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The problem of describing quantum mechanically a region of interest in an otherwise extended
lattice is discussed for nonmetallic solids. Hartree-Fock effects were considered in the preceding
work, and in the present paper we consider the application of a many-body perturbation-theory
correlation correction. The application of this formalism to NaF crystals containing Cu is con-
sidered as an illustration of the method. These results tend to validate the total procedure including
the utility of correlation corrections for such problems.

I. INTRODUCTION

Lattice defects in crystalline materials, often in com-
binations that are difficult to resolve experimentally,
determine many technologically important properties.
Reliable computer simulation of such defects is therefore
of potential value, and can be expected to contribute to
fundamental understanding of the physical processes that
determine the structure and properties of these materials.
For point defects, an attractive approach is to use quan-
tum mechanics to describe the response of the region
near the defect to the defect and to embed this region in a
potential similar to that of a perfect lattice. How this is
accomplished is described in the preceding paper, as is
lattice response. Here we show how the Hartree-Fock
approach may be improved by using simple many-body-
perturbation theory (MBPT). The use of this method is
briefly illustrated for the case of NaF with a Cu impurity.
This case also demonstrates the usefulness of MBPT in
obtaining quantitatively useful results.

II. CORRELATION CORRECTIONS

In the preceding paper,' a prescription for obtaining
the Hartree-Fock solution for a defect structure in the
presence of a self-consistently relaxing lattice has been
given. The use of the Hartree-Fock approach mentioned
above for obtaining energy-band results has been seen
highly inaccurate for both alkali halides and also rare
gases since at least 1970.2 One needs to account for
correlation effects if quantitative accuracy is to be
achieved. It is known that correlation effects consist of
three principal parts:3 electron-electron dynamic correla-
tion, orbital relaxation, and electron-hole attraction
effects. The state-by-state self-consistent Hartree-Fock
method employed by us and described previously directly
incorporate the two lattice effects. Therefore one need
only incorporate the electron-electron dynamic correla-
tion effect. This effect is well known to be significant
even for tightly bound calculations, and can alter excita-
tion energies by several eV at times.*

Correlation methods acceptable for solid-state calcula-
tions of total energy are constrained to be size con-
sistent.” The statement that a correlation method must
be size consistent simply implies that if one were to con-
sider a homogeneous system containing a large number N
of similar building block units, the total energy of this
system would be directly and linearly proportional to N.
This property is also termed extensive. In a formal
many-body sense an extensive (size-consistent) approach
is one which obeys the link-cluster theorem.’

There are many approximation methods available to-
day which violate the concept of extensivity. A classic
example described in detail by Thouless® is the use of
Brillouin-Wigner perturbation theory to describe the
ground state of a homogeneous many-body system. To
the second order in Brillouin-Wigner theory the energy of
the ground state, E, is given as

ViO VOi

Eq=Wy+Vo+ X
i(£0)
Here, ¥,y is the matrix element of the perturbation and
W, is the eigenvalue of state i of the unperturbed Hamil-
tonian. The presence of the unknown energy, E,, in the
denominator is responsible for the violation of extensivity
in the use of Brillouin-Wigner perturbation theory. If
however, one approximates the E, in the denominator
with its zero-order value, W, one obtains

ViO VOi

Ey=Wy+Vy+ z TV-O——VV_ .
]

i(5£0)

(2.2)

This is recognized at once as the usual second-order
Rayleigh-Schrodinger perturbation result. Interestingly
enough, this result is extensive and development of per-
turbation methods along such lines, as we do later in this
section, is also extensive and often termed MBPT.

It has been shown by Davidson and Silver® that incom-
plete configuration-interaction (CI) calculations are also
not size consistent. In particular, Davidson and Silver
consider a system of N dilute helium atoms forming a
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gas. They consider a CI calculation in which all double
excitations of the ground state are considered. They ob-
tain the result that the Hartree-Fock part of the energy of
such a system is linearly proportional to N, and that the
correlation part of the energy is directly proportional to
N2, This latter result is clearly incorrect in that it im-
plies for a large system that the energy per atom is simply
the Hartree-Fock energy of the atom, which is clearly
wrong. Therefore in the interest of obtaining correct
total-energy expressions, which is the principal product
of the approach we employ, we are constrained to use one
of the several available extensive methods.

Instead, one may choose a method based on MBPT.>®
In the normal single-reference application that is ap-
propriate here, one divides the many-electron Hamiltoni-
an H into two parts, namely a zero-order Hamiltonian
H, whose eigenvalues and eigenfunctions are known, and
a perturbation V:

H=H,+V . (2.3)

Usually H, would be chosen to be the sum of one-
electron Fock operators,z’6 but that is not convenient
here. Rather, we pick H, to be the sum of the one-
electron localized-orbital (modified Fock) operators from
Eq. (2.15) from the preceding paper,
NA
Ho=S[F e )+V¥+VS—(pViparl, (2.4)
i=1
where p , is defined in Eq. (2.9) of the preceding paper.
Now from having solved the local-orbital equation, we

know the zero-order eigenvalue and eigenfunction of H,
Eq. (2.4),

H0¢] =E10¢I Py (2.5)
namely
NA
Ep= 3 7 , (2.6)
k=1

and P, is the Slater determinant constructed out of the
occupied single-particle orbitals | k) from the modified
Fock equation. We now estimate the corresponding ei-
genvalue and eigenfunction of the full Hamiltonian H:

HY,=E,¥, . 2.7)
Formally,
W, =[1—(Hy—E) "1—p,NE,—V—E)]"'®,,
2.8)

where p; is the projection operator onto the state ;. If
size consistency is maintained, this leads to the perturba-
tion series:

E;=Ep+(®,|V|®;)
+{®; | V(Hy—E;) '(1=p (=V) | D)+ -+ .
(2.9)

It follows that, to second order,
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E;=(Ep+Viy)+ S VyVylEp—ER™", (2.10)
J=I
where
VIJ=(¢I|V|¢J)' (2.11)

The energy E; can now be evaluated from Eq. (2.10) by
noting that since

V=(H—-H,), (2.12)
it therefore follows from Eq. (2.4) that
E10+V11=<¢I|H|¢1)=EI y (2.13)

where the energy E,, the expectation value of the whole
Hamiltonian H with respect to state ®;, has already been
evaluated, Eq. (3.3). Furthermore, from Eq. (2.12),

V=@, |H|®,), I+J (2.14)

again having used Eq. (2.5), and the fact that ®; and ®,
are orthogonal. The only nonzero matrix elements V,,
from Eq. (2.14), are those for which ®; differs from &,
by two—and only two—of its single-particle orbitals.
This is a result of Brillouin’s theorem, and the fact that H
contains only one- and two-particle operators. If @,
differs from ®; by having orbitals |i) and |j) in ®; re-

placed by |a) and |b) in ®,, then
V,;=(ij|g(1—P)|ab) , (2.15)

where g=2|r—r'| ~! and P is the pairwise interchange
operator. Furthermore, in this case

Ep—Ej=m+7j—m,—m, . (2.16)
We therefore obtain the final result:
_ (8iiab —8ijba )
E=E+3 s —Sub "8l @.17)
i<j a<h TitTj—Tg—p
(occ) (virt)

In Eq. (2.17) the double sum over i < j includes occupied
orbitals in ®; and that over a < b includes virtual (not oc-
cupied) orbitals for ®;, the inequalities being required to
avoid double counting of excited eigenstates ®; (J =1).

III. SAMPLE RESULT, NaF:Cu AND CONCLUSIONS

We would like to give a brief exposition of a sample re-
sult. For a crystal of NaF with a Cu impurity, this result
will indicate the level of accuracy or precision possible
for a simple defect system at both the Hartree-Fock level
and using MBPT. Furthermore, it will indicate the level
to which permitting lattice rearrangement affects such a
system. This is a preliminary discussion and a much full-
er exposition of this system is in preparation for publica-
tion.”

In this calculation, the cluster consisted of the central
Cu* ion and its surrounding six F~ ions. The remainder
of the NaF lattice received a shell-model treatment. The
shell-model parameters used for NaF were taken from
Cattow et al.® These potentials are first used to deter-
mine the NaF perfect-crystal lattice constant. This is
found to be 2.30 A, which is in reasonable agreement
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with an experimental value of 2.32 A.

The defect cluster contains a total of 88 electrons (44 of
each spin). To describe these electrons a total of 82 basis
functions of each spin were incorporated. In the basic
calculation, many experimental parameters were ob-
tained, but for the present purposes we concentrate on
three items: the relaxation of the lattice about the Cu*
ion, the crystal-field splitting of the Cu™ 3d orbital, and
the 3d '%-to-3d °4s excitation of the Cu* ion.

The ICECAP procedure computes the lattice positions
of ions inside and outside the cluster self-consistently in
the presence of the defect. In the case of NaF:Cu the
Cut ion is substitutional for a Na* ion. According to
available standard references, the size of the Cu™ ion ois
not well established, ranging from 0.53 to 0.97 A,
whereas that of Na* is well defined as 0.98 A. Therefore
we expect that the nearest-neighbor F~ ion will relax in-
ward toward Cu™, but by an uncertain amount. In this
calculation we find the inward relaxation to be by lo.l%, a
value more in accord with an ionic radius of 0.97 A rath-
er than one of 0.53 A. The more distant shells relax by
lesser amounts. This small relaxation may seem
insignificant (it is almost certainly too small to be mea-
sured), but in terms of energetics it is not. Due to the
ionic nature of the lattice, the potential at the Cu™*-ion
site changes by 0.41 eV due to this relaxation. This
charge will be seen as significant compared to the ulti-
mate precision of the calculation.

The second parameter is the crystal-field splitting of
the Cu 3d orbital in NaF. This splitting is due to the cu-
bic field of the crystal and it is into a threefold I'y level
and a twofold I';, level. This has been measured by
McClure and found to be 0.35 eV. McClure and his
group have also computed this quantity using the discrete
variational Xa method (DVM),” and have found it to be
0.45 eV. Using our present methods we find the crystal-
field splitting to be 0.31 eV at the Hartree-Fock level and
also at the MBPT level. This is seen by us as reasonable
agreement with experiment and somewhat better than the
DVM-Xa result as well. The error 0.04 eV is far smaller
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than the potential changes due to lattice relaxation. The
present determination of the crystal-field splitting is ob-
tained by computing the ionization energies of the I')s
and I''}, levels by differences of total energy and thus tak-
ing the difference in ionization energy. The calculations
are performed to an aggregate numerical precision of
about 10~*eV.

Finally, the excitation energy of the Cu™3d 1°-to-3d°4s
transition is computed. McClure and associates measure
this energy to be 4.2 eV and compute it to be 3.6 eV using
the DVM-Xa model.’ Using our present methods, one
finds the excitation energy to be 3.70 eV in Hartree-Fock
limit and 4.02 eV in the MBPT limit. Clearly, the
present result is an improvement over prior nonempirical
attempts and the MBPT result agrees quite well with
experment (4% error).

We find no difficulty in concluding that the ICECAP lat-
tice self-consistency is a feasible computation, and that
even small relaxation— ~1% —can be useful and
significant in determining energies in ionic systems. We
also find that correlation corrections represent a
significant benefit in spectral energy determination. It is
worth noting that the correlation calculation performed
perturbatively here represents contributions of 10909 801
configurations. The cost of such precision is not trivial.
The computation for NaF:Cu reported here used several
hundred hours of computer time on an FPS 164 scientific
computer.
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