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A scheme for approximating the embedding energy hE of atoms in inhomogeneous host systems
is proposed. A perturbation expansion for the correction to the uniform effective-medium approxi-
mation for EE is developed, and the lowest-order correction is shown to be both a good approxima-
tion and efficiently calculable within a density-functional theory. Numerical tests of the method us-

ing the Thomas-Fermi-von Weiszacker kinetic energy functional are presented. These tests in-

volve the embedding of H at a vacancy in jellium, at tetrahedral and octahedral sites in Li and in K
through Cu, and along the octahedral to tetrahedral path in Cu. The calculated results for H in Li
and Cu are in good agreement with corresponding results from cluster calculations.

I. INTRODUCTION

The embedding energy b,E of an impurity atom in a
host solid is defined as the total energy of the combined
system less the energies of the isolated host and impurity
atom. An approximate but eQcient method of calculat-
ing hE for an impurity embedded in an arbitrary host
system would be very useful. For example; a computer
simulation of the diffusion of an interstitial impurity in a
host metal repeatedly requires the impurity energy,
which gives the host-impurity forces, as a function of en-
vironment within the host. This same quantity is needed
to investigate lattice relaxation about the impurity, '

for studies of impurity-defect interactions, ' and for
the calculation of quantum states of impurities in
SOlidS 14, 17, 18

There are two general approaches to the calculation of
hE. One is the cluster calculation, in which the host plus
the impurity is represented by a small cluster of atoms,
and the total energy of the cluster is calculated with and
without the impurity. Examples of this approach for H
in metallic hosts are the calculations of Shillady et al. '

for Li9H and Li»H clusters, of Cremaschi and Whitten'
for a Ti43H cluster, and of Guo and Ellis' for Cu&4H,

Cu&3H, and Cu&3NiH. This type of calculation is, howev-

er, so computer-time consuming that it is not very practi-
cal, at least at present, for investigation lattice relaxation
around the impurity, and totally impractical for more
complex simulation studies of atom motions.

In the second approach, an effective medium, in which
the embedding energy bE of the impurity is known, is
constructed in a way which is intended to satisfactorily
mimic the local region within the host where the impuri-

ty is to be embedded. Then, hE for the impurity in the
real host is that for the impurity in the effective medium,
bE, plus correction terms which are taken to be small.
The most popular choice of effective medium is uniform
jellium of a suitable density n. Several calculations exist
for the embedding energy b,E(n ) of H in uniform jellium
both via Kohn-Sham (KS) calculations ' and by al-
ternative many-body methods. These ideas based on

the electron density also form the basis of an empirical
scheme for constructing interatomic energies. Daw and
Baskes' introduced an ansatz for the total energy, with
several parameters fitted to bulk properties. In addition
to a repulsive pairwise interaction the ansatz contains a
term accounting for the energy of the atom in the host
material in terms of the local host electron density. The
scheme has met with considered success in treating defect
and other properties of metallic systems, but a first-
principles understanding of the scheme is awaited.

When the effective medium approximation EE =hE is
used with uniform jellium as the effective medium, the
approximation has been called the uniform density ap-
proximation (UDA). A number of attempts have been
made to develop corrections to the UDA which would
account for the inhomogeneous nature of real host envi-
ronments. Popovic and Stott formulated corrections to
bE which were first order in the metal pseudopotential.
Norskov and Lang used a sampled host density plus a
first-order electrostatic correction to calculate the chem-
isorption energy of H near a jellium surface. Stott and
Zaremba also suggested a sampled host density, and in
addition developed a gradient expansion in the host elec-
tron density. They found good agreement with exact
KS calculations of the binding energies of H and He to
jellium vacancies.

These prescriptions for the correction terms, designed
for slowly varying or nearly uniform host densities, were
not successful for H in the interior of real host met-
als. ' In these more inhomogegeous hosts, the electro-
static potentials are so large and rapidly varying that
these approximation schemes fail. Because of this, two
other methods of evaluating corrections to hE have been
proposed. Norskov's formulation has been successful in
a wide variety of applications io, &8, 29, 3o although its
theoretical basis remains to some extent ambiguous.
Three of the present authors proposed a scheme in
which the rearrangement energy EEL defined by

bE =bEtt +Z[@—P (R)],
where Z is the charge on the impurity nucleus, p is the
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host chemical potential, and P (R) the host electrostatic
potential ' at the impurity position R, is regarded as the
fundamental quantity of interest. This scheme, with hE&
approximated by its UDA value, gives good results for
the embedding energy of H in a number of transition met-
als. "

The rearrangement energy is the focus on the present
work as well. We investigate the extent to which formu-
lating corrections to the UDA value of the rearrange-
ment energy, EEn, is a more reliable procedure than the
formulation of corrections to the UDA embedding ener-
gy. One obvious advantage is that other calculational
techniques well suited to pure host systems (e.g., band
structure) can be used to obtain accurate values for the
host property p, —{(}(R), while perhaps more approxi-
mate treatments are suitable for AEz.

In this work, a perturbation expansion for the correc-
tion to ATE+ is developed. The expansion is in terms of
the small change in external potential needed to alter the
screening electron density An around the impurity em-
bedded in the real host to hn, the jellium screening densi-
ty. Using the variational principle of Hohenberg and
Kohn, we then show that the lowest-order perturbation
theory correction can be expressed as a variational bound
involving hn in place of hn. This procedure is useful in
practical calculations, where b,n is known while bn is
(often) not. Numerical tests are presented which demon-
strate that the lowest-order correction is a good approxi-
mation to the full correction.

In order to test this approach, numerical calculations
have been performed for H in a variety of hosts using the
Thomas —Fermi-von Weiszacker kinetic energy function-
al and the local-density approximation for exchange and
correlation. Results are presented for H in a jellium va-
cancy corresponding to Al, the differences in EEL and
bE between the tetrahedral (T) and octahedral (0) sites
in Li and in K through Cu, and along the
octahedral~tetrahedral jump path in Cu. The lowest-
order perturbation correction to bEn agrees well with
the exact results in these cases. The calculated values of
EEa o and hE (tetrahedral minus octahedral
values) for H in Li and Cu are also compared with corre-
sponding results from cluster calculations and are in good
agreement with them. A comparison of the model results
for ATE& with deduced experimental values for H in K
through Cu is also made.

II. DENSITY-FUNCTIONAL THEORY
OF THE EMBEDDING ENERGY

Our work is in the context of density-functional theory,
and so we begin by reviewing the expression of the
embedding and rearrangement energies within this for-
malism. We consider only systems consisting of electrons
in external potentials u,„,(r ) generated by positive charge
distributions n+ (r) which satisfy Poisson s equation

V v,„,(r)=4mn+(r) .

The electronic energy functional for such a system can be
written as

E„[n]=G[n]+,' —fd r n(r}u,~(r)+ fd r n {r}v,„,(r),

where

6[n]=T, [n]+E„,[n] (4)

is the sum of the independent particle kinetic (T, ) and
exchange-correlation (E„,) energy functionals, and

v„(r, )= d r2n(r 2)/r, 2
3

n (r) =n (r)+bn (r), (7)

where hn (r) is the screening density around the impuri-
ty. The embedding energy of the impurity in the host is

AE=E„[n) Eo [n —]—E, —f d r n+(r}hu, „,(r)
ext

including, as the last term, the change in self-interaction
energy of the positive charge distribution. The rear-
rangement energy is related to b,E by (1), with

The three contributions to b E in (1) may be pictured
physically as corresponding to the three step process in (i)
adding the impurity positive charge to the frozen host
[—ZP (R)], {ii) adding the Z electrons at the chemical
potential (+Zp), and (iii) then allowing the electrons to
rearrange to form the minimum energy screening cloud
(dLE~ ).

III. CORRECTIONS TO h,xg FOR
INHOMOGKNEOUS HOSTS

The decomposition (1) of hE into EER plus the proper-
ty p —pv of the undisturbed host permits the use of in-
dependent sources for the two quantities. At least for
perfectly periodic solids, p —P is now accurately known
from band-structure calculations, and, if p —P is known,

is the electrostatic potential due to the electrons. The
Hohenberg-Kohn variational principle states that
E, [n] is minimized by the ground-state electron densi-

ext

ty.
The specific systems considered here are characterized

by a host external potential u,„,(r) and the corresponding
positive charge density n+ (r) and host ground-state elec-
tron density n (r) (i.e., host quantities have the super-
script 0}, and by the impurity external potential b v,„,(r)
with corresponding positive charge density b,n+(r) The.
free-atom density for the impurity is denoted n, (r), and
the free-atom energy is E, . All systems are to be charge
neutral.

The combined system of host pius impurity thus has an
external potential

u,„,(r) =u,„,(r)+hv, „,(r)

and electron density
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finding suitable approximations to hE& may be an easier
task than finding suitable approximations to hE. Some
evidence that this is so is contained in Ref. 28, although
we postpone summarizing that evidence until Sec. IV.
The approximatiog used in Ref. 28 to evaluate the
embedding of H at position R within a transition-metal
host was the UDA, ATE+ =be(n (R)), where b,Ea(n )

is the rearrangement energy of H in a uniform host of
density n. In this section we formulate the correction

5b.E„=DER bEa— (10)

to this approximation for nonuniform hosts. The same
leading-order correction can be expressed either through
perturbation theory or variationally. The perturbation
theory is physically more transparent, while the varia-
tional expression is much easier to evaluate in practice.

A. Perturbation theory correction to

ATE&

The rearrangement energy can be concisely written as

b,E„=f dAfd r. b, n (r) b,v,"„,(r), (ll)
0

which involves an inteIIration of a coupling constant A, .
In this expression, hv, „, is an external potential which
vanishes for A, =O and increases with increasing A, to be-
come the full impurity external potential at A, =l, and
hn is the corresponding ground-state screening density.
It is useful to consider three different systems in which an
impurity, with its external potential varying in this way
with a coupling constant 0 & A, & 1, is to be embedded in a
host. These systems are (Fig. 1): (i) The real system, for
which we write b,Ez, n =n + b,n, u,„,=v,„,+bu, „„
etc. (ii) The reference system, in which the corresponding
quantities hE&, n =n +En ", u,"„,=u,„,+bV,„„etc.,

are denoted by a bar above. This system is chosen so that
n =n (R) and b u,„,=b u,„,. (iii) An intermediate sys-
tem, in which the corresponding quantities EEL,
8 =I +EN ", 8',„,=8',„,+58',"„„etc., are denoted by a
tilde above. This system is chosen so that u,„,=v,„, and
so 8 =n, but hn =En. Thus, real host properties are
used along with the jellium screening density to construct
the intermediate system. Note that 58',„, is not the po-
tential due to a point nucleus. In particular, the
difference

ext =~8 ext ~uext (12)

is the potential required to support the artificial inter-
mediate system.

The intermediate system is introduced because it is be-
lieved that the screening density in the real system
looks very much like that in a suitably chosen reference
(see, e.g., Fig. 2). When this is so, w,„, will be a small
perturbation. By construction, and using (11),

BED bE„+f——dA, fd r b, n (r) w,"„,(r), (13)
0

which can be interpreted as the change on going from the
reference system to the intermediate system. To find
5bEa, however, we still need the change on going from
the intermediate system to the real system.

This latter change requires switching off the additional
potential m,'„, which was imposed to hold the screening
cloud at its jellium shape in the presence of the true host
potential. We now cancel w,'„, by switching on the fur-
ther potential —A, 'w,'„,. This, again from (11),yields

bEz bE„—f d——A,
' f d r bit '"'(r)w,'„,(r) (14)

0

since the rearrangement energy steps are additive. The
symbol 6$ ' denotes the screening cloud along the path
from the intermediate system to the real system, where A,

was set to 1 (the intermediate system) and then A,
' in-

creased from zero. This screening cloud is, however, not
easily determined. Nevertheless, if we write

li
I i

yah0— Ir
JELLlUM

then the last term of

bE& ——bE& —fd r bn '(r)w,'„,(r)

(15)

j
igI y

fl = fl

INTE R ME 0 I ATE

—f dA. 'f d r 5b, n ' '(r)w,'„,(r), (16)

which we shall call 5b,Ea ', is second (and higher) order
in the assumed small perturbation m, „„since 5hn ' is
already first order. Thus, neglecting the last term 66Ez '

of (16) and using (13),

n -W
REAL

FIG. 1. Schematic representation of the electron densities of
the three systems involved in the perturbation theory correction
to EEg.

5bEz =5bE&"———f dA, f d r w,„,(r) (17)

to lowest order in m, „,.
In order to evaluate (17), w, „, must be found. This can

be done by inverting the Euler equation for the inter-
mediate system. Minimization of E[n] with the total
number of electrons fixed, yields the Euler equation
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5 (E —pX}=0 .
5n(r)

Explicitly using the expression (3) for E [n] yields

pT(r)+ p„,(r)+u„(r)+u, „,(r) —p =0,

(18)

(19)

AEz gives a correction 65E& precisely equal to the first-
order correction 5b,Ett" that was obtained in (17}. By in-
verting the Euler equation (19) for the host, the difference
between the chemical and electrostatic potentials in (24)
can be eliminated with the result

with 56 n55E„"'=AE[bn,n ] Z — bE—tt .
5n (R)

(25}

and

pT(r) =
5n(r)

5E„,
p„,(r) =

(20)

(21)

If the kinetic and exchange-correlation energy function-
als, and the density, are known, pT and p„, can be evalu-
ated. The density is known for the intermediate system
with the impurity present and the Euler equation yields

~Uext I I T I xc Uel ~Uel Uext ' (22)

Since p, U, ~, and U,„t are the same as in the real host sys-
tem, while Au,

~
is the same as in the reference, m, „t can

be found.
This perturbation theory derivation of the correction

(17}makes the criterion for its validity apparent. It is a
good approximation when the reference screening cloud
An is similar to that in the real host metal bn . Some
numerical tests are presented in Sec. V. To evaluate (17),
however, it is necessary to find m, „t and hn for a num-
ber of values of A.. This can be circumvented by a varia-
tional method which we now describe.

B. Variational calculation of 56E+"

Equation (8) defines the embedding energy b,E. More
generally, we can invoke the Hohenberg-Kohn variation-
al principle to define an embedding energy functional as
follows. Let n be the ground-state density of the host, as
before. Let, however, n =n +b,n be any density which
keeps the host plus impurity system charge neutral.
Then

EE[hn, n ]=E„[n +An] Eo [n ]—E,—

d rn+ rhU, „tr (23)

can be regarded as a functional of An, which we call
the embedding energy functional. Minimization of
bE[b,n, n ] with respect to variations of the screening
density An gives the embedding energy AE. Further-
more, substitution of any An in the embedding energy
functional gives a variational upper bound to AE, and
hence, through (1) if p —P (R) is known, a corresponding
bound to the rearrangement energy. If the reference
screening density hn is close to the true screening density
hn, this suggests the variational estimate

hER"= b E [hn, n ] Z[p, P( R)]=b E—~ +56—Ett' ' .

(24)

As shown in the Appendix, this variational estimate of

Thus, if the host density n, jellium screening density An,
and kinetic-exchange-correlation functional G are known,
the lowest-order correction 55E+" to the (known) jellium
rearrangement energy can be evaluated. This expression
for 55E&" involves neither a coupling constant integra-
tion nor the explicit evaluation of the intermediate sys-
tern perturbing potential w,„„and is the one which we
use in the calculations to follow.

IV. A MODEL QUANTUM MECHANICS
AND A MODEL SOLID

There is some evidence supporting the view that
finding suitable corrections to ATE+ for inhomogeneous
hosts may be an easier task than finding the correspond-
ing corrections to AE. An investigation of the embed-
ding energy of H in metallic hosts using the UDA rear-
rangement energy —in which DER is approximated by its
value b,Ez for jellium at the local density n (R)—
showed that one part of the heat of solution of H in tran-
sition metals was attributable to the host property
p, —P (R }. A second part of the systematic trend was
reAected in the jellium rearrangement energy. The pro-
cedure produced good, even quantitative, agreement to
the left of the 3d and 4d transition-metal rows, but the
jellium approximation seemed to be —1 eV too low to the
right of the rows, e.g., in Co, Ni, and Cu. These
discrepancies were attributed to the corrections required
to the UDA rearrangement energies because of the large
inhomogeneities in the electron density in these hosts.
We are now in a position to examine this hypothesis. We
do so by applying our formal expressions for the correc-
tion 5b,E& within an approximate and fully local-
density-functional theory in which G[n] is explicitly
known. Our aim is to develop a means of estimating the
required 10%%uo correction to the UDA values that seems
to be required for these metals.

Our numerical calculations serve a second purpose as
well. It is to test how well our lowest-order correction
6AE„'", which is easy to calculate, approximates the full
correction 56E& in reasonably realistic metallic environ-
ment. To test this, we must be able to carry out the full
calculation as well as evaluating the lowest-order correc-
tion.

To numerically test our correction to the jellium rear-
rangernent energy we introduce both a model quantum
mechanics and a model solid. This allows us to calculate
the rearrangement energy correction for H exactly and to
compare our lowest-order approximation with this result.
We believe that our model solid provides a reasonably
realistic representation of a transition metal host, and
that the model quantum mechanics is sufficiently accu-
rate to serve as a test of the perturbation expansion.
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The model quantum mechanics that we use is
Thomas-Fermi —Dirac —von Weizsacker theory with
correlation added (TFDWC) as described by Plumer and
Stott. This is a local-density-functional theory in which
G[n] is explicitly known. The kinetic energy functional
is

T [n] = To[n]+ T~[n],
where

To[n]= —,fd r n (r)[3rr n(r)]

is the Thomas-Fermi kinetic energy and

[g ( )]
8 n(r)

(26)

(27)

(28)

is the additional von Weizsacker term. The von
Weizsacker coefficient is chosen to be A, ~ ——0.56
throughout this work, for that is the value which satisfac-
torily reproduces the "hydrogen energy curve" (which
is the embedding energy of H in jellium as a function of
the jellium density). The exchange-correlation energy
functional used is that of Gunnarson and Lundqvist,
without spin polarization.

The model of the host used here is a "spherical solid"
model. The host-metal electron density has been con-
structed by superposing Hartree-Fock atomic densities
using the solid-state electronic configurations tabulated
by Norskov. This host density is then spherically aver-
aged about the site R at which the proton is to be placed.
This spherically averaged density is then used as n, and
in principle the host external potential v,„, required to
generate this density within the TFDWC model is ob-
tained by inverting the host TFDWC Euler equation. In
practice only the total host electrostatic potential (9) is
required, and is given by

P (r) p-5G[no]
5n (r)

(29)

+f d r b, v,„,(r)hn (r) E, . —(30)

Note that the second and third terms resemble a pertur-
bation expansion of the first in the quantity An /n which
is expected to be small away from the impurity nucleus
(see Fig. 2). The approximations used in this work are for
6[n] and n (r). The lowest-order perturbation theory
correction 56E& which we are testing, can be found
by replacing b, n by b, n in (30},and subtracting 6 E„ from
the result.

This is then used, with p=po, in the TFDWC Euler
equation for the host plus impurity to determine b, n,
whereas the jellium screening density, An, is given by set-
ting P (r)=0. The rearrangement energy is then deter-
mined by

bER[bn, n ]= G[n +An] —G[n ]

5G[n ]~ ( )
5n (r)

b n(r&)hn(r )2
+— d fid f2

12

V. NUMERICAL RESULTS

In order to test the variety of approximation schemes
developed in the previous sections, the results of numeri-
cal calculations using expression (30) for EER are
presented here and compared with other theories and ex-
perimental results. The numerical procedure for solving
the TFDWC Euler equation for a given spherical host
density n (

~

r —R
~

) and hydrogen impurity, was the
same as used by Plumer and Stott except that here we
solved for the screening density hn or hn instead of the
full electron density n. Solutions for the jellium screening
density An required only about 10 sec of IBM 3081 CPU
time, while solutions for the real screening density hn
took up to 10 CPU minutes.

In some cases it will be more convenient to compare
values of the embedding energy instead of values of EEL.
For these cases, the most realistic value of P (R) —p will
be used, and this is generally not the TFDWC recon-
structed value. Thus, in this section our "calculated
embedding energy" hE refers to

[~ER ]TFDwc+Z [P (( (R)]other sollrce (31)

Since [b,ER ]TFDwC reproduces the hydrogen energy
curve of Kohn-Sham (KS) theory, this in effect means
that our TFDWC quantum mechanics plus our
spherical-solid model is only used for the correction
54ER when hE is calculated.

A. H in a vacancy in jellium

As a simple test system, we have studied H at the
center of a charge 3 vacancy in jellium of r, =2.07, which
corresponds to the mean conduction electron density of
Al metal. For comparison, full KS calculations were car-
ried out using the 6unnarson-Lundqvist exchange-
correlation potential (i.e., the same as in the TFDWC
calculations), and we shall regard these KS calculations
as the "exact" results. This system is spherically sym-
metric, so the spherical-solid model averaging described
in Sec. IV is not involved. Since for a uniform system the
TFDWC theory used gives a good description of the KS
hydrogen energy curve, the system of H in a jellium va-
cancy provides two tests: (i) A full TFDWC calculation
investigates how well the TFDWC energy functional
reproduces the KS rearrangement and embedding ener-
gies in an inhomogeneous host. (ii) Comparison of the
full and lowest-order corrected TFDWC calculations of
the rearrangement energy indicates the accuracy of the
lowest-order correction 56E& ' (17) or (25} to the rear-
rangement energy.

It should be noted that the jellium vacancy is not a
very inhomogeneous host in comparison with real metals.
The electron density variation for the jellium vacancy is
about a factor of 5, with the density at the center being
0.0044 a.u. in comparison with the background density of
0.0269 a.u. This is an appreciably smaller variation, and
involves rather lower densities, than in, e.g. , a transition-
metal host.

The results of both the TFDWC and KS calculations
are summarized in Table I. The KS values of the host
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TABLE I. Rearrangement energy for H in a charge 3 vacan-

cy in jellium of r, =2.07. All energies are in eV. The proton is
located at R=0, the center of the vacancy. The quantities tabu-
lated are the rearrangement energies AE&, the corresponding
jellium values hE& at the local density n =0.0044 a.u. , the
lowest-order correction 56E&", the higher-order correction
5bE+ ', the difference between the local host electrostatic and
chemical potentials, and the embedding energy from (31).

EEg
AEg
gag(1)
~E„+S~E„")
SSE„(2)
P'(0) —p,

hE

TFDWC

2.00
0.80
1.32
2.12

—0.12
7.10

—1.94

KS

2.03
0.40

3.94
—1.91

density n (r) were used in the TFDWC calculation, and
the TFDWC value quoted for AE uses the KS value for
p —P (0) in (31). TFDWC reproduces the KS rearrange-
ment energy very well. The lowest-order approximation
bE+5bEs" reproduces DEIL to within -0. 1 eV. The
TFDWC and KS values for p —P (0) do not agree be-
cause of the difference in the true and TFDWC recon-
structed host external potential v,„,. For this system,
then, it appears that (i) our TFDWC model quantum
mechanics satisfactorily reproduces the rearrangement
energy (but not the host potential) and (ii) the lowest-
order estimate of EEL is good to about +0. 1 eV, which is
totally adequate for the approximate theories which it is
our aim to develop.

B. HinLi

The embedding energy differences of H between vari-
ous sites including the tetrahedral and octahedral sites
within nine-atom and eleven-atom Li clusters have been
calculated by Shillady et al. ' using a Hartree-Fock
molecular-orbital (HFMO) method. We shall compare
our TFDWC calculation with their results, although our
calculations are for a H atom in an infinite bcc Li lattice
of lattice constant 3.49 A. We found that all the density
and potential contributions from our superposed host-
metal atoms are sufficiently short-ranged that our
TFDWC results are independent of sample sizes beyond a
few neighbor shells, so in practice only the necessary cou-
ple of neighbor shells were used in constructing our
spherical-solid model of the host-metal density. It should
be noted, however, that the HFMO results are known
to be dependent on cluster size, at least for clusters of( 16 atoms.

Only the embedding energy differences were reported
by Shillady et al. ,

' and it would be necessary to know
the host electrostatic potential P to obtain the difference
in the rearrangement energies between two sites. (The
difference does not require p, although a value for p
would be required to find the rearrangement energy at a
site. ) Consequently, we compare only the embedding en-
ergies.

Our TFDWC spherical model results are compared

C. HinCu

Guo and Ellis' have reported a Hartree-Fock'-Slater
(HFS) (i.e., a local exchange-correlation potential) calcu-
lation of the differences in embedding energy of H be-
tween various sites within a 14-atom Cu cluster. They
also report the self-consistent host electrostatic potential
P, so that the diff'erences in rearrangement energy can be
obtained.

Table III gives the comparison of our TFDWC results
with those of Guo and Ellis. ' The host electrostatic po-
tential P (R) is again obtained by superposing the host-
metal atom electrostatic potentials. Again, the lowest-
order corrected value bE„+5Elt" gives a good estimate
of hER, although the discrepancy 5E„' ' is larger than in
the previous examples, perhaps because of the larger po-
tential and density variations in Cu. Although the
tetrahedral-octahedral embedding energy change com-
pares well with that of Guo and Ellis (using the superpo-
sition value for the diff'erence P —p, which is —1.2 eV),
both the rearrangement energy and electrostatic potential
differences show a discrepancy of —1 eV and differ in
sign. The reconstructed TFDWC host potential

TABLE II. Rearrangement energies for H at the tetrahedral
(T) and octahedral {0)sites in Li metal. The symbol T-0 indi-
cates the difference of the tetrahedral-site value from the
octahedral-site value, and R denotes the position of the proton.
The remaining notation is that of Table I.

Site

hE„
hER
u,E„"'
SE„+SaE,")
56E
P (R)—p
hE

'From Ref. 19.

0.71
0.45
0.34
0.79

—0.08
1.90

TFDWC
0
0.83
0.45
0.50
0.95

—0.12
1.56

T-0

—0.12

—0.16

0.34
—0.24

HFMO'
T-O

—0.24

with the HFMO results of Shillady et al. ' for the
tetrahedral and octahedral sites in Table II. Because of
the uncertainties above, and because of the differing
treatments of exchange and correlation in the two calcu-
lations, the comparison is not as direct as for the vacancy
in jellium of the preceding section. The comparison does,
however, test the spherical-solid aspect of our model as
well as the TFDWC aspect. The host electrostatic poten-
tial P (R) used to convert our TFDWC rearrangement
energies to embedding energies via (31) was obtained by
superposing the host-metal atom electrostatic potentials.
The embedding energy difference [using the superposition
value for the difference in P (R)—p which is 0.12 eV] is
in, perhaps, fortuitously good agreement between the two
calculations, but suggests that our model is a reasonable
one, at least for light-metal hosts. The comparison of
bEa+MEIt" for the two sites also indicates that the
lowest-order correction 56E~" is adequate.
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TABLE III. Rearrangement energies for H at the tetrahedral
and octahedral sites in Cu metal. The notation is that of Table
II.

Site

hE~

SSE„"'
EEL +55Eq"
SEE„"'
P (R)—p
hE

1.23
—0.32

1.90
1.58

—0.35
7.7

TFDWC
0
1 ~ 13

—0.13
1.49
1.36

—0.23
3.6

T-0

0.10
—0.19

0.41
0.22

—0.12
+41

1.3

HFS'
T-0

—0.7

—1.9
1.2

'Reference 16.

difference compares very poorly with the other two
theoretical values here.

Figure 2 shows the TFDWC exact and jellium quasi-
atom densities as well as the spherical-solid model host
density for Cu at the octahedral site. The difference be-
tween An and hn is seen to be small, suggesting that the
perturbation theory of Sec. III is appropriate. For r &2
a.u. , hn g&no so that the integrands of the first three
terms of expression (30) for AE„sum to a small contribu-
tion in this region of the host. Thus, the rearrangement
energy depends on only the properties of the host within
a local region. The cusp appearing in 4n, but not hn,

occurs at the H-Cu nearest-neighbor distance r =3.4 a.u.
Although the calculation of the change in screening of
the Cu nuclei requires considerable computational effort,
this detail contributes a negligible amount to EEL.
There are no Friedel oscillations at large r, a result
which is expected of a local kinetic energy functional.
Friedel oscillations also introduce computational
diSculties but contribute little to EE&.

Figure 3 compares the embedding energies and the
electrostatic potentials from the two calculations along a
line joining the octahedral and tetrahedral sites (with all
the curves constructed from six or seven points). There is
a marked difference in the barrier height along the path,
which is —1 eV higher in the HFS cluster calculation.
Comparison with the electrostatic potentials shows that
this larger barrier in the HFS calculation corresponds to
a change in sign of the rearrangement energy difference
which is not rejected in our TFDWC calculations. A
notable feature of these curves is the close agreement be-
tween the "exact" and perturbation approximation
TFDWC results.

Also shown in Fig. 3 are the results of Norskov's
effective medium theory of the H embedding energy.
The embedding energy variation along this path within
the Cu host is smaller than given by our TFDWC calcu-
lation, and in poorer agreement with the HFS cluster re-
sults. These comparisons with cluster calculations should
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FIG. 2. Electron densities for H in Cu at the octahedral site
showing the pure Cu density n (r) from the spherical-solid
model, the exact quasiatom density hn (r) and the UDA quasia-
tom density 6 n {r) corresponding to jellium at density n (0)
from the TFDWC ca1culation. Note the vertical scale change
between (a) and (b).

FIG. 3. The octahedral to tetrahedral jump path for H in Cu
with x indicating the fractional distance to the tetrahedral site.
(a) The pure Cu electrostatic potential relative to the octahedral
site from the cluster calculation of Ref. 16 (dotted curve) and
from the spherical-solid model (dashed curve). (b) The embed-
ding energy relative to the octahedral site from the exact
TFDWC calculation (solid curve), from the TFDWC calcula-
tion in the perturbation theory approximation (dashed curve),
from the cluster calculation (dotted curve), and from the results
of the Norskov theory (dash-dotted curve).
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be viewed with some caution, however, because of the
cluster size dependence reported by Rao et al.

D. Heat of solution of H in the metals K through Cu

K Ca Sc Ti V Cr Mn Fe
I I I I I I I

+~&~ TH EORY
h + &g

0 0
WQ ~ ~

~O
~ gw

Co Ni Cu
I I I

/

4J p0 EXPERlMENT ~Q g» ~ ~+

FIG. 4. The rearrangement energy including the TFDWC
correction. The best theoretical values are DE& +55E& {solid
circles with dashed line) using hE& from Ref. 28 and the exact
TFDWC 56E&. Also shown are hE&+56E&" {open circles)
and EEL {triangles). "Experimental" values {crosses with solid
line) are from Ref. 28.

We now attempt to compare our results with experi-
ment. The two are not directly comparable, for the H
heat of solution contains contributions from lattice relax-
ation which give an energy lowering of perhaps a few
tenths of an eV, and a zero-point energy increase of (0.1

eV. The other potentially relevant measured quantity is
the activation energy for diffusion, -0.5 eV, but this
need not correspond to the barrier height of e.g., Fig. 3(a)
because of the presence of thermal lattice vibrations in
addition to lattice relaxation and zero-point energy
effects. Consequently, we shall only compare our results
with the experimental heat of solution.

Figure 4 shows the calculated rearrangement energies
across the K to Cu row, and also the approximation
EEJt+5b,E+ ', which is within &0. 1 eV of b,E& for all
metals except Cu, where the discrepancy is 0.2 eV. Since
the rearrangement energy is primarily governed by the
near-neighbor arrangement, we have for simplicity re-
placed hcp or more complex structures (Mn) by fcc. The
sites chosen were the octahedral site in the fcc structure
and the tetrahedral site in the bcc structure. These were
found to be the lowest-energy sites within our TFDWC
theory.

For comparison, we also show "experimental" rear-
rangement energies in Fig. 4. These are taken from Ref.
31, where they were obtained as follows. The band-
structure calculations of Moruzzi et al. use the same
crystal structure as used here, and give the difference be-
tween their average interstitial electrostatic potential and
the chemical potential. This was used for P (R)—p, , and
the experimental heat of solution, plus the binding energy
per atom of the H2 molecule (2.25 eV} gives b,E. The
rearrangement energy was then obtained from Eq. (1).

The TFDWC spherical-solid correction 55E& to EEL
sho~s a slow monotonic increase from -0.5 eV to -1.0
eV across the row. This improves the agreement with ex-
periment for Co, Ni, and Cu, but destroys the earlier

good agreement for the preceding members of the row.
Although possibly a defect of the TFDWC spherical solid
model, there is no apparent reason for a sudden onset of
the correction at Co. Other possibilities are the muffin-
tin potentials of Moruzzi et al. do not provide sufficient
detail in the interstitial region, or that lattice relaxation
and zero-point energy effects are more significant than
the figures quoted above suggest.

As well as testing the Thomas —Fermi —von Weizsacker
kinetic energy, the kinetic energy functional formulated
in Ref. 34 (the TFDWyC model) was also used in ..ome
corresponding numerical tests. The values of EE+ using
this model differed from the TFDWC results up to 1 eV.
Although this represents a worsening of agreement with
the exact results for the case of H in the Al jellium vacan-
cy, the TFDWyC model produced values for M Ea from
0.2 to 0.5 eV lower than the TFDWC results for H in the
transition metals (Fig. 4). The agreement between this
model and the corresponding experimental results is to
within -0.2- -0.7 eV.

UI. DISCUSSION

Our calculations indicate that the lowest-order correc-
tion 56Ez ' is an excellent approximation to the full
correction 56Ea to the UDA rearrangement energy for
nonuniform hosts. Using the spherical-solid model host
densities which mimic the hydrogen sites in transition
and noble metals, 56Ea" is within —10% of 5b,Ea, cor-
responding to a discrepancy -0. 1 eV. Because of its
variational nature, 56ER is always more positive than
5b,ER. Our major conclusion is, then, that our lowest-
order correction 5b,Ez", given by (17) and equivalently
by (25), is a good approximation to the correction to the
UDA rearrangement energy for H in metallic hosts, i.e.,
EER+5bE„"' is a good approximation to b,Ea. Using
the variational expression (25), this correction is easily
calculable. This procedure does, however, require an en-
ergy functional, and the development of improved ap-
proximate kinetic energy functionals of the electron den-
sity would be useful.

The hypothesis that approximate corrections to the
effective medium theory are best formulated in terms of
the rearrangement energy, rather than the full embedding
energy, also is supported by the numerical results. Use of
the TFDWC rearrangement energy along with realistic
values of the host potential P (0)—p give embedding en-
ergy differences in reasonable agreement with the more
complex cluster calculations. In contrast, embedding en-
ergies constructed solely from TFDWC by using the
TFDWC value of P (0}—p as well are in very poor agree-
ment with the cluster results.

Furthermore, the calculated H embedding energies by
the procedure used here are in very satisfactory agree-
rnent with the results of other more accurate, but also
very much more complex and time consuming, theoreti-
cal calculations for H in the jellium vacancy and for the
differences between tetrahedral and octahedral sites in
the metaI clusters. However, the comparison of our re-
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suits for the absolute H embedding energies with the ex-
perimental data across the K—Cu row is not as good, al-
though the discrepancies, -0.5-1.2 eV, are small with
respect to the total rearrangement energy of H, which is
—1 Ry.

A possible explanation for the fact that the results for
the tetrahedral-octahedral energy differences are much
better than the absolute embedding energies for H in
transition metals [apart from the possibility that the
muffin-tin potential used for P (R) is inadequate] is that
the Thomas-Fermi-von Weizsacker kinetic energy func-
tional is unable to properly describe complex interactions
between the impurity atom and the host metal which
arise from shell structure and that these effects partially
cancel when differences between impurity sites are con-
sidered. It is also noteworthy that the energy of the H
atom using the TFDWC model, with A, u, =0.56, is quite
poor (E, = —11.2 eV) but that the error introduced by
this result cancels when energy differences between sites
are taken. The discrepancy between our results and those
from the corresponding cluster calculation for the H
embedding energy difference along the tetrahedral-
octahedral path in Cu, as shown in Fig. 3, may be due to
the nonspherical effects not accounted for in our calcula-
tion and the 6nite-cluster size effects in the calculation of
Ref. 16, which are expected to become increasingly im-
portant as the H is moved away from the relatively
symmetrical and open tetrahedral and octahedral sites.

In conclusion the perturbation theory correction to the
rearrangement energy of the effective medium approxi-
mation has been shown to be a useful procedure. Our re-
sults also suggest that although the TFDWC energy func-
tional may be inadequate for some purposes, the use of
this simple model to calculate H embedding energy
differences in metallic hosts within the perturbation

theory approximation provides reasonable and easily ob-
tainable results. The procedure presented in this work
may also be useful in the calculation of embedding ener-
gies of larger (Z & 1) impurity atoms.
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EE[bn, n ) bE[bn—, n ]=56Ett ' . (Al)

To show this, construct the embedding energy functional
for the intermediate system, and observe that

b,E[b,n, n )= bE[b,n, n )

+ f d r w,„,(r)[n (r)+An(r) n+(r)]—

(A2)

and

BE[An, n ] BE[An, n—]

=KEtt AEtt —f d—r w, „,(r)[n (r) —n+ (r)] .

(A3)

Substitution of (16) and (A2) in (A3) proves (A 1).

APPENDIX: PROOF OF THE EQUIVALENCE
OF THE PERTURBATIONAL AND VARIATIONAL

ESTIMATES OF 55E' "
To show that the quantity 5bE„"' appearing in (24) is

the same as (17), it is sufficient to show that
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