converges well for the alkali halides at
low temperatures. To anticipate our results, we find that
the two methods are in excellent agreement at room tem-
perature, indicating that the two methods together do
successfully span the entire temperature range, and also
that the agreement with the experimental data is remark-
ably good. Sodium chloride was chosen as a material to

study partly to make connection with earlier calculations,
and partly because the measured phonon-dispersion rela-
tions indicated that probably only nearest-neighbor
non-Coulomb interactions are important.

There have, of course, been earlier Monte Carlo calcu-
lations on the alkali halides, ' ' and we have used the
techniques described in that work to deal with the
Coulomb potential. However, the computational facili-
ties now available are so superior that we can obtain
much more accurate values of the thermodynamic prop-
erties than were previously available. It was the useful-
ness of our earlier benchmark results for the Lennard-
Jones solid which suggested the present calculation to
us.

II. MODKI. PQTKNTIAI.

%e assume an interionic potential consisting of
Coulomb forces corresponding to the formal ionic
charges of +e, together with a Born-Mayer potential

TV= Voexp
P

which is assumed to act only between unlike ions. (In the
lattice dynamics calculations "unlike" effectively restrict-
ed the short-range interaction to nearest neighbors. In
the Monte Carlo calculations we found it necessary to in-
clude the third-neighbor interactions, since otherwise, at
very high temperatures, an ion could be dragon out of its
cage of nearest unlike neighbors by the Coulomb attrac-
tion of third unlike neighbors leading to an unlimited
lowering of the internal energy of the crystal )The two.
parameters in the potential were determined from the
zero-temperature values of the nearest-neighbor distance
ro and the bulk modulus BT. We assumed values of
2.79724 A and 2.660X10" dyn/em for these. As a
starting point the derivatives of the static lattice energy
were adjusted to correspond to these values, and the pa-
rameters were then refined iteratively until the minimum
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and the second-volume derivative of the quasiharmonic
Helmholtz function yielded the experimental values.
Anharmonic corrections to the Helmholtz function are
very small at zero degrees. The final values we adopted
for Vp and p were 3.2217743)&10 ergs, and 0.29501
0
A, respectively.

We can find support for this simple model in several
places. The measured phonon-dispersion relation, espe-
cially the acoustic branches, are well reproduced by a
nearest-neighbor model. Also, Boyer' has made a priori
calculations of the interatomic potential in alkali halides,
using a density-functional method. He gives the potential
as a sum of four contributions, but we have summed
them and fitted a single Born-Mayer form to the values in
the vicinity of the experimental separations. From the
results we can verify that the like-neighbor potentials are
very small (e.g. , for Cl-C1, Vo= —3X10 ' ergs and
p=1.10408 A), and we also extract values of Vo and p
for unlike nearest neighbors which agree with the values
given above to within 6% and 1%, respectively. We view
this agreement as excellent.

Many rigid-ion model calculations for the alkali
halides, including earlier Monte Carlo' ' and
molecular-dynamics' calculations, have used a set of in-
teratomic potentials derived by Tosi and Fumi. ' That
work was an attempt to derive a universal set of parame-
ters for the alkali halides, with the magnitudes of the
repulsive terms determined from a set of ionic radii. van
der Waals interactions, between more distant neighbors,
were also included. While the Tosi and Fumi potentials
do reproduce the low-temperature properties fairly well,
the ionic-radius approach to the repulsive terms is inferi-
or to a density-functional approach, and there is no direct
evidence for the long-range van der Waals contribution
to the potential. Ree and Holt in fact concluded in their
work that Tosi and Fumi potentials were inadequate.
This same conclusion was also reached by Adams and
McDonald. ' The model we have used is simpler, and ac-
tually turns out to agree far better with experiment.

kzTz
~

V(A, A2, A3)
~

F33 ———24
„~ ~ ~(&&)~(&2)co(A,, )

The notation is described fully in the review article by
Cowley. ' We had found in our earlier calculations '

that it was a satisfactory compromise to use the finite-
temperature expression for the quasiharmonic terms, and
only the high-temperature limits for the anharmonic
terms, because the anharmonic contributions are small at
the temperatures where quantum-mechanical corrections
would be important. Our numerical techniques were
similar to the previous work, in particular the sums in

F33 were carried out over a mesh of 256 wave vectors.
The one improvement was that the Coulumb contribu-
tions to V(A, ~, A,2, A, 3) were summed using an Ewald pro-
cedure which gave an essentially exact result.

In oi.der to find the zero-pressure volume, and the vari-
ous thermodynamic properties, as functions of tempera-
ture, the two anharmonic coefficients of T were each cal-
culated at eleven volumes, and cubic spline interpolation
was used. The quasiharmonic contributions to the free
energy, entropy, and heat capacity C„were calculated at
each volume as required.

29-
0

III. ANHARMONIC PERTURBATION THEORY

The well-tried route of anharmonic perturbation
theory' is to calculate the Helmholtz function as a sum
of the static energy, the quasiharmonic (qh) vibrational
free energy, and contributions arising in first and second
orders of perturbation theory, respectively, containing
the quartic and squared cubic terms in the Taylor expan-
sion of the potential energy,

F4P+Fqh +F4 +F33 ~

Here

O 28-

27-

26—

F„=g fur& flCO

2
+kT 1n 1 —exp kT

(3)
200 400 600 800 1000

k~T~ V(A.„—A, „A,2, —A2)
F4 ——12

A)2 co(A, , )co(A~)
(4)

where the sum is over the 3X normal modes of the crys-
tal. At high temperatures F4 and F33 are each propor-
tional to the square of the temperature,

FIG. 1. Molar volume of NaCl as a function of temperature
at zero pressure. Solid circles, Monte Carlo simulations with
4.172)&10 configurations, except at 1050 K where we used
1.036S)&10 configurations; dotted line, anharmonic lattice dy-
namics; solid line, smoothed experimental data (Ref. 20).



10 822 ZHAOXIN GONG, G. K. HORTON, AND E. R. COWLEY 38

IV. MONTE CARLO SIMULATIONS

The basic Monte Carlo method has been described by
Wood, ' and its application to the alkali halides has been
discussed by Woodcock and co-workers' '" and by
Adams and McDonald. ' The main difference between
our procedure and theirs is that we used an N-V-T en-
semble, and adjusted the volume iteratively until the pres-
sure was calculated to be zero within the statistical uncer-
tainty. This is a brute-force solution to the difficulty
mentioned by Adams and McDonald, that the short-
range part of the energy cannot be exactly scaled if the
sample volume is altered in an N-P-T ensemble. We also
included the first term of the Wigner-Kirkwood correc-
tion for quantum-mechanical effects. ' Our production
runs were carried out for a system of 216 ions, and with
the real-space part of the Ewald summation for the
Coulomb energy including all neighbors within a distance
of r, =L/2. The parameter a, ' '" which divides the
Ewald sum between real space and reciprocal space, was
chosen' so that aL =5.05, and the reciprocal space sum
was taken over 128 reciprocal lattice vectors for which
0&

~

n
~

&I, =16. Of course, we also used periodic
boundary condition.

As some compensation for the small sample size, we
used a correction described in Ref. 2. This involves cal-

culating separately the static and vibrational contribu-
tions to the various averages and assuming that the vibra-
tional parts are proportional to N —1 instead of ¹ In
the application to the Coulomb sums this has the added
advantage that the static terms can be calculated once
and for all to a very high degree of convergence, so that
overall accuracy is improved. To test the adequacy of
this correction, we also performed runs with a system of
64 atoms, and verified that the changes in the normalized
averages were comparable with the statistical uncertain-
ties.

Also, with a 64-atom sample, it was possible to repeat
some runs with a much larger a parameter in the Ewald
sums to maintain the same value for aL as for the 216-ion
sample. The reciprocal-space sum must then be extended
over a larger radius so that this is an expensive pro-
cedure, but we were able to verify that the increased ac-
curacy in the Ewald sums changed the calculated ther-
modynamic quantities only by amounts comparable with
the statistical uncertainties.

The production runs were carried out at five tempera-
tures, ranging from 300 to 1050 K. Each run was contin-
ued for 4.172)(10 configurations, of which the first
4.32)&10 were discarded. The statistical uncertainties
were calculated by breaking the chain of configurations
into a number of smaller blocks (typically about 10},
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FIG. 2. Zero-pressure volume expansivity of NaC1 as a func-
tion of temperature. Solid circles, Monte Carlo simulations
with 4.172)& 10 configurations, except at 1050 K where we used
1.0368&10' configurations; dotted line, anharmonic lattice dy-
namics; solid line, smoothed experimental data (Ref. 20).

FIG. 3. Zero-presa@re adiabatic bulk modulus of NaC1 as a
function of temperature. Solid circles, Monte Carlo simulations
with 4.172& 10 configurations, except at 1050 K where we used
1.0368/10' configurations; dotted line, anharmonic lattice dy-

namics; solid line, smoothed experimental data (Ref. 21); dashed
line, smoothed experimental data (Ref. 22); dotted-dashed line,
smoothed experimental data (Ref. 26).
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V; U(S)
24kT &

V, U

24k T,. m,

BF
ap 0'g ~p

——1VkTB1 V BU
~ g+ +A

~ g~p ~ g~p ~ g(yp

where

Z, =+e,

C(n) = 1
exp

vr/n/ L

n'
[
n

/

'
~2L 2

2

(8)

n. r,
X g Z, cos 2m

l
L k

2

U(S)= g Voexp (9)

U(C, )= g Z; g Zl
I J)1

U(Cz) = —,
' g' C(n),

erfc(ar, " ) aZ,' —X v'7r
(10)

where ( ) denotes the ensemble average. There are three
distinct contributions to U —the short-range part U(S),
the real-space Coulomb sum U(C, ), and the reciprocal
space Coulomb sum U(C2):

nr;
+ QZ, sin 2n.

1+ g'n n& 2+ C(n) .
[n/' a2L'

Finally, using Eq. (6) we find that

(12)

It is straightforward to include the contributions of Eqs.
(9) and (10) to Eq. (8), using the formula of Ref. 19.
Those of Eq. (11)are

BU(C2) = —5~pU(C2)
Pap
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FIG. 6. Gruneisen's parameter y for NaCl, at zero pressure,
as a function of temperature. Solid circles, Monte Carlo simula-
tions with 4. 172)&10 configurations, except at 1050 K where
we used 1.0368)&10' configurations; dotted line, anharmonic
lattice dynamics; solid line, smoothed experimental data (Refs.
20—24).

FIG. 7. Zero-pressure mean square deviation of an ion in
NaCl as a function of temperature. Solid circles, Monte Carlo
simulations with 4.172&10 configurations, except at 1050 K
where we used 1.0368&10 configurations; dotted line, anhar-
monic lattice dynamics. Below 300 K, the dashed-triple-dotted
line shows the mean square deviation of a chlorine ion, and the
dotted line shows that of a sodium ion.
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$2U 8 U+( Ug) —Ug3'g p87]~s 8'r)~pB'grs

aU aU

377&p 377&s

(13)

Again, the contributions of Eqs. (9) and (10) to Eq. (13) are straightforward. Those of Eq. (11)are

8 U(C2) 1 1=(25 &5pr+5 p5rs)U(C2)+ P' 4n npnrns 2 2+ 2 2 +
Qu 9ys

T ~n~2
~

~2 &2L2 2&4L4

[n n—p5 &+n~ns5 p+2(5 snpn~+5p~n ns)]

1 m
X +

~n~
C(n) . (14)
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FIG. 8. Adiabatic elastic constant c» as a function of tem-
perature. Solid circles, Monte Carlo simulations with
4.172&10 configurations, except at 1050 K where we used
1.0368X10 configurations; dotted line, lattice dynamics; solid
line, smoothed experimental data (Ref. 21); dashed line,
smoothed experimental data (Ref. 22); dotted-dashed line,
smoothed experimental data (Ref. 26).

FIG. 9. Adiabatic elastic constant c» as a function of tem-
perature. Solid circles, from Monte Carlo simulations with
4.172&10 configurations, except at 1050 K where we used
1.0368)&10 configurations; dotted line, lattice dynamics; solid
line, smoothed experimental data (Ref. 21); dashed line,
smoothed experimental data (Ref. 22); dotted-dashed line,
smoothed experimental data (Ref. 26).
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V. RESULTS AND DISCUSSIONS

14-

O 12-
C
U

O
D

~g

e

10-

200 400 600 800 1000

FIG. 10. Adiabatic elastic constant c~ as a function of tern-
perature. Solid circles, Monte Carlo simulations with
4. 172X10 configurations, except at 1050 K where we used
1.0368X10 configurations; dotted line, lattice dynamics; solid
line from smoothed experimental data (Ref. 21); dashed line,
smoothed experimental data (Ref. 22); dotted-dashed line,
smoothed experimental data (Ref. 26).

Figures 1 —6 show our results for the cell-volume,
volume thermal expansivity P, adiabatic bulk modulus

B~, specific heat at constant pressure C, specific heat at
constant volume C„and the Griineisen parameter y. In
each case, the dashed lines show the lattice dynamics re-
sults, the solid circles with error bars are the Monte Car-
lo results, and the solid line has been drawn through the
experimental values. The experimental data are from
Refs. 20-25.

The error bars on the Monte Carlo results are purely
statistical uncertainties, but we believe these to be the
major contribution, compared with errors due to small
sample size and termination of the Ewald sums. The er-
rors in the other sets of results are more likely to be sys-
tematic, leading to an upward or downward shift of the
entire curve. The sums over the Brillouin zone involved
in the lattice-dynamics values were all carried out to ac-
curacies much better than the size of the plotted points.
The interpolations and numerical differentiations re-
quired to form the equation of state reduce this accuracy,
but we believe that even our results for P and C, at 300
K, for example, are accurate to 1% and 0.2%, respective-
ly. The experimental curves each have their own uncer-

0

V
L3

0

CO
4P

E
4&

0

4&

0
e5'a
c5

cn
g0

~ %+I

g 05

ch

0
O

+ X

0

0

Q

V

(h

8
etc

Q
Ct

p
Ch

6

tg OJ

0 K
CP
N

CP

g
c5

CP
C4 ~c0

X

E

0
~ +~+

c0
Q.

0
V

E
OO

O

Q

0
8

0

0
6

E

oo m W W
t

O O

O & O ™

W tO
O m W Ch

OO

Om jc'

I I I I

O O O O

~ eel

cd

O
+I

VO

O
+I

O

+I

+I

O
+I

O
O
+I
O

O

O
+I

O
O
+I

+I

O
O
+I

O

+I

O
+I
OO

OO

O
O
+I

O
+I

I

O

+I
OG

O
O
+I
OO

+I

O
O
+I
O

O

+I
O

O
+I

O
O
+I

+I
O

I

O
OO

O
O
+I
OO

O
O
+I
OO

O
+I

O
O
+I
Ct

CV

+I

OO

OO

O
+I

O
O
+I

+I

O
OO

OO

O
+I

O
+I

+I
OO

O
O
+I

+I

O
+I

O

O
O
+I

I

+I

I

O

O
O

O
O
+I

O
O
+I

O

+I

O
O
+I
QO

+I

O
+I

O
+I

O

I

+I

O
O



38 MONTE CARLO AND LATTICE-DYNAMICS STUDIES OF THE. . . 10 827

tainties. The absolute accuracy of the volume thermal
expansivity is stated to be 7%, and that of C~ is

0.3 —0.5%%uo. The bulk modulus is accurate to about 2%
and the accuracy of the Griineisen parameter is about
7%.

Bearing in mind these uncertainties, it is not too strong
a statement to say that the lattice-dynamics calculations
up to 300 K and the Monte Carlo calculation from 300 K
to melting are in agreement with the experimental results
for all of the properties. Considering the simple model
potential used, we find this result remarkable. As expect-
ed, for high temperatures the lattice-dynamics results
diverge from those of the Monte Carlo simulations. For
critical comparison the deviation begins at 300 K, but the
results are still fairly reasonable up to about half the
melting temperature. It is worth noting in Fig. 2 that
both theory and experiment are consistent with the Du-
long and Petit value (C, =6R) at high T.

We have also calculated the mean-square displace-
ments of the two ions. They are almost identical at high
T. In our Monte Carlo procedure the center of mass of
the systems drifts free, and the equilibrium positions of
the ions move with it. We therefore maintained a run-
ning value of the positions of the center of mass, and
found the averages of the squared displacements of the
ions from their drifting equilibrium positions. The same
procedure proved satisfactory in an earlier calculation.
The results are shown in Fig. 7. We also show there
values calculated using the quasiharmonic lattice-
dynamical expressions, but calculated at the equilibrium
volumes predicted by the full lattice-dynamical theory.
Both curves are approximations. The Monte Carlo re-
sults are more sensitive to the small sample size than
were the thermodynamic results, and the lattice-
dynamics results do not include anharmonic corrections.
However, this is a notoriously difficult quantity to mea-
sure, and we believe that these results can be quite useful.

The adiabatic elastic constants obtained in the Monte
Carlo calculations are shown in Figs. 8—10, compared
with the experimental results of Refs. 21, 22, and 25. A
useful discussion of elastic constants of NaC1 can be
found in the paper by Benkert and Backstrom. Also
shown there are values calculated by the method of Ree
and Holt, as second derivatives of the quasiharmonic

free energy with respect to strains. Above 300 K, this
method becomes unreliable because of the anharmonic
terms omitted from the free energy. The immediate
problem is that the volumes corresponding to zero pres-
sure rapidly becomes unreasonable above room tempera-
ture when only the quasiharmonic free energy is used.
The Monte Carlo and lattice-dynamical results for the
elastic constants agree nicely in the overlap region, as ex-
pected. Our results differ widely from those of Ree and
Holt and this is due to the potential used by them. Our
results agree far better with experiment. Our results for
c,2 and c44 agree with the experiments, except for c,2

below room temperature. The drop in c&2 at the lowest
temperatures is clearly due to three-body forces. These
are included in our model in an effective way via the
fitted parameters of our Born-Mayer two-body potential.
Since our model fitted the bulk modulus at zero degrees,
our model forces the low-temperature discrepancy in c&2.
The inclusion of three-body forces, rather than using a
shell model, to account for this low-temperature
discrepancy remains to be investigated. The effect is
clearly temperature dependent and, as is clear from Fig.
9, has disappeared at about half the melting temperature
when the crystal has expanded sufficiently for the overlap
effect involved to fade out.

As is well known, there are deviations from the Cauchy
relation, c,2

——c44, in the alkali halides at low tempera-
tures, and this indicates the presence of three-body
forces. Since our model does not include these forces it
leads to c,2-c44. However, at finite temperatures a part
of the deviations from the Cauchy relation is caused by
anharmonicity, and the experimental results show that
the deviation from the Cauchy relation changes sign a lit-
tle below room temperature. Since anharmonic effects
are negligible at low T, we conclude that the contribution
of three-body forces to c,2-c44 is of the opposite sign to
that of the anharmonic contribution, and the latter, as ex-
pected, is the larger at high T.

Finally, in view of the benchmark nature to which we
hope our results will be put, we give in Tables I—III a
summary of our Monte Carlo and lattice-dynamics re-
sults for the thermodynamic and elastic properties. In a
future paper we shall use these to test cell and cell-cluster
calculations for the model.

TABLE II. Zero-pressure elastic functions for NaC1 as a function of temperature. The uncertainty represents the standard error
of the mean. All the Monte Carlo results correspond to 4.172)& 10 configurations except the numbers in parentheses which corre-
spond to 1.0368)& 10 configurations.

Lattice dynamics

T
(K)

0 26.60
100 25.93
200 24.35
300 22.88

Bs

26.60
26.22
25. 13
24. 10

C))

53.60
51.52
47.70
42.25

Cli
(10' dyn/cm )

53.60
51.84
47.95
43.70

C
T

13.09
13.00
12.76
12.35

S
C12

13.09
13.31
13.65
13.81

13.07
12.98
12.81
12.46

&44

Monte Carlo 300 22.82+0.06
450 20.3+0. 1

600 18.2+0. 1

800 15.0+0. 1

1050 10.5+0.4
1050 (10.7+0.2)

24.02+0.03
22. 18+0.05
20.54+0.08
17.89+0.05
14.4+0.2

(14.4+0. 1)

43.30+0.06
37.4+0.2
32.0+0. 1

25.5+0.2
16.5+0.3

(16.6+0.3)

44.50+0.04
39.3+0. 1

34.4+0. 1

28.3+0.2
20.5+0.2

(20.4+0.2)

12.58+0.07
11.7+0. 1

11.2+0. 1

9.8+0.2
7.5+0.4

(7.7+0.2)

13.78+0.04
13.61+0.08
13.6+0. 1

12.7+0. 1

11.4+0.3
(11.5+0. 1)

12.615+0.008
12.075+0.009
11.58+0.01
10.81+0.03
9.62+0.03

(9.63+0.02)
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TABLE III. Dependence of certain thermodynamic and elastic functions for NaCl on crystal size
and treatment of the Coulomb forces. T=800 K, aL=5.05. The uncertainty represents the standard
error of the mean. L =6a corresponds to 216 atoms and L =4a corresponds to 64 atoms.

Property

F. (10 J/mol)

P (bars)

C„(J/mol K)

C~ (J/mol K)

y
P(10 'K ')

u, (10 ' cm')
Na

Bz (10' dyn/cm )

Bs
T

~Sll
T

S
C12

&44

—735.87 + 0.05

9 + 58

49.1 2 0.8
58.4 1.2

1.46 + 0.02

165 + 0.5

5.86 + 0.03

5.84 k 0.03

15.0 k 0.1

17.89 + 0.05

25.5 X 0.2
28.3 + 0.2
9.8 + 0.2

12.7 + 0.1

10.81 + 0.03

L =6a, a =2.8870 A
r, =L/2, 1, =16

L =4a, a =2.8859 A
r, =L!2, 1, =16

—736.03 + 0.08
—31 + 61

482 +
57.3 E 2.0

1.46 + 0.03

16.2 + 0.9

5.13 + 0.04

5.09 + 0.03

150 + 02
17.8 + 0.1

24.9 + 0.3
27.7 + 0.3
10.1 + 0.2
12.9 + 0.1

10.89 k 0.03

L =4a, a =2.8859 A
r, =3L/4, 1, =49

—735.96 + 0.08

7 + 98

49.6 + 0.5
60.0 k 0.7

1.51 + 0.02

17.7 + 0.4

5.15 + 0.03

5.11 + 0.04

14.6 k 0.1

17.70 + 0.06
24.9 2 0.2
27.9 + 0.2
9.5 + 0.1

12.6 E 0.1

10.92 + 0.02

We note that our lowest-order anharmonic perturba-
tion theory lattice-dynamical results are satisfactory to
higher temperatures, half the melting temperature, than
is usual in other classes of solids. This is due to the for-
tuitous near cancellation between F4 and F33 our
benchmark results can now be used to ascertain if a
lattice-dynamical theory can be devised, either by includ-
ing higher-order anharmonic effects perturbatively or
self-consistently, that holds up to the melting point.
Indeed, it may be necessary to include short-range corre-

lations in a self-consistent lattice dynamics to give agree-
ment with the Monte Carlo results presented in Table
I-III.
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