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Quantum-mechanical cluster-lattice interaction in crystal simulation: Hartree-Fock method
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The problem of describing quantum mechanically a region of interest in an otherwise extended
lattice is discussed for nonmetallic solids. A localizing potential to accomplish this is described, and
its implications for the total-energy algorithm are analyzed. A spurious tunneling eCect that may
arise with a finite embedding lattice is also discussed.

I. INTRODUCTION

Lattice defects in crystalline materials, often in com-
binations that are diScult to resolve experimentally,
determine many technologically important properties.
Reliable computer simulation of such defects is therefore
of potential value, and can be expected to contribute to
fundamental understanding of the physical processes that
determine the structure and properties of these materials.
For point defects, an attractive approach is to use quan-
tum mechanics to describe the response of the region
near the defect to the defect and to embed this region in a
potential similar to that of a perfect lattice. The lattice
response of the embedding crystal lattice may then be de-
scribed in terms of a much simpler model, applicable to a
weakly perturbed perfect lattice, provided a reliable mod-
el of this type exists. In fact, such models do exist, or
may be expected to emerge, for ionic, molecular, co-
valent, and simple-metallic crystals. In the present work,
we refer specifically to nonmetals. In many of these ma-
terials the shell model, ' based on classical point charges
and masses, interacting by simply parametrized poten-
tials, has been successful in correlating perfect-lattice
equilibrium configurations, and static and dynamic elastic
and dielectric properties within the harmonic approxima-
tion. We shall therefore think of the embedding lattice
in terms of the shell model. The region about the defect
called the cluster will be referred to in terms of the unre-
stricted Hartree-Fock self-consistent-field approxima-
tion, augmented by explicit correlation corrections, al-
though the main points apply to any approach based on
the one-particle density, including the density-functional
formulation. In this paper we consider only the
independent-particle aspects.

For a cluster embedded in a classical lattice, special
care must be taken to ensure that mathematical and
physical consistency are maintained. This topic has been
discussed by Kunz and Klein, who also introduced a for-
mal procedure based on localizing potentials to deal with
the short-range quantum-mechanical cluster-lattice in-
teraction. The lowest-order term appropriate for an
ionic-crystal was given by Kunz and Klein. The present
work at the self-consistent-field level is an extension of

that of Kunz and Klein. In Sec. II the motivation and
derivation of the Kunz-Klein localizing potential
(KKLP) is given, and a specific implementation is de-
scribed, which is believed useful for nonmetals.

Simulation of an infinite lattice containing a point de-
fect represented by a cluster may be carried out by
minimizing the total energy with respect to parameters
that define the lattice configuration, including the defect.
For shell-model ions, the configuration parameters are
core and shell positions. For a cluster in the Hartree-
Fock approximation they are variational parameters of
the electronic wave function, and the nuclear positions.
The one-electron Hartree-Fock functions are frequently
based on a linear combination of atomic-type orbitals
centered on ionic and other suitable sites, consisting of
spherical harmonics with Gaussian radial dependences of
given ranges. The variational parameters are then the
linear coeScients of these atomic orbitals, and are ob-
tained by matrix methods. States other than ground
states may be analyzed by applying symmetry constraints
to the calculation. Embedded molecular clusters
representing segments of a perfect lattice may also be
studied, and can provide a valuable test of the physical
validity of the many-electron approximation being used.

The total-energy-minimization procedure described
above is a practical proposition, and is, in fact, imple-
mented in a general, user-friendly program, named
ICECAP, for arbitrary host lattice, and for arbitrary
point-defect composition and configuration. Recent ap-
plications of ICECAP, incorporating the KKLP, to color
centers and to perfect-lattice clusters are demonstrating
its versatility, and show that calculations in which lattice
configuration and defect structure are simultaneously
self-consistent are possible. Si.nce the KKLP is based on
a modified form of the Fock equation, the relationship of
the resulting energy eigenvalues to the many-electron to-
tal energy is different from that arising from the original
Fock equation. This point, and some practical points in
solving the resulting equations are dealt with in Sec.
III. *' These points are not considered in the original
KKLP report or in subsequent work.

In Sec. IV, a spurious tunneling effect is described that
may arise if the Coulomb sum, or the addition of short-

38 1058 1988 The American Physica1 Society



38 QUANTUM-MECHANICAL CLUSTER-LA'i i'ICE INTERACTION. . . 1059

range interaction with the KKLP, are limited to too
small a set of embedding-lattice ions.

II. KKLP

F(r)f»(r)=e»f»(r), k =1,2, . . . , N (2.1)

In this section we begin by relating the problem of a
small cluster in the Hartree-Fock approximation, con-
taining N„electrons, to the problem of the large crystal,
containing N electrons. We then note that the cluster-
Fock equation depends in part on occupied states of the
embedding lattice. This dependence, in our formalism, is
due to a subsidiary condition termed the Kunz-Klein lo-
calizing potential (KKLP). In the KKLP, this potential
is chosen so that it cancels out the short-range part of the
potential due to the lattice ions as seen by cluster elec-
trons in so far as possible. It is in this sense that the
KKLP is a localizing potential, because the cluster elec-
trons end up seeing lattice ions as weak perturbing poten-
tials and lattice periodicity is interrupted.

The short-range potential is evaluated once and for all
for a given crystal lattice by applying the same localiza-
tion condition to each ionic species in a perfect-lattice
calculation. The use of a perfect-lattice short-range po-
tential with a defect cluster is consistent with the idea
that the cluster should contain all significant deviations
from perfect-lattice electronic structure. Consider a large
crystal containing N electrons. The N-electron Hamil-
tonian is

N gz N Ze
H= —g V,

' —gg rl
2 ZyZJ8'

+X +X
1 Iri rj I r)J I+i

We obtain the Bohr-Rydberg atomic units used
throughout this work by setting e =2, and Az/2m =1.
We use a single Slater determinant to approximate solu-
tions to the Hamiltonian and, the one-electron functions
of the Slater determinant satisfy the Fock equation:

(Fq+ Uq )g» e»P»,——k =1,2, . . . , N (2.4)

where Fz is that part of F, Eqs. (2.1) and (2.2), that in-

volves nuclei and electrons in the cluster, and V„ is due
to those Nz electrons and the nuclei in the environment.
Thus

F=F~+V~ . (2.5)

In Eq. (2.4), U„clearly depends on k(B) Now. the
purpose of using the cluster is so that we will not have to
solve for the states k(B) of the embedding lattice simul-
taneously with the states k ( A } of the cluster. The mani-
fold k (B), however, in general, need not be orthogonal to
the occupied cluster manifold k( A). In fact, we wish to
maintain the full physical detail of our presumably care-
ful choice of both cluster and lattice basis sets and yet in-
corporate properly this possible lack of orthogonality. In
prior cluster considerations, the possibility of exploiting
this degree of freedom was not used.

Now in most nonmetals, the electronic density of k (B)
is particularly well localized about lattice nuclei or possi-
bly bond centers. In fact, in zeroth order, the lattice po-
tential U„has been thought of as a Madelung potential,
arising from point-charge ions, as was shown by Kunz
and Klein

states, denoted k(A}, localized in the cluster s vicinity,
and chosen so that they will be adequate to describe
physical properties, that are localized in and around the
cluster. In practice, we may need to calculate initial and
final states of a defect process such as optical absorption
or diS'usion activation. All spectroscopic details are ob-

tained from total-energy considerations. The occupied
states k ( A ) satisfy a Fock equation that is obtainable by
unitary transformation from the orthonormal set g» of
Eq. (2.1) (which becomes complete in the limit N~ ao },
to a new orthogonal basis, some of whose elements span
the cluster manifold, including the Nz occupied states
k ( A ). The remaining Ns =(N N„)—new occupied basis
functions, denoted k (B), are orthogonal to the manifold
k(A). Thus

where the Fock operator F is
V„=—2+I, Ir —R;I

j (B)
(2.6)

F(r)= —V —2+Z Ir —R
j

+2 r' r —r'

where I—:Z N is the ionic—charge of ion j, and NJ is
the number of electrons associated with ion j. The
remainder of U„ is the short-range part V„, arising from
the quantum-mechanical nature of the electrons. Thus

X y y —r' 1 —P r,y r',y, 2.2 Uq ——V~ + V„, (2.7)

N
p(r', y ) = g g».(r')P». (y ), (2.3)

where r =(r,s), r is position and s is spin, R and Z. are
nuclear positions and charges, and P (r,y ) is the electron
pairwise interchange operator. In the unrestricted
Hartree-Fock approximation (UHF), f» is a spin eigen-
state only, and not an eigenstate of symmetry. In Eq.
(2.3), p is the Fock-Dirac, one-particle density. Now con-
sider a cluster A within the crystal, having Nz electrons.
These N„electrons are assumed to occupy a manifold of

V„=—2 g N Ir —R-I.
j (B)

+2f dr'I r —r'
I

X Jdy 5(y r')[tl P(r,y)]p~(r'—,y) . —

(2.8)

A subsidiary condition can now be applied to the
cluster-Fock equation (2.4) to modify the localization of
V„relative to the cluster. The term V„was not explicit-



1060 A. BARRY KUNZ AND JOHN M. VAIL 38

pz ——g ~k'&(k'~ (2.9}

where
~

k') is the state vector corresponding to orbital

Pi, .(r). It follows that, for an arbitrary one-particle
operator 8'

p„W
~

k ) if k is occupied,

0 if k is unoccupied . 2.10

Using the theory due to Gilbert, "one may add Eq. (2.10}
to Eq. (2.4) and obtain a modified Fock equation which
leaves the total energy unchanged:

(2.11)

Unoccupied (virtual) orbitals
~

k') are unaffected by the
procedure.

It is not necessary to use the same 8' for all orbitals.
However, if one changes 8; a nonorthogonal solution set
emerges.

Kunz and Klein have chosen $V = —p„V„p& and ar-
gued that it would cancel the V„ term, yielding

(F„+V„)
~
k)=xi,

~

k) . . (2.12)

The term —p„V„ is called the KKLP. In this work
both V„and the KKLP receive explicit consideration.
Thus the localizing efFect is that KKLP selects an occu-
pied cluster manifold k ( A ) spanned by functions that see
the lattice ions as weakly perturbed point charges, ex-
pressed by Vz, while leaving virtual cluster states to see
the unmodified short-range lattice potential.

In a cluster calculation it is assumed that significant
deviations from perfect-lattice electronic structure are in-

cluded in the cluster, and therefore the electronic struc-
ture of the embedding lattice should be adequately
represented in Eq. (2.11) by a perfect-lattice form of V„.
Now, in practice, we associate a set of orbitals with each
ionic species in the lattice, so V„, Eq. (2.8), may be writ-
ten as a sum over lattice sites j(B):

(2.13)

where k'(j) labels an orbital on site j. Thus the contribu-
tion to Vz from a given ionic species in a given perfect-
lattice crystal can be determined by separate calculations
that treat single ions of different species as the "cluster, "
surrounded by KKLP ions. The separate calculations
can be iterated together to self-consistency, replacing an
arbitrary set of initial lattice-site states in Vz by the clus-
ter solutions for corresponding ions, and so on. This pro-
cedure has been described by Kunz. ' The resulting con-
tribution to V~ from each species is fitted to a set of

ly considered in prior work.
The procedure for applying a subsidiary condition to

the Fock equation has been given generally by Gilbert. "
It is based on the fact that the Fock-Dirac one-particle
density operator p„ is a projection operator onto the
manifold of occupied states k ( A ):

N„

Gaussians using a fitting procedure due to Keegstra. '

Then the KKLP becomes

pz Vzpz ——X PI, (r)PI*,.(r) Jdr'Pl, (r')Vz(r')P~ (r'},
I&( A)
k'( A)

(2.14}

in which the integrals are straightforward for a Gaussian
basis. Thus one has obtained both the KKLP and V~ in

a computationally convenient form. Thus we now solve

(~g+ Vg + Vg —pg Vgpg )
~

k )=a I, ~

k ) . (2 15)

What is substantially new here is easy to describe. In
the original paper presenting a rigorous approach to clus-
ter formalisms, by Kunz and Klein, a basic extension of
the concept of chemical building blocks for an extended
system was made. This extension provides the formal
base used here. However, specific development of a gen-
eral computational formalism was not undertaken. The
principal effect of localization was argued, on formal
grounds, to be the embedding of the cluster in a point-ion
lattice. This has proven to be useful for some problems. '

Clearly, however, the use of an embedding point-ion field
limits the usefulness to ionic solids alone, and to ionic
systems in which orbital overlaps are negligible at that.
Our experiences with energy-band theory indicates that
alkali halides are described well in this way, but not ox-
&des.

This contention is trivially seen by following two series
of calculations contained in Ref. 9. The first is the calcu-
lation for NaCl. Initially, the local orbitals were reported
for NaC1 by Kunz in 1971 and used to obtain NaC1 ener-

gy bands by Lipari and Kunz. These local orbitals were
found using a simple single-center localization rather
than a full KKLP procedure. This procedure was fully
criticized by Gilbert and Kunz. Later Kunz (1982) used
the full, general KKLP multicenter localization pro-
cedure to study the electronic structure of 12 alkali
halides including NaC1. The essential band-structure
features were unchanged between the approximate locali-
zation procedure and the general one Furthermore, the
band results for NaC1 were tested by Himpsel and Stein-
man in 1978 using angle-resolved photoemission. These
tests established the essential correctness of the NaC1 re-
sults. Importantly, the initial calculations preceeded the
measurement by several years. Thus by this measure the
alkali halides are rather insensitive to boundary details.
Such has not been the case for oxides. Jennision and
Kunz performed a calculation for TiO in 1977 using
single-center localization, a prescription slightly better
than simple point-ion field termination, and failed to ob-
tain accurate band results for TiO due to the failure of
the O orbitals to properly localize. This was discussed
in the 1982 alkali halide paper by Kunz. Thus one finds
rather difFerent success for alkali halides and oxides.
Even for better localized oxides such as NiO, use of sim-
ple point-ion fields around clusters yields qualitative ac-
curacy, but quantitative results are not as good as for al-
kali halides. This is very well presented in the work of
Grunes et al.



38 QUANTUM-MECHANICAL CLUSTER-LA I fICE INTERACTION. . . 1061

The present formulation imposes no such limitation. It
simply assumes that there is some distance away from a
defect such that the first-order density matrix for atoms,
ion, and molecules (building blocks) located farther from
the defect than this distance are, in the Hartree-Fock lim-

it, the same as for the perfect system. This assumption is
certainly reasonable, and conventional methods can be
used to obtain the solution, just as in the energy-band
problem. The method we use here is the most recently
developed and includes a multicenter approach to locali-
zation. It does not depend on smallness of interatomic
overlap or systematic elimination of small but persistent
diffuse orbital basis functions as did some early ap-
proaches to obtaining local orbitals. In this regard the
solution for the distant region is obtained to the state of
the art. Having obtained this solution the long- and
short-range parts of the potential surrounding the cluster
are known.

We now need a correct algorithm for the total energy
of the embedded cluster, and this is given in Sec. III. In
addition, for nonionic solids, such as rare-gas crystals or
molecular solids, the presence of van der Waals forces
necessitates the inclusion of correlation effects. How this
is done rigorously in embedded-cluster calculations has
not been given in the literature, and is covered in a
separate work. The unrestricted Hartree-Fock (UHF)
solutions form a basis for the correlation treatment. Fi-
nally, we note that the UHF eigensolution need not be an
eigenfunction of spin. For spectroscopy this is potential-
ly a problem, but symmetry projections onto spin eigen-
functions are trivially accomplished. '

III. TOTAL ENERGY

Let us examine how the total energy of an infinite crys-
tal containing a molecular cluster is related to the
modified cluster-Fock equation (2.11). We first note the
well-known result that from the original cluster-Fock
equation (2.4) the total energy E is

Note that

e„=f„+g (k, k'
) [ ~

r —r'
)

'[1—P(r, r')]( [ k, k'& .
k'( A)

(3.5)

For U„we use Eq. (2.7), U„=V„+V„, with V„deter-
mined as described in Sec. II. Now between Eq. (2.4) for
ez and Eq. (2.11}for nz, there has been a unitary trans-
formation in the cluster manifold k ( A), so gz in Eq. (2.4)
does not correspond to

~

k & in Eq. (2.11). Nevertheless,
the trace is invariant, so it follows that

y e/, = y &k ~(~ +U }~k&
k(A) k(A)

= y(~„+&k
~

V'„~k&},
k(A)

(3.6)

where we have used the projection property of p„on
k ( A ). By combining Eqs. (3.1)—(3.6) we have a tractable
means of evaluating E in terms of the eigenvalues mz, and
other quantities that will have been evaluated in the
course of solving Eq. (2.11).

These results may also be derived as an approximation,
starting from the ¹lectron description of the whole
crystal, Eqs. (2.1)—(2.3). The derivation is outlined in the
Appendix. This raises another aspect of cluster-lattice
consistency, namely the question of whether the
quantum-mechanical and shell-model descriptions of
prefect-lattice features (in this case short-range interionic
potentials} are compatible. Some details of this problem
have been discussed formally by Harding et al. , and
some preliminary results have been reported, ' but
much remains to be done.

where f„ is the one-particle part of e„:

f~=(k —V —2 x Z (r —R ( '+U„k) .

j(A)

(3.4)

E =E+V
where Vt is the classical part of the energy:

(3.1)
IV. FINITE LATTICE

j(A)& j'(A)
2ZJZJ i RJ —R'

i

+ g 2ZJIq.
~

R —R.,
~

j( &),j'(8)

+ g (2I)I~'
~ RJ —R'

~

'+ Vg(Rt, R'}],
j(B)&j'(8)

(3.2}

N~

E= ,' g (sq+f~), —
k(A)=1

(3.3)

where V& is the pairwise short-range ion-ion interaction
energy, with other terms representing nuclear-nuclear,
nuclear-ion, and ion-ion Coulomb interactions for nuclei
of the cluster and ions of the lattice. In Eq. (3.1), E is the
many-electron energy of the cluster in the Hartree-Fock
approximation

In this section we discuss the practical question of how
far into the embedding lattice one need carry the localiza-
tion procedure.

Any Madelung sum can be carried to infinity using
Ewald's summation method, ' but if that is not done, cer-
tain precautions should be observed. First, a finite sum-
mation may get the Coulomb potential at the origin accu-
rately, but unless quite a large number of ions is included
it will not be accurate throughout the cluster region. For
example, 500 ions give an error of 0.1 eV at a distance of
two nearest-neighbor spacings from the origin in Mgo. '

Second, if the finite set of ions has a net charge, the possi-
bility of spurious tunneling —type UHF solutions arises.
This can happen as follows. Suppose the UHF cluster is
bound by a potential well in the infinite crystal. Now
suppose only a finite number of ions is used, in an ap-
proximately spherical region centered on the cluster. If
these ions have a net positive charge, it wi11 all reside at
or near their outer boundary, and will be uniformly dis-
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tributed. In a continuum approximation, the potential is

simply raised uniformly within the finite crystal by this
uniform spherical surface charge, and tails ofF to zero at
infinity outside the sphere according to Coulomb's law.
The resulting combination of elevated potential well and
Coulomb tail now represents a potential barrier of finite
thickness for states that were previously bound inside the
well. Electrons in these positive-energy states can tunnel
out, and will do so if represented by basis sets of suScient
range, such as may seem variationally appropriate, par-
ticularly for excited and/or weakly bound states. For ex-

ample, with 2000 ions, as in the present version of
IcEcAp, the boundary radius is about eight nearest-
neighbor spacings. Thus basis functions that either sing-

ly or in combination have significant amplitude at this
distance or greater cannot be used with confidence.
Ensuring that the set of ions is uncharged, as with the
Evjen method, ' will overcome this problem.

A similar effect can occur with the KKLP which inev-

itably extends short-range interactions only to a finite dis-
tance. One can see this if VA is thought of as an e8'ective

positive potential due to Pauli repulsion. Then, in the
infinite crystal it extends to infinity, but in practice it ex-
tends only to a finite distance, beyond which there is a
potential drop. The result is an effective potential barrier
of finite thickness through which spurious tunneling may
occur. In the following paper extensions to include
correlation corrections and also results for the Cu impur-
ity in NaF are given.
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APPENDIX

In this appendix we consider a crystal containing N
electrons, divided into cluster ( A) and embedding (B) re-
gions, with NA electrons in the cluster, occupying a man-
ifold k(A), and Na (N Nz ) electr——ons i—n the embed-
ding lattice, occupying manifold k(B}. The total energy
EN is

E~= g (k
I fo Ik)

Vnn

j & j'(A+B)
2Z Z'

I
R- —R'I (A4)

(k
I fo I

k)+ g (kk' fg(1 P)
I

kk')—
k( A) k'(8)

+ —,
' g'(kk' fg(1 P)

I
kk')—

k'( A)
(A8)

Identifying corresponding terms in Eq. (Al), we obtain

EN=E+ g (k
I fo I

k)
k(B)

(kk'
I
g(1 P)

I
kk')+—V„„. (A9)

k, k'(8)

Finally, we wish to identify terms in V„„, Eq. (A9},
with terms in Vz, Eqs. (3.1) and (3.2}. Now,

g ( k
I fo I

k ) = g ( k
I

—'|)'2
I
k &

k(B) k(8)

—2g g Z, (kf Ir —R, I
'fk).

k(B) j( A +8)

(A10}

If we imagine that k(B) consists of orthogonal basis
functions k (j) associated with individual ions j (B), then
in Eq. (A10)

ZJ(k
f

Ir —R
I

'Ik)
k(B) j(A+8)

2 &k(J')
I Ir —R, I

j'(8) j( A +8) k (j')

(Al 1)

To obtain the cluster states we rewrite Eq. (2.4) using
Eqs. (2.5), (2.6), (A2), and (A3):

fo+ g (k' Ig(1 P)—Ik')
I
k) =e„

I
k),

k'( A +B)

k =1,2, . . . , NA . (A5)

As in Eq. (3.3), we introduce the cluster-electron energy
E. Now from Eq. (A5),

ek ——(k
I fo I k)+ g (kk' fg(l P)

I

—kk') . (A6)
k'( A +B)

From Eqs. (3.4) and (2.6),

fl, =&k Ifo I
k&+ 2 &kk' Ig(1 —P) lkk'& .

k'(8)

Thus from Eqs. (A6) and (A7):

E= ,' g (ek-+fk)
k(A)

k(A+B)

+—,
' g' (kk'

I g(1 P)
I
kk'&+ V„„, —

k, k'( A +8)

where

fo —— —V —2 X Z fr —R
j( A +8)

g=2 fr —r'I

(A 1)

(A2)

(A3)

We now approximate the right-hand side of Eq. (Al 1 }by

g NJ'IRJ —R) I

j( A +8)j '(8)
(A12)

g' (kk' fg I
kk')= g' N N IR —R,' I

' . (A1. 3)
k, k'(B) j,j '(8)

where X' is the number of electrons on ion j'. Similarly,
using Eq. (A3},we assume that in Eq. (A9)
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Combining Eqs. (A12} and (A13}with V„„,Eq. (A4}, and

using the relation ZJ (——I +N }f.or j (B), we reduce Eq.
(A9} to the form of Eqs. (3.1) and (3.2), provided we iden-

tify

Vss(Ri, R') =—,
' g' {kk'

~
gP

~
kk ), (A14)

k, k'(8)

where +zan. (s) omits terms in which k (B) are for the same

ion. The identi6cation is clear if we think in terms of the
basis set k (j), so that

X=X X.
k(B) j (B) k(j)

Equation (A14) represents an approximation in which
ion-ion short-range interaction arises only from ex-

change. The resultant form of Eq. (A9) is therefore the
same as that of Eq. (3.1), except that it has an extra
quantum-mechanical ionic self-energy consisting of elec-
tronic kinetic energy from Eq. (A10) and intraionic ex-
change, left over from Eq. (A14). Thus the self-energy is

g(k(j) )
—~'Ik(j) I

&

j (B),k(j)

y (k(j)k'(j)
~
gp

~
k(j)k'(j))

k, k'(j)

In practice, where the functions k (j) with j(B) are fixed,
this does not contribute to interionic short-range interac-
tion.
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