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The effective Coulomb potential between inversion layer electrons in metal-oxide-semiconductor
field-effect transistor devices is computed, including the screening due to induced charges on the
metal plate of the gate capacitor. Significant deviations from the usual Coulomb energy appear
when the electron spacing is equal to or larger than the distance between the inversion layer and the
metal plate. The energy of a Wigner crystal in this model is calculated. The hexagonal lattice has a
lower energy than the square lattice. The upper bound of the free energy associated with the

screened potential in a magnetic field is estimated.

I. INTRODUCTION

Silicon metal-oxide-semiconductor field-effect devices'
(MOSFETs) and GaAs-Ga, Al,_, As heterojunctions’ are
important devices in fundamental research and technolo-
gy. Since the discovery of the quantum Hall effect on
these devices,>* their importance in fundamental
research has been greatly enhanced.

In the theoretical research on the two-dimensional
electron system, the jellium model has been conventional-
ly employed, which has electrons moving in a positive
neutralizing uniform background.® As noticed by Lenard
and Dyson® and Lieb and Narnhofer’ the jellium model
usually has some fundamental problems. For example,
classical jellium does not have thermodynamic stability;
it violates the convexity condition normally associated
with the second law of thermodynamics.

In reality, the two-dimensional electrons in the inver-
sion layer of a MOSFET device are a finite distance away
from the positive metal plate,‘ which makes the devices,
in some sense, similar to a microcapacitor. The two-
dimensional electron gas at GaAs-Ga, Al, _, As interface
is also separated from the positive charged donors by a
small distance.>® As it will be shown later, this finite dis-
tance separation makes a significant difference between
the jellium model and the real two-dimensional devices.
The present paper is devoted to study of the Coulomb en-
ergy and correlations of two-dimensional electrons in the
real physical devices. While the discussion will be mainly
about MOSFET devices, it is noted that the results may
also be true for GaAs-Ga, Al,_, As heterojunctions. In
previous studies, similar models were employed to con-
sider the effect on mobility® and discuss electrons on films
of liquid helium.'°

In typical MOSFET devices, the electron density n is
of order 2 10'' cm~2 and the distance between the in-
version layer and the gate metal plate L is of the order of
100 A. In GaAs-Ga, Al,_, As heterojunctions n is about
102 cm~? and L is about several hundred angstroms.
From the above data, the mean spacing between electrons
is also of the order of 100 A. We introduce a dimension-
less quantity
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a=1/LVn , (1.1)

which is the ratio of the mean spacing between electrons
and the distance between two capacitor plates. In classi-
cal capacitors, a is vanishingly small; then the Coulomb
energy is usually written as

Uy=(Ne)?/2C, , (1.2)
where C, is the geometrical capacitance
C,=€A/4rL . (1.3)

A is the area of the plates and € is the dielectric constant.
Thus, in the simple capacitor view, the Coulomb energy
per unit area is given by

Uy/ A =(2me?/e)Ln? , (1.4)

where n =N/ A. In MOSFET devices, @ may be of the
order of unity or even larger. Then many electron corre-
lations must appear in the Coulomb energy.

In what follows, it will be argued that the effective elec-
trostatic potential between two electrons with distance R
on the inversion layer has the form

v(R)=(e%/eR)X(R /L) , (1.5)

where X(x) is a screening function due to induced charges
on the metal plate of the gate capacitor. In the model to
be discussed X(x) is a non-negative function obeying the
sum rule

S xodx =2 (1.6)

Thus, if g(r) denotes the radial distribution of electrons
in the inversion layer as seen by a given electron, then the
usual expression for the mean (two-body) potential energy
of an interacting system in two dimensions

— 2
U/A=mn fo drro(rig(r) . (1.7)
A useful form of Eq. (1.7) follows from Eq. (1.5),
U/ A =(me?/en’L [ “dx X(x)g (xL) , (1.8)
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i.e., the simple capacitor Coulomb energy Eq. (1.4) is a
consequence of the sum rule of Eq. (1.6), if the radial dis-
tribution in Eq. (1.8) is approximated by g(xL)
=g(x/aV'n )=1. This approximation is adequate only
if a is vanishingly small. However, this condition does
not hold true for most MOSFET devices. Thus, many-
electron correlation must appear in the Coulomb energy.
In Sec. II, the electrostatic Green’s furniction will be dis-
cussed, and the screening function X(R /L) will be de-
rived. In Sec. III, the static ground-state energy of a
two-dimensional Wigner crystal has been calculated for
square lattice and hexagonal lattice. At a constant elec-
tron density, the hexagonal lattice has the lower energy.
In Sec. IV, estimation of the free energy of the model in
the magnetic field will be discussed. In the concluding
Sec. V, the adequacy of using purely electrostatic poten-
tials will be put at issue. The point is that electronic
two-body interactions arise from one-photon exchange.
The importance of fully quantum electrodynamic photon
propagator (with the metal renormalization'!) will be
stressed.

II. ELECTROSTATICS

Let the metal plate of the gate capacitor be the plane
z =0 so that the plane of the inversion layer is at z =L.
The potential at the metal plate is V,,, a positive constant.
Between these two planes, the electrostatic potential

d(x,y,2)+Vo=¢(R,2)+ ¥V, 2.1
obeys the Laplace equation
Ap=[Ag+(3/02)*]6=0, 2.2)

where the two-dimensional vector R=(x,y). From Eq.
(2.1) at the metal plate z =0,

¢(R,0)=0, (2.3)

The effective charge per unit area o(R) at the inversion
layer will be defined by the boundary condition

69‘?’(—1‘;—:9 —470(R) . (2.4)

The gate capacitor electrostatic problem consists of the
computation of the Green’s function

¢(R,L)=fG(R—R')a(R')d2R’ . (2.5)
Solving Eq. (2.2) via the Fourier decomposition
d’k KR
$(R,2)= [ o e k (2.6)
yields, forO<z <L,
[(3/82)*— k214 (2)=0, 2.7)

while the boundary condition Egs. (2.3) and (2.4) read
¢k(0)=0 N (2.8a)
edy(L)=47 [ d’R e " Ro(R) . (2.8b)

The solution to Egs. (2.7) and (2.8) is
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& (z)=(4m /ek)[sinh(kz)/ cosh(kL)]o , (2.9)

where
oy=[d*R e *Rg(R) . (2.10)

Equations (2.5), (2.6), (2.9), and (2.10) yield the required
Green’s function

tanh(kL)
k

A
€

G(R)= e®R (211

d*k
f (2,”,)2

Performing the angular integration in Eq. (2.11) yields

G(R)= (2.12)

2
€

J“ak Jo(kR)tanh(kL) ,

where J,(n) is the zero-order Bessel function. Writing
Eq. (2.12) as a “screened” Coulomb Green’s function

G(R)=(1/eR)X(R/L) (2.13)

yields the required screening function introduced in Sec.
I,i.e.,

x(x)zzfo“’Jo(n)tanh(n/x)dn

d (=1)"x

=2 .
i (4n2+x2)]/2

(2.14)
With the Possion summation technique, Eq. (2.14) can be
transformed into
X(x)=4x 3 Ky(3m(2l —1)x), (2.15)
I=1
where K(x) is the modified Bessel function. Note that
the sum rule Eq. (1.6) follows from Egs. (2.14) and (2.15).

Equation (2.15) is extremely convenient in numerical cal-
culations since it converges very fast. In Fig. 1, the
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FIG. 1. The screening function X(x), where x is the ratio of
the distance between two electrons to the distance between the
inversion layer and the metal plate.
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screening function X(x) is plotted. The effect of the in-
duced charge density on the metal plate increases the
short-ranged Coulomb repulsion between electrons in the
inversion layer and decreases the long-ranged interaction.
For example, when x =R /L is close to 1, X(x) is reduced
to about 0.4 of X(0). The length scale of the long-ranged
screening is determined by the spacing L.

III. WIGNER LATTICE WITH SCREENING
COULOMB INTERACTION

Now we consider the crystal state of our model. From
Egs. (2.13) and (2.14), the Coulomb energy with the
screening interaction is given by

Ne?

Ucz—'

e = X(R;/L)/R;,

j (£0)

(3.1

where R;=j,a+j,b, j, and j, are integers, a and b are
primitive translation vectors of the lattice. In the square
lattice, a=aX, b=a¥, and in the hexagonal lattice, a=aX
and b=a[1X+(V'3/2)§], where % and § are the unit vec-
tors along the x direction and y direction, respectively,
and a is the distance between the two nearest electrons in
the lattice, given by

1/V'n for a square lattice
172 (3.2)

for a hexagonal lattice .

V3n
With RJ =ar;, Eq. (3.1) reads

Ne?

> X(rya/L)/(r;a/L),
Jj#0

where r;=(ji+;3)'/? in the square lattice, and
ri=(j1+j1j,+Jj3)"% in the hexagonal lattice.

With Eq. (2.15), the static energies of both the square
lattice and the hexagonal lattice have been calculated and
are plotted in Fig. 2 as a function of a=1/(LV'n ), the
ratio of the electron spacing to the spacing between two
plates. The energy of the classical capacitor, U,
=2mNe’nL /e, is taken as the energy unit in Fig. 2. It is
clear from the figure that in the limit of a—0, U tends
to the classical energy U,. But as a increases, the energy
reduces quickly. For example, as a=1, i.e., the electron
spacing is comparable with the spacing between two
plates, U is only about 0.4U,.

In Fig. 3, the Coulomb energy is plotted against
A/NL?. The energy unit in Fig. 3 is Ne?/eL. It is clear
from the figure that the pressure is positive,

AU,
a4

) (3.4)
NL

and the compressibility is also positive
*U,
342

ap
on

AZ
N

>0. (3.5)
N,L

N,L

Therefore, the convexity condition of the model is
satisfied.
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FIG. 2. The Coulomb energy U. of the Wigner crystal vs
a=1/LV'n. The label “S” means the square lattice and the la-
bel “H” means the hexagonal lattice. U,=27Ne?!"/¢ is the en-
ergy of the classical capacitor. Here n is the electron density, L
is the distance between the inversion layer and the metal plate, €
is the dielectric constant, and N is the number of electrons.

From Figs. 2 and 3, at the same electron density, the
hexagonal lattice always has a lower energy than the
square lattice. This result was also found in the calcula-
tion of Wigner crystal for two-dimensional jellium.'?

It is noted that if the electrons were uncorrelated and
the charges were spread uniformly in the inversion layer,
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FIG. 3. The Coulomb energy U of the Wigner crystal vs
A/NL?=1/L’n. The label “S” means the square lattice. The
label “H” means the hexagonal lattice. The energy unit is
Ne?/eL. Here N is the number of electrons, A is the area,
n=N/A, and L is the distance between the inversion layer and
the metal plate.
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the Coulomb energy would equal to the classical energy
U,. Our above results show that the Coulomb energy of
the capacitor with uniform charge density is higher than
the Coulomb energy of a correlated Wigner lattice.

1IV. ESTIMATION OF THE FREE ENERGY
IN A MAGNETIC FIELD

The effect of a magnetic field on the model is a topic
presently under investigation. In this section, we will
only estimate the upper bound for the free energy of the
system in the presence of magnetic field. The Hamiltoni-
an in this case is given by

N
H=H,+(e*/e) 3 (

(1/rpX(r; /L), 4.1)
I<i<j
where
1 N
0 T E (4.2)
m;=—i#fid/dr; —(e/c) A(r;) . (4.3)

Since the potential energy is bounded from below by
the crystal energy, the canonical partition function is
bounded from above,

U
EQO ,

Q(N,B,T)=Tr(e BH) ce " 4.4)

where B=1/k,T, Qo=Tr(e'BH°) is the canonical parti-
tion function of a two-dimensional free-electron gas in a
magnetic field, and U, is the potential energy of hexago-
nal Wigner lattice in Eq. (3.3). The grand canonical par-
tition function is hence also bounded from above,

©

=S e PQN,T,B)<e %11, , .5)
N

=0

where IIy= 3 y_oe “PY*Qy(N, T,B) is the grand canoni-
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cal partition function of the two-dimensional free elec-
trons in the magnetic field. Since Il; is convergent, Il is
also convergent. Then the grand canonical pressure ex-
ists and is estimated

P=kyTIn(I1)/A <kzTIn(llg)/A —U,/A . (4.6)

The convexity condition holds true. The jellium model
under a strong magnetic field, on the other hand, violates
the convexity condition.!?

1IV. DISCUSSION

For nonrelativistic two-dimensional interacting elec-
trons in the inversion layers, we have proposed a two-
electron potential

o(R)=2% [ Jy(n) tanh(nL /R)dn (5.1)
€R Jo 7° ’
which is more realistic and physical than the jellium
model.

The effective charge density per unit area is defined (in
the Coulomb Green’s-function problem) via the normal
component of the electric field, i.e., Eq. (2.4). An open
problem concerns the tangential components of the elec-
tric field. In particular this requires consideration of
transverse electromagnetic fields. Electrostatics is not
the complete description of effective potentials. If the
effective potential between electrons is computed, using
quantum electrodynamic one-photon exchange, then the
Green’s-function calculation must be extended to include
the full photon propagator D,,,(x,y) via the action'’

W———fd“xfd y JHx)D,, (x,p)(p) . (5.2)
The present paper also has neglected the thickness of in-
version layers which will certainly produce a correction
to the above results for “two-dimensional” inversion lay-
ers. The effects of transverse electromagnetic fields on
long-range screening and the effect of finite thickness of
inversion layers are presently under consideration.
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