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A self-consistent-field method for the calculation of electronic properties of semi-infinite crystals

with reconstructed surfaces is described in detail and applied to the Si(001)-(2)&1) surface. The

method is based on local-density-functional theory and a Green-function scattering-theoretic formu-

lation is employed. Wave functions and operators are represented in a localized-Gaussian-orbital

basis set. The calculations yield the self-consistent surface potential, charge densities, surface band

structure, and wave-vector-, atom-, and orbital-resolved layer densities of states with an extreme

spectral resolution. Surface bound states and surface resonances are determined unambiguously

and accurately even for states whose wave functions are very extended. In order to be able to point

out advantages of our method by comparison with the results of other techniques, we have carried

out self-consistent slab calculations with varying slab thicknesses as well. The present method is

shown to be very efficient and accurate in describing the whole electronic spectrum of the surface.

The efficiency of the method stems largely from the fact that it exploits both the full three-

dimensional periodicity of the underlying bulk crystal and the short range of the deviation of the

surface potential from the bulk or vacuum potentials, respectively. Thus all bulk properties are

built in from the start via a band-structure calculation as a well-defined reference and they are

preserved. One then focuses on the changes produced by the surface potential. Since the bulk and

surface effects are separated analytically in the Dyson equation for the surface Green function, the

interpretation of the results is straightforward and unambiguous. The virtues of the scattering-

theoretical method are exemplified by a detailed discussion of our results for the technologically

most important Si(001)-(2)(1)surface in comparison with our own slab calculations and with other

results from the literature.

I. INTRODUCTION

The field of electronic-structure theory of solid surfaces
has matured within the last decade. A large variety of
methods has been developed and successfully applied to
study surfaces of metals and semiconductors. Many of
these methods are based on model geometries, like slabs
or superlattices, in order to artificially reduce the
infinitely long unit ce11 of a surface system to a size which
is tractable by standard bulk band-structure techniques.
In bulk physics, "state of the art" calculations of electron-
ic properties within the local-density approximation'
(LDA), starting from "first principles, " have been per-
formed for metals and semiconductors. By employing
the translational symmetry of the crystal, self-consistent
computations of wave functions and of the energy spec-
trum is reduced to the solution of the Kohn-Sham equa-
tion within the relatively small bulk unit cell. The atomic
positions entering these calculations according to the
Born-Op pen heimer theorem as parameters, are well
known, e.g., from x-ray structure determinations. On the
contrary, in surface physics we have to deal with broken
translational symmetry perpendicular to the surface and,
in consequence, with infinitely long unit cells. In addi-
tion, the atomic configuration near the surface of a solid
is much less precisely known than the bulk configuration.
This lack of knowledge of the exact local atomic geometry
in the selvege is a major physical problem. It is currently

attacked by many surface scientists using a large variety
of theoretical and experimental techniques. The global
geometry of a surface system with its broken translational
invariance perpendicular to the surface constitutes the
basic mathematical problem. In their pioneering work on
self-consistent electronic-structure theory for semicon-
ductor surfaces, Appelbaum, Baraff, and Hamann ' ad-
dressed this problem already more than a decade ago us-
ing semi-infinite geometries in their wave-function-
matching technique. They evaluated the surface poten-
tial, the charge density, the ionization potential, and the
dispersion of bound surface states self-consistently. Reso-
nances and layer densities of states have been rarely re-
ported by these authors. Nowadays, in most common
slab or supercell' techniques a crystal with its surfaces
is modeled by either a finite slab or by an infinite periodic
repetition of a thin slab and a few vacuum layers, respec-
tively. These techniques allow for a reasonable descrip-
tion of localized surface states, but resonant electronic
features whose wave functions ean be very extended are
less accurately treated. In view of the fact that surface
resonances and bulk continuum states are the main part
of the electronic spectrum, this situation is unsatisfactory
and calls for improvements. In particular, layer densities
of states (LDOS), which are a useful tool to analyze and
interpret experimental data of angle-resolved photoelec-
tron spectroscopy or of scanning tunneling spectroscopy,
are not available with high spectral resolution. To over-
come these shortcomings, we have addressed the treat-
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ment of truly semi-infinite crystals by a novel approach.
In this paper we present in detail a new and efficient

computational scheme for the self-consistent solution of
the Kohn-Sham equations describing the electronic struc-
ture of semi-infinite, reconstructed semiconductor sur-
faces. Very brief accounts of the method, as it applies to
ideal" or reconstructed' surfaces, have been reported
previously. In our self-consistent approach the surface is
treated as a two-dimensionally periodic perturbation
which is extremely localized perpendicular to the surface.
The surface-electronic structure is determined by scatter-
ing of bulk states at the perturbation potential. The ad-
vantages of using scattering theory for solving one-
particle Schrodinger equations describing localized per-
turbations of bulk solids were pointed out for the case of
point defects by Koster and Slater' ' 30 years ago In.
the late 1970s this technique was developed to a practic-
able scheme for self-consistent bulk defect calcula-
tions. ' ' Also, in surface physics many electronic-
structure studies have been carried out to date on the
basis of the original Koster-Slater idea using empirical
tight-binding descriptions, ' ' however. The extension
of the scattering-theoretic method (STM) for surfaces
into a practicable self consistent -scheme is described in
detail in this paper, whereby both formal and computa-
tional aspects are discussed.

We start from a predetermined surface-structure model
and present the solution of the Kohn-Sham equations for
a semi-infinite crystal. The results of our surface-
structure determinations for the (2X 1)-reconstructed
surfaces of Si(001) and Ge(001), using a semiempirical
total-energy ansatz, have been reported previously.
The structure optimization in the framework of the
method presented in this paper by self-consistent total-
energy minimization calculations is briefly addressed in
Sec. V.

Our approach makes use of a general concept formu-
lated by Williams, Feibelman, and Lang. The original
problem of solving a differential equation is mapped onto
the solution of a matrix equation of infinite dimension by
expanding the wave functions in terms of a linear com-
bination of atomic orbitals (LCAO's). The determination
of the spectrum of this "Hamiltonian matrix" can be
achieved by direct comparison with an appropriate refer-
ence matrix whose eigenvalues are known. Using the in-

verse or Green's matrix of the reference matrix leads to
matrix equations describing the original system which
can be solved numerically.

To exemplify advantages of our technique and to
demonstrate its efficiency, we have calculated the
surface-electronic structure of Si(001)-(2X1) using both
the self-consistent STM and the slab method together
with a LCAO basis set. We choose this technologically
important prototype surface for our discussions, since it
has been studied in detail both experimentally and
theoretically over the years. In particular, a detailed ac-
count of the surface-electronic structure of Si(001)-
(2X1), as it results from plane-wave supercell calcula-
tions, has been reported previously by Ihm et al. To
make our comparisons as meaningful as possible, we have
used in all our calculations the same bulk potential as in

Ref. 24 and precisely the same surface-structure model,
namely the asymmetric dimer model as suggested by
Chadi. This choice allows for meaningful comparisons
of the results on equal footing and for a critical discus-
sion of methodological differences between STM calcula-
tions and slab or supercell calculations. The use of the
STM together with norm-conserving pseudopotentials is
briefly addressed in Sec. V.

A similar Green-function technique has been used by
Feibelman to calculate the electronic properties of a
single adatom on a two-dimensional Al(001) monolayer.
In addition, Feibelman has applied the technique to
study rebonding eff'ects in separation and surface-
diffusion barrier energies of Al adatom pairs on Al(100).
Benesh and Ingelsfield have worked out a complementa-
ry scheme, the embedding approach, to describe point de-
fects and surfaces self-consistently. The interrelationship
between the embedding method and the scattering-
theoretic method has been discussed by Baraf and
Schluter. ~8

The self-consistent (SC) STM has a number of virtues.
Within an effective one-particle picture, it allows one (a)
to describe the global geometry of a surface system with
correct boundary conditions, (b) to determine bound
states and surface resonances with high spectral resolu-
tion, and (c) to clearly separate bulk and surface contri-
butions in the electronic spectrum very efficiently.

It should be noted at this point that our calculations
suffer from the same shortcomings that are well known
from bulk electronic-structure calculations within local-
density theory. These problems are currently under dis-
cussion. ' New approaches which go beyond the
local-density approximation have been worked out and
applied to the bulk electronic-structure problem.
Even a surface system has been studied taking self-energy
corrections into account. The latter study was based on
the conventional plane-wave supercell approach. Of
course, these new techniques also must deal with the bro-
ken translational symmetry of a surface system. In par-
ticular, they make use of Green functions to describe the
self-energy corrections as well. They can thus benefit
twice from the virtue of the STM which we describe in
this paper.

This paper is organized as follows. In Sec. II we devel-

op the general theory for the self-consistent treatment of
reconstructed surfaces by the Green's-matrix approach.
The computation approach is outlined in Sec. III. Sec-
tion IV is devoted to the application of the method to the
Si(001)-(2X 1) surface and compares the outcome of the
calculations for slab, supercell, or semi-infinite geometries
in detail. In the concluding discussion of Sec. V we first
give a brief summary and then address, in an outlook, the
potential of the present method for surface-structure op-
timizations and its use in the context of norm-conserving
pseudopotentials and self-energy-correction calculations.

II. THEORY
A. Basic concepts

The calculation of electronic ground-state properties
requires, within local-density theory, the solution of the
Kohn-Sham equation,
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Within a given accuracy of the calculation, the contribu-
tion of the integrals in Eqs. (8a} and (8b} can be neglected
if the distance d becomes greater than a chosen critical
value d„. This restriction to nth-nearest-neighbor in-

tegrals, together with the use of a finite number of basis
functions at each atom, is a well-established approxima-
tion in bulk band-structure calculations using LCAO's.
This approximation leads to quite accurate results, as was
confirmed by comparisons with highly converged plane-
wave calculations in Ref. 37.

In spite of these approximations, the matrices in Eq. (7)
for the surface system are still of infinite dimension since
there are infinitely many atoms in the entire unit cell.
Therefore the eigenvalues in Eq. (7) cannot be calculated
by standard numerical diagonalization techniques. In-
stead of diagonalizing the matrix [ES(q)—H(q)], we cal-
culate the inverse, or the resolvent, or the Green function
of [ES(q)—H(q)], where E=E +is is a complex energy
with c. positive and real. From this Green function com-
plete information about the one-particle energy spectrum
and the charge density n (r) can easily be extracted.
The calculation of the Green function G(E,q), defined by

[ES(q)—H(q)]G(E, q) =1, (10)

can be achieved by introducing reference matrices H "(q)
and S (q) which have the following properties.

G "(E,q) =[ES "(q)—H"(q)]

is known.

(12)

With the help of these references matrices, the calcula-
tion of G(E,q) can be reduced to the solution of a matrix
equation in subspace B only, as will be described in detail
below.
To construct suitable reference matrices, we compare the
surface problem with the bulk problem formulated in an
analogous way. The bulk problem is described by Eqs.
(1)—(4), if we exchange V,s(r) with V,s(r) and if we in-
troduce p and A. „as atomic positions in Eq. (4} instead
of p - and A. „. In addition, it should be noted that in the
bulk lattice potential V (r) [see Eq. (4)] the sum over m
runs from —~ to + ~. Analogously, the layer orbitals
for the bulk description,

(13)

are defined for all m from —~ &m & ac and not only
from —~ & m & —1, as was the case for the layer orbit-

(a) S"(q) and H (q) have the same dimension as S(q)
and H(q).

(b) The difference matrix

U(E q):—K(q) —H (q) —E[S(q)—S"(q)]

has nonvanishing matrix elements only in a finite sub-
space 8 of the infinite vector space.

(c) The inverse matrix

als }X&(q,r) } of the surface system, as given in Eq. (5}.
We exclude m =0 in our notation. There is one essential
difference between the two sets of basis functions given in
Eqs. (5) and (13), respectively. The atomic orbitals [q&

in the set }X~(q,r)} may be different near the surface
from the orbitals }cp } in the bulk basis set [X,(q, r) }. In
the case of a strong surface reconstruction, e.g. , the dis-
placement of the atoms near the surface necessitates the
use of a basis set with correspondingly displaced orbitals.
Also, in adsorption studies it may be more eScient to
represent the surface wave functions by orbitals of
different symmetry type and different decay constants, as
compared to the bulk orbitals, because of the possibly
different chemical nature of the adsorbed species.
Representing the bulk problem in the basis set }X,(q, r) }
leads to

[H (q) —ES (q)]C""(q)=0 . (14)

The matrix elements of H and S are defined in analogy
to Eqs. (8a) and (8b) with X replaced by X and V,s re-
placed by V,~. These matrices are also of infinite dimen-
sions since the bulk problem is formulated in the
surface-symmetry-adapted reference frame. Of course,
for the bulk crystal there is an additional translational
symmetry in the surface-perpendicular direction. There-
by, Eq. (14) can simply be reduced to a finite-size matrix
equation. We will extensively use this fact below in the
construction of the bulk Green function. Yet, it is the
special form of Eq. (14) for the bulk description in the
layer orbital basis which enables us to solve Eq. (7). For
this purpose, we consider the matrices in more detail and
compare the structure of H(q) and S(q) with H (q) and
S (q). The matrix

M(E, q) = —H(q}+ES(q) (15)

has the structure of a band matrix as shown schematical-
ly in Fig. 2. It is built up by block matrices of size
N „N„XN „N„,where N „ is the number of localized
orbitals q at the atomic position p in the unit cell and

N„ is the number of atoms in each two-dimensional unit
cell. The width of the band matrix is determined by d„.
The matrix

M (E,q) = —H (q)+ES (q)

has precisely the same structure as M, but its size is twice
that of M(E, q). To be able to take differences of the ma-
trices, we extend M to the size of M by filling the corre-
sponding elements with zeros. Comparing now M and
M, the following can be stated: within the bulk region
inside the crystal on the layers from m = —m „ to
m = —~, the corresponding elements of both matrices
are equal. This is a consequence of both the localiza-
tion of the basis functions and, in particular, of the small
spatial extension of the transition area (see Fig. 1). To
write the matrices M and M more explicitly, we decom-
pose the full vector space into four regions labeled A —D
according to the layer indices spanning the regions
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—~(m & —m„, B: —m„(m( —1;
C: 1(m &md, D: md(m (~ (17)

with m„) md. The layer number md is determined by
the coupling range of the matrix elements in the bulk
Hamiltonian and corresponds to the distance d„as
specified below Eq. (9). The number m„ is determined by
the range of surface-induced changes in the charge densi- 0 0 0

0 0 0 0

ty and in the potential, as compared to the bulk, and, in

addition, by the coupling range of the Hamiltonian ma-

trix elements which sense the above-mentioned changes.
The matrices now take the following forms:

—ABM 0 0

MBB 0 0

-I1lU

G=G+G U G

-ftl U

and

0

MBA
0

0
0

0MAB

M BB+~M BB

0
0

0 0

0 0
0 0

(18)

M=ES-H MAA MAB 0 0
0 0 0M„MBC 0

I
U=M

—
M

0

0

0 0 0McB Mcc McD
0 0M DC MDD

(19)

0

-md md

II

II

G=G+G U G

In principle, the extension of region 8 or the value of m„,
respectively, is defined by the condition M BA:—M BA. In
practice, however, m„has to be determined by a conver-

gence study where m„ is increased until the effects of the
increasingly smaller differences between the calculated
matrix elements in MBA and MBA on the outcome of
the calculations become negligible. Inspection of Eqs.
(18) and (19) shows that M does not have the property
(b) as required for a suitable reference matrix in Eq. (11).
However, the upper left-hand part of M, which we in-

troduce as
T

M', „M'„0 0

MBA MBB 0 0

I -I o
U=M

—
M

0 0
0

0 0 0
0 0 0

(20)

FIG. 2. Schematic plot of the matrices involved in the calcu-
lation of the surface Green function G. The hierarchy develops
from bottom to top as 6, G, G, and finally 6, which is
defined as the inverse matrix of M. G is constructed from G,
the inverse of the bulk matrix M, in two consecutive steps in-

volving the appropriate perturbation matrices U and U. In the
first step, two idealized surfaces described by M are created
from the bulk crystal by the perturbation matrix U, which is

the difference matrix of M and M . Then one of the two
decoupled semi-infinite crystals is ignored, leading to M . The
corresponding Green function G is simply given by the upper
left-hand block of G '. Finally, the true surface is introduced by
U =M —M' and the surface Green function results from the
corresponding Dyson equation.

M (E,q)G (E,q)=

—AA1

0

0
0

0

—BB1

0
0

0 0

0 0

0 0
0 0

(21)

The inversion of M (E,q) can be achieved in an inter-
mediate step by making use of the properties of M (E,q)
and 6 (E,q). For this purpose we introduce an auxiliary
matrix,

0 0
MAB

0 0
MBA M BB

0

0 0

0

0

0

0I cc
0M DC

0M CD

0M DD

(22)

does fulfill the requirements imposed on the reference
matrix, if it is possible to calculate its Green function

6 (E,q) defined by
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which can be rewritten as a sum of the bulk matrix M
and a localized perturbation matrix U, i.e.,

M (E,q)=M (E,q)+ U'(E, q),
with

(23)

0 0 0 0

0 0
U (E,q)= 0—CB

0M BC

0

0

D
(24)

D 0 0 0
There is no coupling between the upper left-hand and
lower right-hand blocks in M . This matrix obviously
describes two decoupled bulklike semi-infinite solids, i.e.,
it describes two decoupled idealized surfaces We . will
define the term "idealized" more precisely further below.
The inverse matrix or Green function of M is simply
given by

G '(E,q)=

—AAG I

—BAG I
—ABG I

—BBG I

0

0

0

0

—ccG I

—DcG I

0

—CD6 I

—DD6 I

(25)

The upper left-hand block is identical to the Green func-
tion of M (E,q) that we are looking for, i.e.,

—AAG I

—BA6 I
—ABG 0 0

—BB6' oo
G'(Eq)= 0 0 0 0 (26)

0 0 0 0

It is important to note, that, e.g. , G AA contains the ma-
trix elements of G (E,q) in subspace A and it is not the
inverse or Green function of M „A. Due to the special
form of the perturbation matrix U (E,q), which contains
only a few elements of M (E,q) with opposite sign, the
Dyson equation for G (E,q),

G (E,q)=G (E,q)+G (E,q)U (E,q)G (E,q), (27)

can easily be solved, as is shown in Appendix A. With
the help of Eqs. (18), (20), (26), and (27), we are now able
to calculate the Green function. The matrix M(E, q), the
reference matrix M (E,q), and its Green function
G (E,q) have nonvanishing elements in subspaces A andI

B only. Therefore, we can restrict ourselves to these sub-
spaces in the following. The difference matrix U(E, q), as
defined in Eq. (11),now has the form

0 0
U(E, q)=M (E,q) —M(E, q)=

0 U ss(E, q)
(28)

with

U tits(E, q) =8 se(q) H tits(q) E[SBB(q—) —5 es(q—)1 .

(29)

Inserting (28) into Eq. (10), we obtain, by employing Eq.
(21), the Dyson equation for the surface Green func-

tion,

G(E,q)=G (E,q)+G (E,q}U(E,q)G(E, q) . (30}

Since the difference matrix U(E, q) is restricted to sub-
space B, the surface Green function is given by

—AA —AB6 I G I

G(E,q)= —BA —BB

—AB 0 0G I 6 I ' '
G I

+ I I 0 T I I6 BA 6 BB — —BB —BA —BB

—AB6 I

where the scattering matrix T BB is given by
(31)

T hatt(E, q) = U ~tt(E, q)[1 tits
—G tttt(E, q) U titi(E, q)]

(32)
It is important to realize at this point that only matrix in-
versions in the finite subspaee B have to be carried out.
This fact ultimately allows the numerical solution of the
Dyson equation.

Let us pause for a moment in the formal description of
the method in order to surnrnarize the procedure of cal-
culating the surface Green function described so far from
a more physical point of view. Starting from a perfect,
three-dimensionally periodic bulk crystal described by
the potential V,s(r), we have first constructed the ma-
trices M (E,q) and G (E,q) in a layer orbital basis. In
the following step, two identical semi-infinite solids have
been created by the perturbation U (E,q). Only one of
these two decoupled semi-infinite crystals enters the fol-
lowing calculations. The other one can be ignored. In
the final and most important step the real surface is creat-
ed by the perturbation U(E, q). This perturbation takes
into account both the changes of atomic positions in the
selvedge due to relaxation or reconstruction and the
changes in the surface potential originating from rear-
rangements of the electronic charge density near the sur-
face. The whole procedure is pictorially summarized in
Fig. 2.

To avoid conceivable confusions, we want to specify
the term idealized surface. In our context it is a purely
mathematical, auxiliary construction represented by the
matrix M (E,q). Here we calculate the matrix elements
of the bulk Hamiltonian, containing the bulk potential, in

the bulk layer orbital basis 7, which is restricted, howev-

er, to the two half-spaces. Thus there is no coupling be-

tween the left and right half-space in M t(E, q) as defined

in Eq. (22). In contrast to this idealized semi-infinite

crystal with a physically meaningless surface, we can
define an ideal surface in a more physical sense as follows:
In this case the atoms still reside at their bulk positions
on the layers from m = —Oo up to m = —1, but the rear-
rangement of the charge density at the geometrically
ideal surface, as compared to the bulk situation, is self-

consistently taken into account. In a former paper, we11

have calculated the electronic properties of ideal Si(001)-
(1 X 1) in this way using the Green-function formalism.

Now we continue in the description of the formalism.
The perturbation matrix U(E, q) depends on the charge
density n (r) of the semi-infinite crystal with its recon-
structed surface. The charge density
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n (r)=2 f g & g, (r)P,* (r)5(E —E, (q))dE
q s

=2f g g QX&(q, r)C,'(q)C&' (q)XI*(q, r)5(E —E, (q))dE
q s I I'

can be calculated using the surface Green function

2 EF
n(r)= ——lim Im g +XI(q, r) GI 1(E+ic, q)dEXI'(q, r)

7T p~p+
q 11'

(33)

(34)

We remind the reader that the superindex 1 stands for a, m, p, . If we want to calculate n (r) at the surface, the sums over
m and m' can be restricted to subspace B due to the strong localization of the layer orbitals. The calculation of the
charge density deeper in the selvedge and in the crystal can be achieved using the following representation of the charge
density:

n (r)=n "(r)+5n (r), (35)

with

E
XI(q r)f GI, I(E+~E q)"EXP(q r) XI(q r—)f GI', I «+~ Eq)dEXI'*(q r)

'7l
~ p+

q I I' —oo
t

(36)

In principle, we have to extend the sums over m and m'
over all layers from m = —~ to m =+ oo. The contribu-
tions of GII (E,q), however, vanish if m or m') l.

If r is inside the crystal, we can restrict the sums over
m and m' to subspace B. This results from the fact that
due to the localization of the layer orbitals the contribu-
tion of the second term in Eq. (36) for m or m

' ) 1 is
negligible. On the other hand, the contributions of the
first and second terms in Eq. (36) cancel each other for m
and m' & —m„. This condition actually defines m„ for a
chosen accuracy of the calculations. Thus only matrix
elements of G z~(E, q) and U ~z(E, q) enter the calcula-
tion of the charge density via Eqs. (31), (34), and (36).
The dimension of the matrices to be evaluated in the
scattering-theoretical method is determined by the spatial
extent of the transition region in the surface potential (see
Fig. 1), which has to be calculated self-consistently.

The most important single-particle quantity in the out-
come of the calculations is the layer density of states
(LDOS). It allows one to clearly discern bound surface
states from surface resonances in the electronic spectrum
of a surface system. Furthermore, it is most important
for comparisons of the theoretical results with experi-
mental data of angle-integrated and angle-resolved sur-
face spectroscopy. The LDOS is given by

X,(E,q) =2 g g C;(q)C;*(q)S, I(q)5(E —E,(q)) (37)
I' s

and can be calculated from the surface Green function.
To emphasize the extreme resolution of our approach
with respect to the relevant degrees of freedom, we write
I =a, m, p explicitly in

N „(E,q)= ——lim Im g G „„(E,q)
2

7T ~ p+ I Ia, m, p

XS, „„(q). (38)

According to Eq. (38), the layer state density can easily
be resolved with respect to energy E, wave vector q,
orbital-type a, layer index m, and basis atom p. This is
extremely useful for both the physical interpretation of
surface features on the basis of theoretical results and for
comparisons with experimental data from high-resolution
surface spectroscopy.

Finally, we mention that there is an alternative ap-
proach to compute the electronic properties of solid sur-
faces within the concept of self-consistent scattering
theory. It is forma11y somewhat more straightforward
than the formalism given in this subsection, but it is
much more time consuming in the actual calculations.
We defer its description to Appendix B.

B. Bulk Green function 6

[ES (q) H(q))G (E q) =—1 . (39)

Evaluating the matrix elements of 6 in a straightfor-
ward way yields precisely the same analytical form as in
the tight-binding version' ' of the theory. We find

The evaluation of the bulk Green function G (E,q) in
the layer orbital basis IXI(q, r)I is the starting point of
the calculations. It is defined by

~ (x' —zo )G „~ „(E,q)= g e
N3

i

a, vmp g a, v m vik (k —A. . . ) ~.",. (k, q+g, )~." . . (k,q+g, )

k~ E E„(k~, q+g )— (40)
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Here, Ig„ I and [a"„]are the eigenvalues and eigenvec-

tors of the bulk electronic-structure problem. The bulk
basis atom index v is uniquely related to layer index m

and basis atom index IM in the surface unit cell. The vec-
tor g- is an element of the two-dimensional reciprocal
net, and the prime at the sum over the values Ig. [ is

meant to indicate that only those g- vectors that fulfill

the requirement that the vector k~+q+ g is an element
of the first bulk Brillouin zone have to be taken into ac-
count. Thus the summation interval in the k~ sum de-

pends, in principle, on g . It has been shown that the
summation interval for k~ can be transformed using bulk
symmetry properties into a sum over kj with fixed boun-
daries. Of course, thereby the set of g vectors that must
be summed is further reduced. [For more details of the
calculation of G I &(E,q), see Refs. 19 and 40.] Trans-
forming the kj sum into an integral and employing an an-

alytic continuation of the integral into the complex k~
plane (conformal mapping) lead to very efficient
schemes ' for the evaluation of G (E,q). The numeri-
cal effort in our method rapidly increases with increasing
maximal range of interactions that need to be retained in
the Hamiltonian and overlap matrices. In the empirical
tight-binding version of the approach, only interactions
up to second-nearest neighbors are typically taken into
account. In the self-consistent version we have to deal
with longer-ranged interactions. In the calculations
presented in this paper, e.g. , it turned out to be necessary
for convergence to retain interactions up to fifth-nearest
neighbors. Therefore it has been expedient to calculate
the bulk Green function directly from Eq. (40) on a very
dense kj mesh.

is determined by the 1ong-range part of these potentials.
The effective potential V,s(r), averaged over the

surface-parallel components of r, is shown in Fig. 3(a&.
The dots indicate the positions of the layers on which the
layer orbitals are localized. Instead of cornputirjg the po-
tential V,s(r) from the charge density n„,(r) of the
semi-infinite crystal, we construct a potential V,s(r) from
the symmetrized charge density,

n„,(r) for z &0,
n (r)= '

n,„,( —r) for z p0 . (g3)

The advantage of introducing this auxiliary potential
V,s(r) [see Fig. 3(b)] lies in the fact that it has inversion

symmetry by construction, i.e.,

V,s(r) for z &0,
V tr(

—r) for z ~0 (44)

and can thus be represented by the bulk potential V",s(r)
and a perturbation 5 V(r }, which is localized in the z
direction, as shown in Fig. 3(c),

v (z)

HIOOONOOOOOOOOOIOOOOOOH

I I I

z~ 0 zo

v (z)

III. COMPUTATIONAL ASPECTS Lllllll~ii~

A. Surface potential

In this subsection we describe the calculation of the
effective one-particle potential V,s(r) from the charge
density. The direct computation of the potential in real
space is unsuitable due to the nonlocal dependence of the
Coulomb potential on the charge density. In our ap-
proach we make use of electrostatic neutrality of the sys-
tem. For this purpose we introduce the total charge den-
sity n„,(r). Since we are using pseudopotentials in the
actual calculations for the Si(001)-(2X1) surface, n«, is
defined as the sum of the charge density of the valence
electrons n(r) and of the ions n, (r), i.e., .

n v(z)

5 n«~(z)

I I I—zg 0 zo

n„,(r}=n(r}+n,(r) . (41} 5 n«~(z) (e)

The ionic charge density n, (r) was constructed from the
representation of the full potential given in Eq. (2} as a
Hartree plus an exchange-correlation potential,

tSS
~l ll ~

yl tll

ll tll

~ ~ II
\1 ll 1& ll
\ I $ ~

))&
ll 11 ll
ll ll 11

~
l 1 ill ll

]1114 ply
I ll ll

s lll ~ ) y $ ll l
li II gl1
\ ~

n„,(r')
V,s(r)=2f d r'+V„,[n(r)] .

r —r'

Note that the electronic charge density is counted posi-
tive, while the ionic charge density n;(r) is counted nega-
tive, as usual in density-functional theory. We note in
passing that, if nonlocal pseudopotentials are used, n;(r)

FIG. 3. Schematic plot of (a) the averaged potential V,&(z),

(b) the auxiliary potential V,&(z), and (c) the difference potential

6V(z) in the surface region. The charge-density difference

6n „,(z) is shown in (d). Its periodic continuation beyond the
definition interval is shown by dashed lines in (e).
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V,s(r)= V,a(r)+5V(r) . (45)

The corresponding charge-density difFerence 5n„,(r) is
also localized in the same spatial region, as can be seen in
Fig. 3(d). It is important to note that we can use V,it(r)
for the calculation of the matrix elements in Eq. (Sa) in-
stead of V,s.(r) if the distance zo between the center of in-
version symmetry and the first layer [see Fig. 3(b)] is large
enough. This results from the strong localization of the
layer orbitals in the left half-space z & —zo.

Now we address the calculation of 5V(r) from 5n„,(r).
Parallel to the surface, 5V(r) and 5n«, (r) are periodic
functions, which rapidly go to zero outside the perturba-
tion region L, /2—& z & L, /2. Standard Fourier-
expansion techniques, well known from the three-
dimensional systems, can be applied for V,z(r), when a
little formal trick is used. For this purpose we employ a
periodic continuation of 5n„,(r) along the z axis outside
the interval [ L, /2, —L, /2], labeled 5n,'„(r), with the
following properties [see Fig. 3(e}]:

The electronic charge-density change 5n (r) is calculated
directly in real space from Eq. (36) for L—, /2 &z &0 on
a mesh of n, n~n, /2 points in the surface unit cell. Then
it is continued to 0 & z & L, /2 due to inversion symmetry.

The electronic part of 5n„,(g, g, ) is coinputed by the
standard summation technique of the Cooley-Tukey
discrete complex fast Fourier transformation (FFT)
from 5n(r). The ionic contributions to the total charge-
density difference will be added afterwards.

In the calculation of the Coulomb potential from the
charge density, we have to take into account that the
Fourier series in Eq. (47} is limited to

~

z
~

&L, /2.
Therefore, the representation of 5V„,(r) in terms of

5n„,(g, g, ) contains corrections depending on L, in addi-
tion to the "usual" Fourier representation of the
Coulomb potential in the case of three-dimensional
periodicity. Our computations show that the main con-
tribution of these corrections is a constant shift C of the
potential,

5n,'„(r) for
~

z
~

&L, /2,
«~ =

0 for
I

z
I

&L /2, (46)
C = g Sir 5n«, (0,g, )g, cos

g, (&0)

g,L,
2

(49)

with

5n,'„(r)= g 5n„, (g, g, )e
8 Sz

(47)

In this Fourier expansion of the fictitious charge-density
difference 5n,'„(r), g is a two-dimensional vector of the
reciprocal surface net and g, is given by

The other contributions are extremely small for suitably
large L, values. This is a result of the neutrality of
5n„,(r) and of the vanishing dipole moinent due to inver-
sion symmetry. In the case of the reconstructed Si(001)-
(2&(1) surface with L, =3ao, these corrections are van-
ishingly small and we have therefore neglected them.
The difference potential

A ~+ A
g, =g,z=—n, z

z

with n, =0,+1,+2, . . . .
5V(r) =5V„,(r)+5V„,(r)

(48)
was calculated from

g Sir5n„, (g, g, )(g +g, ) 'e ' —C for ~z
~

&L, /
5V„,(r)= s, s,

0 for ~z
~

)L, /2.
(50)

6V„(r)= V„,(n (r)+5n(r)) —V„,(n (r)), (51)

and it is transformed into reciprocal space by FFT. Us-
ing Gaussians as localized orbitals, the matrix elements in
Eq. (Sa) can all be calculated analytically in the Fourier
representation of the potential for each g, g, .

B. Charge-density calculation
by complex energy integration

Computation of the charge-density difference 5n (r) re-
quires the determination of the energy-integrated Green
functions according to Eq. (39). These integrations can

Finally, the exchange-correlation potential V„,(r) is cal-
culated in the local-density approximation from the elec-
tronic charge density on the same point mesh as used for
the Hartree potential,

be carried out most efhciently by an analytical continua-
tion of the integration path from the real energy axis onto
a contour in the complex energy plane, as was suggested
by Williams et al. in Ref. 23. For details, see Ref. 48.
The advantage of this method is illustrated in Fig. 4,
where we have plotted the negative of the imaginary part
of a diagonal element of a Green function as a function of
complex energy E+iE. For c.=0, the picture shows ~
times a particular layer density of states. Along the real
energy axis the Green function mostly shows pronounced
structure due to the poles E,(q). Therefore, an extremely
dense mesh of energy points would be necessary for an
exact evaluation of the integrals along the real axis. This
can be avoided by displacing the contour into the com-
plex plane, yet allowing the exact calculation. We have
used the rectangular integration path as shown in Fig.
4(b). Along this path the imaginary part of G(E,q) is a
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(c)

0
E

lK
F Ep EF

purpose we have decomposed the self-consistent bulk po-
tential into a sum of atom-centered spherical pseudopo-
tentials which were fitted to Gaussians. The superposi-
tion of these atomic, " short-ranged potentials leads to
the starting potential in the surface calculation. The
efficiency of this procedure has been demonstrated by
Bernholc, Lipari, and Pantelides' in their calculations of
electronic properties of bulk vacancies in silicon. In the
next steps we compute the complete set of matrix ele-
ments, solve the Dyson equations for the idealized and
reconstructed surfaces, respectively, and calculate the
charge density as described in the preceding subsection.
The calculation of the Coulomb potential completes the
first self-consistency loop. To avoid instabilities in the
following iteration steps we have used the iteration
scheme due to Anderson. In particular, we have em-

ployed a numerical algorithm adapted from Bachelet, '

which takes up to three preceding iterations into con-
sideration. The iteration process is repeated until input
and output potentials agree to within 10 Ry on our
mesh.

—Ie

I

320 90 60
Energy (eV)

0.0

IV. APPLICATION TO Si(100)-(2 X 1 )

A. General remarks

FIG. 4. Displacement of the energy-integration contour in

Eq. (36) from the real axis (a) into the complex energy plane (b).
The functional form of a typical integrand as a function of c is

shown in the complex plane (c). Note that the integrand has

very sharp structures on the real axis (@=0), while it is well

behaved, smooth, and easy to integrate in the complex plane

(e.g., for c, =1).

smooth function of energy. The same is true for the real
part of G(E,q), which is not shown in Fig. 4. In our
case, for a=1 eV, only 60 sampling points along contour
b have been sufficient to compute the charge density
within 0.5% accuracy. The accuracy can simply be test-
ed by integrating the bulk valence charge density, yield-

ing the number of electrons per unit cell within 0.5%.
The requirement on the chosen contour is that it encloses
all occupied states. Therefore, this procedure is well suit-

ed if the Fermi energy EF is known a priori or if there is a
gap between occupied and empty states. To avoid any
complications due to either metallic surface-state behav-
ior or the changes of EF during the self-consistency itera-
tions, we have used the rectangular integration path up to
the bulk Fermi level EF. We then continue on the real
axis until the Fermi level EF of the surface system is
reached. The very time-consuming calculation of
G (E,q) has to be done only once on the E,q mesh be-
cause the same rectangular integration contour is used in
every self-consistency loop. For advantages or disadvan-
tages of other integration contours, see Ref. 23 or 48, re-
spectively.

C. Iteration scheme

We start our self-consistency loop with an empirical
potential V' '(r) for the semi-infinite crystal. For this

In this section we want to present some representative
applications of the self-consistent Green-function method
for semi-infinite solids and discuss these results from a
methodological point of view in comparison with slab or
supercell techniques. Further applications of our method
for calculations of the electronic properties of (2X1)-
reconstructed Si(001) and Ge(001) surfaces and related
discussions of the results in comparison with photoemis-
sion and scanning-tunneling-spectroscopy data have been
given in Refs. 12, 22, 52, and 53. Here, we use Si(001)-
(2X 1) as an example, since this technologically most im-

portant surface has been studied in great detail by many
groups. The large variety of experimental and theoretical
investigations of this surface has been reviewed, e.g., in
Refs. 52 and 54. It is obvious from the literature that a
large number of experimental findings can be explained
on the basis of the asymmetric dimer model that Chadi
proposed on the basis of semiempirical total-energy-
minimization calculations. Using this surface
configuration, Ihm et al. worked out the surface-
electronic structure by a self-consistent supercell calcula-
tion. Minimizing the total energy in the self-consistent
supercell approach, Yin and Cohen arrived at an asym-
metric dimer model as well, which showed only quantita-
tive refinements as compared to the former. Later on,
more improved models have been studied on the basis of
self-consistent total-energy calculations by Northrup
and by Pandey. For the following methodological dis-
cussion, we choose one particular model. We have previ-
ously discussed the physical aspects of the various
different models in comparison with spectroscopy data in
Ref. 52.

In this paper we choose the asymmetric dimer model in
order to identify the influence of diferent basis sets (plane
waves versus Gaussian orbitals) and different substitution
geometries (slab or supercells versus semi-infinite). All
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the self-consistent calculations mentioned above
have been carried out using supercell configurations and
plane-wave basis sets. While Refs. 55 —57 concentrated
on the surface-structure aspect, the self-consistent
surface-electronic band structure was only given in Ref.
24. Using these results as a reference for comparisons,
we have employed in our calculations the same surface-
structure model, the same ionic pseudopotential, and the
same exchange-correlation potential as used in Ref. 24.

In a first step we carried out self-consistent Green-
function calculations for the semi-infinite crystal with a
reconstructed surface using localized Gaussian orbitals.
In a second step we carried out supercell calculations-
as was done in Ref. 24 —but we used the same localized
orbitals as in step 1, as opposed to a plane-wave basis set.
This allows us to identify basis-set influences on the re-
sults. The effect of slab enlargement has also been stud-
ied. In our calculations we have used, for comparison
sake, the potential of Ref. 10. Exchange and correlation
effects were incorporated by a Slater-type LDA potential
as in Ref. 24. The reconstruction geometry is described
in Ref. 25.

A. Atomic-orbital basis set

modified decay constants for the orbitals at or near the
surface could improve the description of the surface band
structure. To this end we have included additional orbit-
als at the outermost layers. This can be done easily
within our approach. The resulting changes in the elec-
tronic structure of the Si(001)-(2X1) surface have been
marginal.

The lattice sums in Eqs. (8a) and (8b) and the corre-
sponding bulk equations have been restricted to fifth-
nearest neighbors because of the strong localization of
the Gaussian orbitals used. As a consequence, the per-
turbation matrix U needs to contain only four layers of
silicon atoms (i.e., mz ——4) to decouple the two semi-
infinite crystals.

C. Symmetry considerations

The numerical effort can be reduced considerably by
taking the symmetry of the Si bulk crystal and the sym-
metry of the (2)&1) surface into account. The bulk
Green function G (E,q) enters each loop in the self-
consistent iteration procedure. Therefore it is expedient
to calculate G (E,q) in advance and store it on a disk.
Since the matrix elements of 6 have to be stored for

In the matrix representations of the Hamiltonian, we
use atomic orbitals. The angular part of the localized or-
bitals is represented by spherical harmonics YI and the
radial part is represented by Gaussian functions

P,(r)=N r'Yt (8,y)e (52)

The superindex a corresponds to I, m, and y. These in-
dices should not be mixed up with the indices of Sec. II.
The factor N provides the normalization of each atomic
orbital. In our calculations we have used Orbitals with
I =0, 1, and 2 (s,p, d orbitals) and an additional function
commonly referred to as the s* orbital. It is of l =0 sym-
metry, but has a prefactor r . These ten orbitals form
one shell with the decay constant y. In bulk calculations,
good basis-set convergence is reached by using two shells
with y =0.2 and 0.6. This corresponds to 20 orbitals per
atom. We restrict ourselves to one shell, which is ap-
propriate for the potentials used. Within this shell, how-
ever, we allow for diferent decay constants yt for each l.
These decay constants are determined by minimizing the
total energy of the bulk crystal according to the varia-
tional principle of density-functional theory. A compar-
ison of calculated bulk band energies at high-symmetry
points as calculated using two shells with y, =0.2 and
y~=0. 6 or one shell with y, =0. 19, y =0.18, yz ——0.21,
and y + ——0.4 is given in Table I. The results for one
shell with one decay constant y =0.2 only are also shown
for comparison. The agreement between the two-shell
calculation and the one-shell calculation with different
decay constants for each I is very good, with the excep-
tion of the width of the valence band. Nevertheless, a
basis set with ten Gaussian orbitals per atom and
different decay constants for each I leads to a reasonable
description of the bulk. We have employed the same
basis set for the calculation of the surface-electronic
properties. One might expect that a basis set with

TABLE I. Comparison of the band energies of bulk Si as cal-
culated by the self-consistent LCAO method using ten [(a) and

(b)], or twenty [(c)] Gaussian orbitals per atom. In calculation
(a), the decay constants of the s, p, d, and s* orbitals have been
determined by energy minimization (for details, see text), while
in the one-shell basis set (b) the same decay constant y =0.2 has
been used for all orbital types. Calculation (c) employs a two-
shell set of 20 orbitals per atom with y] ——0.2 and y2

——0.6 for
each orbital type.

r,
I vs

I]s
I2

X]„
X4„
X],
Lz

L3,
Lic
L),
~rntn

(a)

—12.39
0.0
2.92
3.55

—8.63
—3.11

0.90
—10.50
—7.58
—1.30

1.60
3.70
0.74

(b)

—12.32
0.0
3.02
4.09

—8.06
—3.06

1.19
—9.90
—7.31
—1.32

2.47
3.80
1.09

(c)

—12.83
0.0
2.89
3.05

—8.58
—3.14

0.92
—10.50
—7.53
—1.34

1.59
3.77
0.74

Expt.

—12.5'
0.0
3 4'
4.15b

—2.9
1.3'

—9.3'
—6.7'
—1.2'

2.04
39
1 17'

'Landolt-Bornstein, Zahlen perte und Funktionen aus ¹

turtoissenschaften und Technik, edited by K. H. Hellwege, New
Series (Springer-Verlag, New York, 1982), Group III, Vol. 17a.
'W. E. Spicer and R. C. Eden, in Proceedings of the Ninth Inter
national Conference on the Physics of Semiconductors, Moscow,
1968, edited by S. M. Ryvkin et al. (Nauka, Leningrad, 1968).
'M. S. Hybertsen and S. G. Louie, Solid State Commun. 51, 451
(1984).
R. Hulthen and N. G. Nilsson, Solid State Commun. 18, 1341

(1976).
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many E and q values, a reduction of both central-
processing-unit (CPU) time and of storage space by sym-

metry considerations is advisable. It is possible to calcu-
late the bulk Green function for the (2X1) surface unit
cell from the Green function G (E,q) for the (1X1)unit
cell. We note that the g vector sum in Eq. (40) runs only

I

over very few g, vectors, fulfi11ing the required restric-
tion.

For the Si(001)(2X1) surface the sum reduces to two
terms, namely g, =0 and g2

——(m. /ao)(1, 1,0), where ao is
the bulk lattice constant. The Green function is then
given by

(53)

H &(a,b)= fg (r a)B(r)y&(—r b)d'r— (54)

are related to matrix elements H &(a,b') by

H &(a,b)= g D,H .&(a,b')D&&
a', P'

(55)

where Go "~"(E, q+g ) directly follows from an in-

spection of Eq. (40).
Here we have introduced the Green function

6 " "(E,q) of the (1X 1) unit cell. The factor —,
' results

from the fact that there is only one basis atom in each
two-dimensional (1X1) unit cell. For the same reason
we have dropped the indices p and p' at G " ' (E,q).
Thus the bulk Green function of the (2 X 1)-reconstructed
unit cell is a mere superposition of G " "at q+g, and
at q+g2. This is a simple backfolding effect in k space,
since in real space the unit cell is enlarged. Using this
symmetry bisects the necessary storage space since G is
4 times as large as 6 " ". In addition, we can make use
of cell symmetries of the (1X1) surface. This reduces the
k ~ sums occurring in the evaluation of G " " to posi-
tive k~ values. In total, we have used 321 k~ points for
the calculations of 6 " ". Further symmetry con-
siderations show that the information contained in the
m 0&m matrix G " "with m =1,M and m'=1, M can
be deduced from a smaller matrix G (E,q) with I = 1,M
but m

' = 1,2. Therefore, 6 " " can be stored in a very
compressed way.

In the case of the Si(001)-(2X 1) surface, the number of
independent elements of the Hamiltonian matrix is re-
duced due to mirror symmetry with respect to the mirror
plane spanned by the vectors ( —1,1,0) and (0,0, 1). Ma-
trix elements of the type

a„

Qy

a,

a, +c„
b= ay+Cy

b,

(56)

Qx Cy

b = Qy
—c~

b,

The matrix D describes the transformation of the local-
ized orbitals,

y (r')= gD y (r),
a'

for r=(x,y, z) transformed to r'=( —y, —x, z) .

(57)

D. Results and discussion

In this subsection we will discuss the electronic struc-
ture of the Si(001)-(2X1) surface in the asymmetric di-
mer configuration. We compare the results of five
different calculations as listed in Table II. Our self-
consistent Green-function calculation will be referred to
as A. The results of Ihm et al. for a ten-layer supercell
calculation with a plane-wave basis set is labeled B. Our
own self-consistent slab calculations using localized
Gaussian orbitals for ten layers in the slabs or 12 layers in
the slab are labeled C and D, respectively. Fina11y, we
contrast our calculations with the results of an empirical
tight-binding Green-function calculation by Schmeits

TABLE II. Summary of the different self-consistent (SC) calculations for the Si(001)-(2X 1) surface,
whose results are discussed in comparison in this paper. (PW denotes plane waves. )

A
B
C
D

Method

SC STM
SC supercell
SC slab
SC slab

Geometry

semi-infinite
10 layers
10 layers
12 layers

Basis set

LCAO
pw

LCAO
LCAO

Reference

This work
Ihm et al. (Ref. 24)
This work
This work



P. KRUGER AND J. POLLMANN

et al. ' In the self-consistent calculations A —D the
same ionic pseudopotentials and xc potentials have been
used. In our SC STM calculation we have taken the rear-
rangement of the charge density at the topmost four lay-
ers (m„=4) into account. The perturbation area has a
length of 16.293 A, which is 3 times the bulk Si lattice
constant. The real-space mesh for the charge-density and
potential calculatio~ contains n~~,

——11, n~!, ——21, and

n~ =39, i.e., 9009, points in total. All q integrations have
been evaluated using four special points in the irreducible
part of the surface Brillouin zone.

The surface band structure following from the Green-
function calculation (A) is shown in Fig. 5. The shaded
area represents the projected bulk band structure. True
bound states have been plotted as solid lines and surface
resonances are indicated by dashed lines. %e have la-
beled the various surface states according to their physi-
cal origin and character, which can be identified by
analyzing atom-, orbital-, and wave-vector-resolved layer
densities of states. Together with the corresponding
charge-density contours, we obtain a direct correlation
between electronic structure and spatial arrangement of
the electronic charge density at the surface of a semi-
infinite solid.

The surface band structure exhibits a very rich spec-
trum of surface bands which originate from dangling

bonds, backbonds, and dimer bonds. The states S& —S&
have backbond character and are mostly s-like. The
bands 8& —B& have backbond character as well, but the
related states are strongly p-like with small s and d ad-
mixtures. The band D; stems from the dimer bonds and
the D„and D„,„„bands are related to the dangling
bonds at the up and down atoms, respectively.

As an example for the information content in the sur-
face Green function and for the analysis of spectral
features, we show in Fig. 6 the layer densities of states at
the E point of the surface Brillouin zone for the first five

layers and for a bulk layer in comparison. For clarity's
sake, only the energy region from —5 to + 1 eV is
shown. Surface-induced state density peaks can clearly
be identified and their spatial localization properties be-
come obvious. The dangling-bond features are most pro-
nounced at the surface layer (m =1). The backbond

85 B~B3Bg D~ B~ Dup

U)

~ Ac

U)

CU

C7

—io-
lQ
CJo Bulk

~

—15

r J

FIG. 5. Self-consistent electronic structure of the Si(001)-
(2g 1) surface as resulting from our Green-function calculation
for the asymmetric dimer model. The bands 5, -55 and 8& —85
stem from backbond states. D, is the dimer-bond band, while
D„p and Dd,„„are dangling-bond bands originating from the
dangling bonds at the up and down atoms in the surface dimer.

1.0
I I I I I—5.0 —4.0 —3.0 —8.0 -1.0 0.0

Energy (eV)
FIG. 6. Wave-vector-resolved layer densities of states at the

first five layers of the reconstructed Si(001)-(2&(1)surface at the
E point of the surface Brillouin zone in comparison with a
bulk-layer DOS. Note the localization of the dangling bonds at
the surface layer, while the backbonds are most pronounced on
lower-lying layers.
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FIG. 7. Wave-vector, orbital-, and atom-resolved surface lay-
er density of states {see layer 1 in Fig. 6 for comparison) at the K
point of the Si{001)-{2&1)surface. The solid lines show the
LDOS at the up atom and the dashed lines give the contribution
of the down atom to the LDOS. The backbond states have only
a small amplitude at the surface layer.

states are stronger on the second and third layers. The
dimer-bond state is a strong resonance which energetical-
ly coincides with the bonding p states of the bulk crystal.
This is due to the fact that the formation of the surface
dimers leads to a strong chemical bond between the up
and down atoms in each unit cell.

To further highlight the physical origin of the spectral
features at the surface, in Fig. 7 we have decomposed the
surface-layer state density (layer 1) of Fig. 6 into its s con-
tribution and the p contributions parallel and perpendicu-
lar to the surface. These densities are plotted separately
in Fig. 7 for the dimer up atom (solid line) and the down
atom (dashed line). The d contribution to the states in
this energy region is very small and has not been included
in the figure, therefore. The p, contribution to the LDOS
is perpendicular to the surface, while the p, , o and

p» o contributions are in the surface plane. The figure
clearly reveals that the feature near 0 eV is related to the
down atom, while the feature near —1 eV stems from the
up atom. The small p, , o components of the LDOS of
D„and Dd,„„indicate a small tilt angle of the orbital
lobes with respect to the [001] direction. The backbonds

have only small amplitudes on the surface layer, as men-
tioned already in the context of Fig. 6.

While layer state densities are most useful for analyz-
ing energetic positions of bound states and resonances
and for comparisons with surface-spectroscopy data,
charge-density contours are still more appropriate to
identify the character of a given surface feature. In Figs.
8(a) —8(c) we show the charge density of the predominant
surface states at Si(001)-(2X 1) plotted for the K point of
the surface unit cell. The strong localization of charge
density in the dangling bonds at the up atom [Fig. 8(a)]
and the down atom [Fig. 8(b)] is evident and confirms the
identification as D„and Dd, „„states, respectively. Note
the strong localization of these features near the surface
plane. The dimer bond state D, [Fig. 8(c)], on the con-
trary, is strongly resonant with bulk states. Therefore, its
charge-density contours are more extended than D„and
Dd, „.„. Nevertheless, the formation of a strong chemical
bond between the up and down atoms can clearly be seen.

Due to the change of the chemical environment of the
outermost layers, the backbonds of the surface dimers, as
well as the bonds between the following layers, are some-
what distorted, giving rise to the backbond resonances
B; As e. xamples, we show in Figs. 9(a)—9(c) the charge-
density contours of the states B, , B4, and B, at the K
point whose layer state densities were given in Figs. 6 and
7, respectively. The drawing plane has been shifted by
ao&2/4 in the [110] direction, as compared to Figs.
8(a) —8(c). Therefore, now the atoms of the second and
third layers reside in the drawing plane, rather than the
dimer atoms and the fourth-layer atoms, as was the case
in Figs. 8(a) —8(c). We see that the electrons building up
the resonances B„B4,and B5 are mainly localized at the
atoms of the second and third layers. This corresponds
to the localization of the predominant layer-state-density
peaks in Fig. 6 on the second and third layers for B& B4,
and B5.

The electronic states at the other q points have been
analyzed in the same way. In the energy range from —5
to —13 eV all bands have strong s-like character. The p-
like backbonding states B; are mainly resonant with bulk
states. The same holds for the dimer-bond band D, , as
discussed above for the K point, as one example. The sit-
uation for the dangling bonds with their energy bands in
the gap region or near the edges of the projected bulk
bands is quite different. This results from the fact that
there is no comparable orbital configuration in the bulk
crystal. The dangling bonds of different surface unit cells
are second-nearest neighbors in the [110] direction and
their distance in the [110] direction is twice as large.
Therefore, their interaction along the dangling-bond
chains, corresponding to the J—K and J' —I directions,
leads to a strong dispersion of the bands in these k

~

direc-
tions. Along the perpendicular direction there is little in-
teraction of the dangling bonds and the bands are there-
fore rather flat from I to J and from K to J'.

We will now turn to a comparison with the results of
self-consistent supercell or slab calculations (B)—(D).
These calculations yield all the gross features of the sur-
face band structure as well. There are, however, interest-
ing differences which we now address. A comparison
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Dd „, and (c) D, at the K point for Si(001)-(2 )& 1 ). Atoms
represented by solid dots lie within the drawing plane.

FIG. 9. Charge-density contours of the backbond states (a)
B, , (b) B4, and (c) B& at the K point for Si(001)-(2&1). The
drawing plane has been shifted by aov'2/4 in the [110jdirection
with respect to Fig. 8. Therefore, now the atoms of the second
and third layers lie in the drawing plane.
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with the surface band structure of the supercell, contain-
ing ten Si layers in the unit cell, shows (see Fig. 4 in Ref.
24) that the dangling-bond bands D„and Dd,„„result
significantly higher in energy from the plane-wave calcu-
lation of Ihm et al. , as compared to our results in Fig.
5. Opposite this, the backbond state B, results at lower
energies in calculation 8, while it is a localized gap state
at the I( point in our results. Furthermore, Ihm et al.
have not identified any bound states in the small
"stomach" gap at the K point near —3 eV, opposite our
SC STM calculations. Investigation of the origin of these
differences in the outcome of the calculations A and B is

interesting from a methodological point of view and use-
ful because of the fact that our calculated D„band is in
much closer agreement with photoemission data than the
band of Ref. 24 (see Fig. 2 in Ref. 22). This deficiency of
the supercell result as calculated with a plane-wave basis
seems to be a general shortcoming of those calculations
since it occurred for C(111)-(2X1), Si(111)-(2X1), '
and Ge(111)-(2X1), ' as well.

Since the surface-structure model and the underlying
ionic and xc potentials are the same in calculations A and
B, differences in the results can only stem from the
different substitute geometries (supercell versus semi-
infinite) or basis sets (plane waves versus localized Gauss-
ians) used. To identify the influence of the substitute
geometry as an approximation of the semi-infinite solid,
we have carried out slab calculations with ten layers (C)
or 12 layers (D) in the unit cell using the same localized
basis as in A. The resulting surface band structures are
given in Figs. 10 and 11, respectively, and should be com-
pared with our Fig. 5 and with Fig. 4 of Ref. 24. In Figs.
10 and 11 we have plotted the slab bands as resulting
from our calculations together with the projected bulk
band (hatched area). To be able to superiinpose the pro-
jected bands in the slab results, we have aligned the ener-

gy scales in the different calculations by adjusting the
average potential at the slab centers to the average bulk
potential. This problem does not occur in Green-
function calculations. Comparing Figs. 10 and 11 with
Fig. 5, we note that the dangling-bond bands in the slab
results are split up by interactions of the surface states
across the fairly thin slabs. This splitting, e.g, amounts to
0.4 eV at the I point of the ten-layer slab and to 0.1 eV at
the I point of the 12 layer slab. In general, the splittings
of surface bands throughout the surface Brillouin zone
are smaller for the 12-layer slab, as is to be expected.
This band splitting occurs, of course, also in plane-wave
supercell calculations, as we and others have observed. It
has become customary, nevertheless, to suppress these
artificial splittings and to plot "mean values" of the split
bands. Therefore, no splittings are shown in Fig. 4 of
Ref. 24.

Comparing Figs. 10 and 11 resulting from calculation
C and D, we find a lot of similarities. There is, however,
one interesting difference that we want to comment on,
i.e., the degeneracy of the D„and Dd,„„bands from E
to J in the ten-layer slab result in Fig. 10. Investigating
the crystal geometry reveals that in the case of Si(001)-
(2X1) slabs containing 10, 14, 18, etc. layers the surface
dimer is located in a plane which does not contain the

—15

I' J

YnZ' argyle IR8K5

FIG. 11. Same as Fig. 10, but for a 12-layer slab.

FIG. 10. Self-consistent electronic structure of the recon-
structed Si(001)-(2&(1) surface as resulting from our ten-layer
slab calculation using a localized Gaussian-orbital basis set.
The bands have been superimposed by the corresponding pro-
jected bulk band structure (hatched areas). Note the twofold
degeneracy of all the bands between I( and J'.
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center of inversion. According to this glide plane, there
are symmetry operations containing pure rotations and
nonprimitive translations. The corresponding space
group is nonsymmorphic. In this case the representa-
tion of the energy bands at J' is two dimensional. Includ-
ing time-reversal symmetry, this twofold degeneracy of
all bands pertains for the entire E—J' line. Opposite this,
in the case of slabs or supercells with 12, 16, 20, etc. lay-
ers of silicon atoms the mirror plane including the sur-
face dimer always contains the center of inversion. All
representations of this symmorphic space group are one
dimensional and there are no degeneracies of the energy
bands by symmetry. In general, surface-state bands
without any splittings result from the Green-function cal-
culations for semi-infinite crystals. If we compare the
above-discussed "mean values" of the bands in Figs. 10
and 11 with Fig. 5, we find quite good overall agreement.
From this result we conclude that it is not the substitute
geometry which gives rise to differences in the energy po-
sition of pronounced dangling-bond bands.

The second possible cause of discrepancies could be the
basis set. The basis-set influence can be identified by
comparing our ten-layer result of calculation C in Fig. 10
with the data of Ihm et al. in Fig. 4 of Ref. 24. It be-
comes obvious that the dangling bonds resulting from the
plane-wave calculation (8) are lying higher in energy by
roughly 0.6 eV as compared to the localized basis calcula-
tion (C). In addition, there is a distinct difference in the
dispersion of the S3 band resulting from the two calcula-
tions. The basis set used in Ref. 24 includes plane waves

up to 2 Ry in kinetic energy only. This basis set leads to
an overestimated gap energy Eg ——1.4 eV in the bulk
bands. Increasing the number of plane waves up to an
energy cutoff 3.5 Ry shifts the dangling-bond bands down
in energy by 0.25 eV with respect to the results of Ihm
et al. , as was shown by Wolfgarten in our group.
From this result and from our localized-orbital calcula-
tion (C), we conclude that an improvement of the basis
set of calculation C, as compared to 8, is responsible for
the improvement in the description of the occupied D„
band, as compared to experiment. While the small basis
set used in Ref. 24 yielded an overestimated gap energy of
E =1.4 eV, we find a value of E =0.7 eV, which is
more typical for self-consistent LDA calculations. We
have also checked the basis-set influence on the outcome
of our Green-function calculations. When we take only s,
p, and s* orbitals into account, the projected gap opens
up to 1.6 eV and the dangling-bond bands shift up in en-

ergy by roughly 0.6 eV as compared to Fig. 5. The
dispersion of the dangling-bond bands, on the other hand,
is only marginally affected by omission of the d orbitals in
the basis set.

Summarizing the comparison of the results of the self-
consistent calculations A —D, we can state that there is
good agreement in the topology of the surface-state
bands. There is even quantitative agreement in energy
positions of bands related to localized surface states if the
computations are carried out with the same level of
basis-set convergence using either semi-infinite solids (A)
or slabs (C and D). Thus the slab or Green-function tech-
niques are equally well suited to describe localized sur-

face features. When it comes to resonances, however, the
Green-function approach is clearly superior. In particu-
lar, wave-vector-resolved layer densities of states are de-
scribed less accurately by slabs or supercells due to the
relatively small numbers of layers in the unit cell. This
situation is unsatisfactory in view of the fact that high-
resolution surface-spectroscopy data are mostly given for
the whole energy region of the projected bulk bands, cal-
ling for a clear separation of surface and bulk features.
Comparing Figs. 10 and 11 with Fig. 5 highlights the
better spectral resolution of the Green-function results.
But to make our point more transparent, we compare in
Fig. 12 the surface-layer density of states at the I' point
for Si(001)-(2X 1) as it results from our 12-layer-slab cal-
culation (D) [see Fig. 12(a)] and from our Green-function
calculation (A) [see Fig. 12(b)]. For the 12-layer slab,
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FIG. 12. Comparison of the surface-layer density of states at
the zone-center (I point) for the Si(001)-(2& 1) surface as it re-
sults from (a) our 12-layer-slab calculation and (b) our Green-
function calculation. The slab spectrum has been created by
0.1-eV Lorentzian broadening of the slab eigenvalues. The
direct comparison of (a) and (b) in (c) clearly demonstrates the
superiority of the Green-function approach for calculating high-

ly converged layer state densities.
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only 48 spin-degenerate states contribute to the spectrum
at each q point in the valence-band energy region.
Broadening these states by a Lorentzian of 0.1 eV width
yields the spectrum in Fig 12(a). The Green function, on
the other hand, yields the true continuous state-density
spectrum as plotted in Fig. 12(b). The direct comparison
of the two results in Fig. 12(c) clearly demonstrates that
the slab spectrum contains a number of spurious peaks
which are mere artifacts due to the lack of layer-number
convergence in a 12-layer-slab calculation.

In conclusion, our results show that the self-consistent
Green-function approach allows for an unambiguous
determination of both bound surface states and of surface
resonances whose extended wave functions are much
more difficult to describe properly by other methods. On
the other hand, there is the virtue of slab and supercell
calculations that they are more simple both conceptually
and computationally.

Calculating the electronic structure of semiconductor
surfaces self-consistently from first principles is a rather
computer-time-consuming procedure. In many areas of
surface physics, e.g. , in the investigation of surface pho-
nons, surface phase transitions, or crystal melting, the
calculation of the electronic structure for a fixed
geometry is only an intermediate step which has to be
carried out many times during very elaborate numerical
procedures. In such circumstances, realistic empirical
tight-binding descriptions of electronic properties with a
comparatively low numerical effort can be helpful. The
Si(001)-(2X 1) surface has been studied previously in our
group by empirical tight-binding Green-function calcula-
tions as well. Comparing the self-consistent result of
Fig. 5 with Fig. 9 of Ref. 40, we find that there is indeed
good agreement throughout the valence-band energy re-
gion. Considerable deviations occur within the
conduction-band region. These can easily be traced back
to the limited s-p basis set used in the tight-binding calcu-
lations.

Finally, we want to comment on the "surface-gap-
energy problem. " Due to the existence of occupied and

empty dangling-bond states in the gap-energy region, the
surface gap is typically smaller than the bulk band gap.
Since converged LDA calculations underestimate the
bulk band gap, ' they are very likely to underestimate
the surface band gap as well. There are experimental in-
dications ' that the surface band gap for Si(001)-(2X1)
is roughly 0.4 eV. The plane-wave supercell calculations
(B) of Ref. 24 yield a small gap of 0.1 eV and our calcula-
tions A, C, and D even lead to a metallic surface since the
Dd,„„band overlaps the D„band to some extent. To
understand this difference between calculation B and cal-
culations A, C, and D, the reader should remember that
in B the bulk band gap was 1.4 eV (due to the 2-Ry cutoff'
in the plane-wave basis set), while in our calculations the
band-gap energy is 0.7 eV. In any case, the calculations
seem to underestimate the surface band gap appreciably.
We believe that this deficiency is again a mere artifact of
local-density theory and has no physical importance for
the surface-structure discussion. A convincing hint re-
garding this notion is given by recent calculations of Hy-
bertsen and Louie. ' These authors calculated quasi-

particle energies of bulk semiconductors and of a sur-
face system in a very encouraging approach based on
many-body theory. In the latter application for an As
overlayer on Ge(111), they observed a substantial shift of
the empty surface states towards higher energies, opening
up the surface gap considerably with respect to the LDA
result. The same is very likely to occur for an improved
treatment of Si(001)-(2X1) when the calculations are ex-
tended beyond the local-density approximation. Since
the surface-gap energy is related to the energetic position
of the Dd, „„band which stems mainly from the bulk con-
duction bands, we expect the surface gap to open up by
roughly 0.4 eV in our calculations A, C, and D if the en-

ergy spectrum would be calculated more rigorously, go-
ing beyond the LDA, so that the bulk gap would open up
from our value of 0.7 eV to the correct value of 1.1 eV.

V. CONCLUDING DISCUSSION

A. Summary

In this paper we have presented in detail the Green-
function or scattering-theoretical method for self-
consistent calculations of the electronic structure of
reconstructed semiconductor surfaces within the local-
density approximation. Our method describes a surface
as a two-dimensionally periodic perturbation of the bulk
solid which is highly localized in the surface-
perpendicular direction and allows us to treat semi-
infinite systems. The principle advantages of this method
are the exploitation of (a) the short-range nature of the
surface potential, (b) the three-dimensional translational
symmetry of the underlying bulk crystal, and (c) the ana-
lytic separation between bulk and surface properties.
The feasibility and efficiency of the SC STM have been
demonstrated by an application to the reconstructed
Si(001)-(2X 1) surface using ionic pseudopotentials and a
Gaussian-orbital basis set. A variety of surface states has
been identified and analyzed by wave-vector-, atom-, and
orbital-resolved layer densities of states and by the corre-
sponding charge densities. In addition, we have present-
ed the results of self-consistent supercell calculations for
Si(001)-(2X1) which were carried out with the same lo-
calized Gaussian-orbital basis set as used in the Green-
function calculations. A comparison of all the results
with the outcome of the plane-wave supercell calculation
of Ref. 24 allowed us to trace back differences in the cal-
culated dangling-bond surface bands to differences in the
basis sets used. Bound surface-state bands are found to
result, in very good agreement from both our supercell or
Green-function calculations. The superiority of the
Green-function approach for describing surface reso-
nances has been demonstrated.

B.Outlook

In order to be able to compare the new SC STM with
current standard methods, we have so far applied the
technique for (i) a predetermined structure model with (ii)
semiempirical local pseudopotentials on the basis of (iii)
the local-density approximation. In this short "outlook, "
we will indicate how an improvement of the structural
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model can be handled within our approach and we will

comment on the resulting interrelationship of the above
three points.

Structural optimization requires minimization of the
ground-state energy of the semi-infinite solid with respect
to the coordinates of the atoms. For this purpose it is
convenient to calculate the total energy change as com-
pared to the total energy of a semi-infinite solid with an

appropriate reference geometry, e.g. , the predetermined
structure model or the ideal surface. This energy
difference consists of the difference of the band-
structure energies, the difference of the exchange-
correlation energies, the difference of the Coulomb ener-

gy of the electrons, and the difference of the Coulomb en-

ergy of the ion cores. The atomic coordinates of those
two systems differ mainly near the surface. Taking this
into account, the band-structure energy difference can be
computed directly from the surface Green functions of
the two systems. The difference of the exchange-
correlation energy caused by the difference of the charge
densities near the surface can be calculated using the
modified Fourier techniques described in Sec. IIIA of
this work. The same holds for the Coulomb energy of the
electrons. It is advantageous to add and subtract "ionic"
charges at this stage. The negative term is included in
the Coulomb energy of the valence electrons and the pos-
itive term is combined with the Coulomb energy of the
ion cores. The latter can easily be computed in real space
using "ionic" charges of Gaussian distribution. This
completes the calculation of the total energy for one
atomic configuration. To speed up the minimizing pro-
cedure of the ground-state energy, a computation of the
forces would be convenient. For the use of advanced
iteration techniques, see, e.g., Ref. 69. A method similar
to that introduced here has already been used by Feibel-
man with great success in the calculation of the adsorp-
tion energy and the force on adsorbed Al on an Al(001)
film.

From the comparison of the SC STM and the slab ap-
proach in Sec. IVD, we would expect that integrated
quantities like the charge density and the band-structure
energy are well described also by the slab approach,
which is easier to handle. Therefore, it seems very ap-
propriate to use slabs for the structural optimization and
to compute the electronic spectrum with high resolution
using SC STM afterwards.

For a reliable surface-structure determination, it is
mandatory to use the best available, nonlocal ab initio
pseudopotentials. These norm-conserving pseudo-
potentials have been used widely with great success in

calculations of the total energy based either on plane
waves or localized orbitals ' to predict the lattice
constants, compressibilities, and phonon frequencies of
periodic crystals. The eSciency of these modern first-
principles pseudopotentials for the structure determina-
tion of surfaces has been demonstrated by Pandey and

by Northrup and Cohen. ' For reviews, see e.g. , Refs. 69
and 76.

Implementation of nonlocal pseudopotentials into our
computations is straightforward, leading to matrix equa-
tions (7) and (10) of the same structure as in the case of

local pseudopotentials. The matrix elements (8) can easi-
ly be calculated within the Gaussian basis set. The non-
local pseudopotentials are no longer "soft-core" poten-
tials„so that at least a double-zeta Gaussian basis is prob-
ably necessary for the wave-function expansion, increas-
ing the size of all matrices correspondingly. The first-
principles potentials yield excellent ground-state energies
in comparison with experimental data, but they give very
poor values for direct and indirect gaps, as is known from
bulk calculations. Thus for a reasonable description of
the electronic spectrum, one would have to go beyond the
LDA including self-energy corrections of the type dis-
cussed in Refs. 32—34. In general, these self-energy
corrections act like complex potentials in the Schrodinger
equation (1). The calculation of the electronic states and
their lifetime from (1) can be handled by Green functions
in a natural way. In our opinion, the present approach is
well adapted to these types of investigations. They have
to be carried out, though, and they are, of course, more
involved than the calculations presented in this paper.
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APPENDIX A: CALCULATION
OF 6 (E,q)

The idealized surface is created from the bulk crystal
by the perturbation U (E,q). The computation of the
corresponding Green function 6 (E,q) can be simplified

by taking the special form of U (E,q) into account.
The size of U is given by (m„+md )X(m„+md), as can
be seen in Eq. (24). In this appendix we show that the
Dyson equation (27) for 6 can be reduced to a similar
equation with an md X md perturbation matrix only.

The bulk Green function 6 (E,q) can be expressed
formally as

6 (E,q)=

—AA
60

—BA
0

—CA
60

—DA
G0

—LL
GO

—RL
GO

0MLL
0~RI

—AB
GO

—BBgO

—CB
60

—DB
GO

—LR
GO

—RR
60

0

0

—AC
60

—BCgO

—CC
60

—DC
gO

—AD
GO

—BD
60

—CD
0

—DD
60

(A 1)

For clarity's sake, we have compressed subspaces A and
8, as defined in Sec. II, to the "left" subspace (L), and
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the subspaces C and D correspondingly to the "right"
subspace R.

The Green function G (E,q) is defined in Eq. (21) as
the inverse of M (E,q), which has the form

MLL 0

—LL —LL™LR G RRK RR M RR } M RLG LL

(A10)

To evaluate the underlined term, we use M LR as given in

Eq. (19), yielding
M (E,q)= 0 0

G (E,q)= 0 0

as defined in Eq. (20).
At this point we state that G is given by

—LL
GO 0

(A2)

(A3)

0
—LR —RR —RR 0M G K —BC

r

0

0 0 1 0

Msc 0 GDc(6cc) ' 0

0

0 Gcc —cD (Gcc} 0

0 GDc GDD

0 GLR 0 0

—RR0 0 0 K
0 0

—RL
G0 0

M Bc

0

0

(A 1 1)
with

K cc
K RR —DC

K CD

—DDK

(G cc) '

0 0 (A4)

This leads for the rhs of (A5) to

GLL (MLL} —LR™RR}MRLGLL

Equation (A3) may be written more compactly as

I 0 0G LL G LL G LRK RR G RL
0 (A5)

(M LL } —LR™RR —RL lG LL

(—LL }.—LL M LR(M RR ) ™RLlG LL

The inversion can easily be done using the following rela-
tions, which are valid for regular matrices U, V, W, and
X with dimensions (n Xn), (n Xm), (m Xn), and
(m Xm), respectively,

U V —U-'VZ-'
8' X 7—X-'m Y-' Z-1

with

Y=U —VX '8 (Ajb)

Z=X —8' U 'V .

Therefore, the matrices G LR and G RL are given by

0 0 —1 0 0G LR (M LL } M LR G RR

and

0 0 —1 0 0
GRL ———(M„„) M„LGL

(A7c)

(A8}

(A9)

With these relations, the right-hand side (rhs) of Eq. (A5)
can be expressed as

The big advantage of the representation (A3) —(A5) is a
reduction of the CPU time by a factor of 8 (or more if m„
is larger than md ) with respect to the direct solution of
Eq. (27) for each E and q. In Eq. (A4) only the md X md
matrix 6 CC needs to be inverted. Calculating the Green
function from (A3) to (A5) corresponds to the "atom-
removal method" described by Pollmann and Pan-
telides' for the empirical tight-binding version of the
STM.

Proof: To prove Eqs. (A3}—(A5), we compute the bulk
Green function formally from its definition as the inverse
of M (E,q), as defined in Eq. (16),

o oMLL MLR
(A6)—RL —RR

(MLL} (GLL} GLL ™LL} GLL

Q.E.D.

(A13)

APPENDIX B: ALTERNATIVE COMPUTATION
SCHEME FOR THE SURFACE GREEN FUNCTION

In this appendix we will compare the concept for cal-
culating the surface Green function as described in Sec.
II with an alternative method we have used previous-
ly. "' ' ' In these papers a surface was represented by
two semi-infinite solids separated by a small vacuum re-
gion. The average potential V,s(z) of this geometry is
shown schematically in Fig. 13(a). Contrary to the
wave-function expansion used in this paper )see Eq. (6}},
the wave function of the "crystal with a vacuum region"
was built up by orbitals localized on both the left and
right half-crystals and in the vacuum region. The total
potential was constructed from the full bulk potential by
adding a perturbation potential which is strongly local-
ized perpendicular to the surface. This perturbation po-
tential was determined self-consistently. Within the vac-
uum region the orbitals were positioned at former bulk-
atom sites. The solid dots in Fig. 13(a) indicate the locali-
zation planes of these layer orbitals. This approach has
the advantage that the bulk crystal directly enters as the
reference system. In this case the reference matrices H
and S" in Eqs. (11) and (12) are simply given by H and
S, as defined in Eq. (14) and the separate construction of
the idealized surface in an intermediate step is avoided.

However, there is a great disadvantage of this ap-
proach related to the dimensions of the matrices involved
in solving the Dyson equation for the surface Green func-

(A12)

From Eq. (A7b) it is obvious that the second factor in
(A12) is the inverse of G LL. Therefore we have, for the
rhs of (A5),
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0 0 0
U(E,q)= 0 U as 0 (B2)

0 0 0
I
I

~ ~ ( ~ ~ ~ ~ ~
I
I

~ ~ ~ ~ ~ ~ ~ I ~ 0

A' B' C'

tion. Here we have

G(E,q)=g (E,q)+G (E,q)U(E, q)G(E, q) . (Bl)

If we decompose the vector space in A' and C' for the
unperturbed left and right half-crystals and 8' for the
perturbation region [see Fig. 13(a)], the perturbation ma-
trix has the seemingly simple structure

I I I
I I I

(b)
I
t
I
I
I
I

I I I
I I I

~ ~ I ~ ~ ~ ~ Io 0 0 ot

~ &y B ~/g~gX~~C yX&

FIG. 13. Schematic plot of the geometry used in our previous
STM calculations (a) in Refs. 11, 12, 52, and 53 and in this
work, (b). The localization planes of the layer orbitals in the
wave function expansion are shown by solid dots. The layer or-
bitals localized on the planes shown by open circles in (b) are in-

volved in the creation of the idealized surface, i.e., in the decou-
pling of the two semi-infinite crystals.

The subspace 8', however, contains the orbitals on m„
layers of the left half-crystal, on m„ layers on the right
half-crystal, and on md vacuum layers, as illustrated in
Fig. 13(a).

Therefore the matrices which need to be inverted to
solve the Dyson equation (B1) in analogy to Eqs.
(30)—(32) have the dimensions (2m„+md ) X(2m„+rrtd ).
In the new approach developed in this paper, we have in-
verted much smaller matrices for all values of E and q.
In the new approach, calculation of the Green function of
the idealized surface reqUires inversions of matrices with
dimensions md )C md of subspace C only, as was shown in
Appendix A. The calculation of the reconstructed sur-
face Green function is then accomplished in a second step
by inversions of matrices with size m„Xm„ from sub-
space B. This is illustrated schematically in Fig. 13(b).
In our new approach as compared to the earlier method,
the computer time needed to calculate the surface Green
function G(E,q) is reduced roughly by a factor of

(2m„+md ) /(m„+ m& ) .

For typical values m„=4 and md ——4, this amounts to a
factor of 13.5 and thus the new approach saves many
CPU hours for a full calculation. The surface-
electronic structure resulting from both methods agrees
within 0.05 eV for the Si(001)-(2X 1) surface discussed in
this paper.
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