
PHYSICAL REVIE%' B VOLUME 38, NUMBER 15 15 NOVEMBER 1988-II

E&ectronic theory of ordering in (GaAs), Qe2„niioys

Maria A. Davidovich and Belita Koiller
Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, Caixa Postal 38071,

22453 Rio de Janeiro, RE'o de Janeiro, Brazil

Roberto Osorio
Departamento de Fisica, UniUersidade de BrasI'lia, 70910 BrasI'lia, Distri to Federal, Brazil

Mark O. Robbins
Department ofPhysics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218

(Received 11 February 1988; revised manuscript received 2 May 1988)

The electronic energy of (GaAs)& „Ge2 alloys is investigated as a function of the degree of
short-range order in these ternary systems. The generalized cluster Bethe-lattice method, with a
minimal sp set of orbitals, is used in the calculation. The results are parametrized in terms of
nearest-neighbor pair interaction energies which are independent of the degree of short-range or
long-range order and consistent with known defect energies. This confirms the validity of previous-

ly used Ising-like Hamiltonians for such systems. The theory allows a critical examination of both
the thermodynamic and growth models proposed for the zinc-blende —diamond transition observed
in these alloys. The transition temperature calculated from the pair interaction energies is much

higher than actual sample preparation temperatures, indicating that kinetics must determine the ob-

served structure. However, previous kinetic models have essentially neglected Ge correlations
which are shown to be important.

I. INTRODUCTION

Metastable homogeneous alloys of GaAs with Ge have
recently been produced by different epitaxial growth tech-
niques. ' Among the ( A"'8 ), „Cz„alloys, these are
particularly interesting due to the gap-versus-
composition variation which covers a range of energies
with potential application in infrared optical devices. In
addition there is practically no lattice-parameter
mismatch between the constituents.

A zinc-blende-diamond order-disorder transition has
been predicted ' ' and observed ' to occur at a critical
concentration x, of the group-IV element. The zinc-
blende structure, where the group-V and group-III
species preferentially occupy different sublattices is
favored for x &x, . In the disordered (diamond) phase
x &x, the sublattice occupations are equal. There has
been considerable controversy regarding the mechanism
responsible for this order-disorder transition.

In the first discussion of the phase transition, Dyako-
nov and Raikh, approximated it as the site percolation
problem of Ga and As on the diamond lattice with the re-
striction that no Ga-Ga or As-As nearest-neighbor (NN)
pairs were allowed. This led to a value of
x, = 1 —p, =O.S7, which was considerably higher than the
experimental one. (Here p, is the site percolation thresh-
old in the diamond lattice. ) Newman and Dow proposed
a thermodynamic model based on the assumption that x,
is also associated wit;h the minimum of the energy-gap
versus composition curve which occurs at x, =0.3. In
this model a macroscopic number of the homoelement

(so-called "wrong") Ga-Ga and As-As NN pairs are
present at all concentrations. This number is reduced by
improving the statistics ' beyond the mean-field approxi-
mation used in Ref. 5. To make it vanish would require
an infinitely repulsive interaction energy for Ga-Ga and
As-As NN pairs. However, as shown by Gu et al. , for
infinite interactions, no phase transition occurs below the
percolation concentration.

Further theoretical work, ' based on the experimen-
tally observed value of x, =0.3 for films of
(GaAs), „Ge2„and (GaSb), „Ge2„(Refs. 3 and 6, re-
spectively) grown epitaxially on (100) GaAs surfaces, sug-
gested a kinetic mechanism for the phase transition in
which it was again postulated that no Ga-Ga or As-As
pairs are allowed. This same assumption was used in Ref.
6 to fit the EXAFS data for (GaSb), „Ge2„,while New-
man et al. also obtained a fit for the same data using a
thermodynamic model in which "wrong" bonds were
present.

It is evident that there is a strong interplay between (i)
the short-range order in the atomic arrangements in
(GaAs), „Ge2„, (ii) the long-range order, and (iii) the
electronic properties of this alloy. ' Information about
the effective electronic interaction energies between the
different atoms is clearly crucial to any appraisal of the
different models proposed for ordering in this system.

In this work we investigate the electronic energy of the
(GaAs)& Ge2 alloy as a function of the degree of
short-range order (SRO) among the three different
species. The calculation is performed using the general-
ized' ' cluster Bethe-lattice method (CBLM), ' which is
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a real-space tight-binding approach for the calculation of
the alloy density of states (DOS). This is obtained from a
configurational average over a cluster of atoms embedded
in an effective medium with the Bethe-lattice topology,
such that the SRO and long-range-order (LRO) correla-
tions can be naturally incorporated both in the cluster
and in the efFective medium regions. The generalized
CBLM has been previously applied to metallic alloys, ' '
and also to Ge-Si alloys' with a simplified Hamiltonian.

As compared to other tight-binding approaches for the
calculation of alloy DOS, ' the CBLM has the advantage
of naturally incorporating atomic correlation effects, a
feature that few other methods can handle. ' One alter-
native approach is to obtain energies for disordered semi-
conductor alloys by averaging, with appropriate weights,
first-principles results for the energies of ordered com-
pounds. For example, for In Ga, P alloys, the disorder
is restricted to a single fcc sublattice and band-structure
calculations of only five compounds must be performed.
In the ternary alloy we are treating here, each species can
occupy any sublattice, which would require in principle
band-structure calculations of more than 20 ordered
compounds to be performed. Moreover, the degree of
SRO cannot be varied independently from the LRO and
the method relies on interpolation between very different
structures.

II. THEORY

A. Statistics of site occupation

The CBLM incorporates in a natura1 way correlations
in the occupations of NN sites which, in the zinc-blende
lattice, belong to different sublattices, a and P. We gen-
eralize the usual parametrization for binary alloys with
SRO (Ref. 15) to treat three species with (possibly)
different sublattice occupations, i.e., LRO. The three
species in the alloy are labeled by 0, + 1, and —1.

The site probabilities, PKr (y =a,p; K =0, +1), give the
fraction of sites of sublattice y occupied by species E.
They are therefore normalized in each sublattice:

&K =1 ~
y

K =0, +1

y PKL PL XPKL PK
aP P aP a

K L

and therefore

XPKL=1.aP

K, L

(6)

The correlation in the occupation of neighboring sites is
described in terms of generalized SRO parameters I o KI j

which are defined by

PKL=PKPL(i+~KL) .

Note that o KL
——0 applies when species E and L are not

correlated, while ca ~0 (o &0) indicate a tendency of
species K and l. to be surrounded by (segregated from)
each other. The constraints in (6) and (7) imply that only
four independent SRO parameters, together with the four
long-range parameters (2)—(5), are needed to completely
specify the pair statistics of a ternary alloy on two sublat-
tices.

For the special case of an alloy of type
(A"'B ), „Cz"„, we label the group-IV element 0 and
the group-III and -V elements —1 and + 1, respectively.
Then 6=0 and since the group-IV element is expected to
have no preferred sublattice, M'=0. There are thus just
two parameters x and M which describe the concentra-
tion and LRO. When M=O, there is no LRO and the al-
loy has the diamond symmetry. The case M&0 implies
zinc-blende-type ordering. These two symmetries have
been distinguished experimentally by electron micros-
copy and x-ray diffraction techniques.

The further assumption of cation-anion symmetry
reduces the number of independent SRO parameters to
three. We choose them to be

M'=S'o —Po
a P

which measures ordering of species 0 on sublattice a.
The pair probabilities PKL give the fraction of a—p

bonds with a K atom on the a site and an L atom on the
P side. They are related to the site probabilities by the
sum rules

The six site probabilities are completely specified in terms
of only four macroscopic parameters, because of the two
restrictions implied by (1). Two parameters describe the
total concentrations:

and

~oo=—&o ~

(9a)

(9b)

Po +Po
X =

2
(2) O 1O=~O —1

~ (9c)

the total concentration of species 0, and

~—J1+J1 I —1 5 —1

For a system with no LRQ (M=O), o.
KL

——a.lK, in
which cases (6) and (9) imply

the difference in concentrations of + 1 and —1. The
remaining two describe the degree of LRO: ~+1 0 ~0 +1

x c7o
(10)

~=I(pi —pi)+(p'i —p i)l~» (4)

which measures ordering of species 1 on sublattice a and
—1 on sublattice P, and

leaving only o.
o and o. , as independent SRO parameters.

The physically accessible ranges of these parameters, de-
rived in Appendix A, are presented in Fig. 1.
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gies. For Ga-Ga and As-As hopping energies we take the
same values as given for Ga-As. The use of hopping en-
ergies for the ordered systems in the alloy may be
justified in the present case, since there is no lattice-
parameter variation between the constituents. Since we
are interested in the ground-state electronic energy the
basis of orbitals is restricted to the minimal set sp, with
all NN interactions incorporated.

The alloy CBLM is an approximation for calculating
the configurationally averaged local density of states
(LDOS) projected onto orbital p at site i, 2);„(E),of an al-
loy specified by arbitrary values of the LRO and SRO pa-
rameters. The LDOS is related to the diagonal matrix
element of the Green's function

Own
2);„(E)=—m '1m&i, p G(E)

~

i,p& (12)

Ot

2

random~0

OeS

FIG. 1. Accessible regions in the (oo,x) and (o&,x) parame-
ter space for disordered ( A B ) ] C2 systems.

B. The CBLM formalism

The application of the CBLM to alloys is discussed in
detail in Refs. 14 and 15. There, the many-body alloy
Hamiltonian incorporates, in a self-consistent scheme,
one-electron (S„), electron-electron corrections
( —%, , ), and ion-ion interaction (%;,„;,„) terms. In the
present case of semiconductor alloys' we restrict the
Hamiltonian to the one-electron component

where
~

i,p & represents the orbital p of the species at site
i The matrix .elements of % are taken from the
semiempirical parametrizations for ordered Ge and GaAs
by Vogl et al. ' For the hopping energies between Ge-
Ga and Ge-As, which are not calculated there, we take
the geometric mean of Ge-Ge and Ga-As hopping ener-

which is calculated by solving Dyson's equation for a
cluster of atoms embedded in an effective medium. The
effective medium has the topology of a Bethe lattice with
the coordination number of the crystals (z=4) and in-
corporates the same LRO and SRO properties as the al-
loy (Appendix B).

An improved configurational average for the effective
medium is presented in Appendix B which is essentially
the lowest in a hierarchy of approximations developed by
Hubbard for one-dimensional alloys. Calculations have
been performed for single-site and five-site clusters, using
both the traditional Kittler-Falicov (KF)' ' and the im-
proved Hubbard-type (HT} averaging techniques.

Previous work' shows that the alloy CBLM is reliable
for the evaluation of changes in integrated quantities,
such as the total electronic energy and charge. Large er-
rors should only be expected when the Fermi level lies
near a strong structure in the alloy DOS not reproduced
by the CBLM, but this is not to be expected for semicon-
ductors. On the other hand, details in the LDOS such as
the structure of the bands or the electronic gap are
strongly dependent on the longer-range topology and
Auctuations. Therefore the CBLM is not as accurate for
the calculations of such properties. ' '

Our calculations are limited to the study of the average
electronic energy per site of the alloy as a function of the
SRO parameters. This energy is

6'=
—,
' gp~~g f 2)ir„(E)E dE, (13)

where the factor —,
' is due to the normalization (1) which

implies gx. r pK~
——2.

As discussed in Ref. 15, the contribution from
&;,„;,„—&, , in the total energy largely cancels out, but
should be considered in more realistic calculations. ' '

However we find that, for a fixed composition, expression
(13}yields satisfactory results, presented in Sec. III, for
the behavior of the total energy with SRO.

III. RESULTS

A. Comparison between different approximations
in the CBLM

Results for the average LDOS obtained for the single-
site and five-site clusters with a KF-type effective medium
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present the same overall structure. There are the same
well-defined s, sp, and p regions in the valence band.
Some states appear in the gap region whose weight in the
DOS is about a factor of 2 smaller in the five-site cluster
than in the single-site approximation.

The HT effective medium is consistent only with cen-
tral clusters of at least five sites, and comparison of the
average LDOS obtained in this approximation with the
KF five-site cluster results shows no significant difference.

In the calculation of the average energy 6, the Fermi
level is determined for each alloy configuration by direct
integration of the total DOS. Values of 0' obtained for
x=0.5 and typical SRO parameters from the different ap-
proximations are given in Table I. The segregated (Ge
and GaAs separated) alloy results are the same in all ap-
proxirnations because no averaging is involved in this
limit, therefore we take it as a reference value:

a«o»'
~ Ga AI) (Ge )

AS 2 tLO

Q

S o

b, A'= 6' —8(segregated) . (14)

Analysis of Table I indicates that the KF five-atom clus-
ter calculation and the HT approximation yield
equivalent results to within less than 0.01 eV. This sug-
gests that 8 has already become insensitive to the form of
the approximate effective medium. On the other hand,
the more crude one-atom KF results for hC are quite
different from the others. In the discussion below, the
KF five-atom cluster scheme is used due to its reliability
and greater computational simplicity as compared to HT.

B. The role of SRO

FIG. 2. Average electronic energy per site for the
(GaAs)& 5(Ge2)& & disordered alloy as a function of the indepen-
dent SRO parameters o.

p and o.&. Point S indicates order ap-
propriate for segregated Ge and GaAs and point R a random
configuration. Other points indicate configurations studied by
other authors: GNF, Ref. 8; KS, Ref. 9; and DH, Ref. 10, at
x=0.5. Decreasing o& from 1 increases the number of Ge-Ga
and Ge-As pairs while increasing o.

~
from —1 increases the

number of Ga-Ga and As-As pairs.

For a given alloy composition in the disordered phase
(x &x„M=0), we calculate hb(o]], cr]) in the range of
allowed values for oo and o.

&
shown in Fig. 1. The segre-

gated situation corresponds to tr]= —1 (no Ga-Ga or
As-As pairs) and aQ+] (T+] Q

—1 (no Ge-Ga or Ge-As
pairs) which from (10) yields cr]]——(1—x)/x. Increasing
o. , means allowing Ga-Ga and As-As pairs to occur,
while decreasing o.

o means allowing Ge to form pairs
with Ga and As.

The hC(a]], o ]) surface is depicted in Fig. 2 for x =0.5.
There, we can clearly see the tendency of the electronic
energy to increase when the system is forced away from
the segregated situation. A somewhat surprising result is
the fact that, within the precision we can rely on the KF

TABLE I. Average electronic energy relative to the energy of
the segregated system (h6) using different CBLM approxima-
tions for x=0.5 and typical values of the SRO parameters.
KF(1) and KF(5) denote the Kittler and Falicov approximation
for one-site and five-site clusters, respectively, and HT denotes
first-order Hubbard-type approximation for a five-site cluster.

approximation, the b, C(o]],o, } surface is a plane, i.e., the
variation of b 8 with a]] and cr] is linear, a feature that is
obtained in the whole range of compositions. Because
the pair probabilities (8) are also linear in o]~L, we may
try a spin-model parametrization for the electronic ener-

gy of the same type assumed in previous thermodynamic
calculations: '

(15)

4J=J»+J i (17a)

where JLz ——J&L are the interaction energies of L-N
nearest-neighbor pairs. Using the relations in Sec. II A
this may be rewritten as

@=R(x}+2(1 x) Jcr]—4x Eo(), —

where R (x) is the energy of the completely random alloy
(+MS

—1.0
—0.5
—1.0
—1.0

0.0

1.0
1.0
0.5
0.0
0.0

KF(1) (eV)

0.0
0.099
0.133
0.391
0.373

KF(5) (eV)

0.0
0.064
0.076
0.146
0.264

HT (eV)

0.0
0.066
0.073
0.142
0.260

2&=Jio+J io —Joo —Ji i- (17)

The parameters J and I(: above are the same as those
defined by Gu et al. The slopes of'the h@(o]],o]) planes
yield J and I(, and we find J =0.26+0.01 eV and
I( =0.15+0.01 eV for all values of x.
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C. The role of LRO and valence-band offsets

In the case of ordered compositions x &x, and M&0,
the validity of Eq. (15) requires

C=R'(x, M)+2[(1—x) —M ]Jo i
—4x Koo, (18)

where R' is independent of ao and 0.
&. Our numerical re-

sults show that the variation of 4@ with o.
o and o.

&

remains linear and the same numeric coeScients J and K
obtained for x & x, yield a good fitting for (18) in this
case.

As stated in Sec. IIB, the tight-binding parameters
used in our calculations are taken from Vogl's model '

which does not consider absolute zeros of energy among
different ordered systems, GaAs and Ge for example.
Therefore the diagonal matrix elements for Ge are possi-
bly shifted with respect to the ones for Ga and As. Cal-
culations for the electronic energy 8(oo, o, ) have also
been performed using in (11)

(19)

with co,' „ taken from Vogl's parametrization and
different values of V between 0.3 and 0.56 eV. ' The
results for 6 depend on V, but are always well fitted by
expressions (16) or (18) with the same values of J and K.
The only change is in R (x) or R'(x, M).

Variation of R and R ' with V makes attempts to derive
further relations among the JL& fruitless within the
present level of approximation. More sophisticated cal-
culations in which the diagonal matrix elements are
determined self-consistently' should remove this ambi-
guity. Such calculations should produce the same values
for J and E found here since they are independent of V.

D. Simple defect energies and pair interactions

Although the CBLM is a tight-binding formalism, the
energy integral (13) is not necessarily linear in the pair
probabilities used in the intermediate steps of the calcula-
tion. ' Yet our CBLM results for the average electronic
energy of (GaAs), „Gez„alloys are fitted by a parame-
trization in terms of pair interactions over the whole
composition range. This supports Harrison's theory of
the two-center bond, which is based upon a tight-
binding theory with universal parameters, the so-called
universal parameter tight binding (UPTB) method. s

The plausibility of our results for J and E may be test-
ed by comparison of the values they predict for simple
defect energies in ordered systems with UPTB results
and also with first-principles calculations. It should be
noted that in the UPTB method the energy of a bonded
solid is referred to free atoms, while in our calculation
the reference configuration of the system is an alloy with
specified SRO and LRO properties, say a segregated or a
random alloy. Therefore we must only compare UPTB
results with ours for defects whose creation does not in-
volve free atoms in the initial or final state. Also, no free
electrons or holes should be produced in the creation
mechanism of the defect.

The antistructure defect or antisite pair in perfect
GaAs is created by interchanging a NN Ga-As paip,
causing each of the atoms to end up with three "wrong"
bonds keeping one "right" bond. The formation energy
of this defect in our approximation is given by
E~,o,(GaAs)=3(J»+ J, , ) —6J, , =12J. For an
unbound pair, i.e., interchanging a non-nearest-neighbor
Ga-As pair, each atom ends up with four "wrong" bonds,
increasing the formation energy to 16J.

Pair substitution of Ge2 in GaAs is a defect formed in
the segregated system by transferring a pair of Ge atoms
into GaAs, one occupying a Ga site and the other a
neighboring As site, the removed Ga and As atoms being
returned to bulk GaAs. The energy required for this
process is Eo, (GaAs) =3(J,p+ J ]p) —6J'00=6K

+3(J, , —Joo), where the energy to remove a Gez mole-
cule from crystalline Ge( —6Joo) has been added.
Analogously Eo«, (Ge2) =3(J,O+J,o) —6J, , =6K
—3(J& &

—Joo). Thus the sum of these energies is 12K.
In Table II our estimates are compared to the UPTB

results. For the antisite pairs in GaAs, the results from
first-principles calculations by Baraff and Schliiter are
also given. The defect energies are in excellent agreement
with our values of J and K. The discrepancy with Baraff
and Schluter s result for the bound antisite pair is prob-
ably due to elastic relaxation effects which are not includ-
ed in our approach or in the UPTB.

Note that the difference Eo, (GaAs) —EG,~,(Ge2)'2
=6(J&

&

—Joo) gives us an independent relation between
the pair interactions JL~ if we assume its value to be 0.28
eV as predicted by UPTB (Table II). This together with
Eqs. (17) still requires three independent relations be-

TABLE II. Comparison of our estimates with previous calculations for the energy of formation of
simple defects.

Bound antisite pair in GaAs
Unbound antisite pair in GaAs
E«(GaAs) (Ge2 substitution in GaAs)'2

EG,A, (Ge&) (GaAs substitution in Ge)
EG, (GaAs)+ E~,„,(Ge~)

Previous
calculations (eV)

3.42', 1 7
4.2b

1.02'

0.74'
1.76'

Present
estimate (eV)

3.1

4.2

1.80

'Kraut and Harrison, Ref. 28.
Baraff and Schluter, Ref. 29.
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TABLE III. Calculated interaction energies of nearest-

neighbor pairs within the assumptions described in the text.

L-N

Ga-As
Ge-Ge
Ga-Ga
As-As
Ge-Ga
Ge-As

JL~ (eV}

—0.26
—0.30

0.26
0.26

—0.13
—0.13

and

(21b)

Under these assumptions, we obtain the interaction en-
ergies given in Table III. Because of the choice (20}, only
the relative values among the JL& are meaningful.

Parametrizations of alloy electronic energies in terms
of pair interactions have been previously obtained within
the CBLM for Cr-%, Cr-Mo, and Mo-% systems. It
should be noted that for these metallic alloys the effective
pair interactions are concentration dependent.

IV. DISCUSSIONS AND CONCLUSIONS

The main controversy in the literature concerning
metastable ( A "'8 ), „Cz„alloys involves the origin
and nature of the SRO. Both the thermodynamic mod-
els ' ' and the growth models ' rely on stated or impli-
cit assumptions regarding the energies of interaction, in
the bulk and in the growing surface, respectively, be-
tween the different types of atomic pairs. For example,
they assume correlations which can only exist if certain
pair interaction energies are large. Our results, obtained
by fitting total energy versus SRO surfaces calculated us-
ing the CBLM, lead to a parametrization which yields
reasonable estimates for simple defect formation energies
(see Table II). This is an indication that the results are
reliable for a semiquantitative discussion of the thermo-
dynamic and growth models.

In the most recent thermodynamic model calculation,
Gu, Newman, and Fedders (GNF) obtain a best fit for
EXAFS data for (GaSb), „Ge2„using K/J=3. 5 and

ka Ts/J=2. 15, where K and J are as defined in Eqs. (17},
and Ts=700 K is the sample preparation temperature.
Taking for the parameters J and K the values we calcu-

tween JL& to yield the individual values of the six interac-
tions between species. Because only relative values
among them are relevant, we may choose the energy ori-
gin such that

J»+J i i+2Ji i=0.
The assumption of cation-anion symmetry requires J»
and J, , to be of the same order as well as J,p and
J &p. In order to get an estimate for the individual JL&
we impose, as previously done, '

(21a)

late for (GaAs), „Gez„ implies K/J=0. 6 and

k~ Ts/J =0.23. The first ratio is off by a factor of 6 and
the second by an order of magnitude. While some varia-
tion of J( and J with the cation species is possible, the
changes are expected to be no more than a factor of 2.
Phase diagrams obtained for different values of K/J in
Ref. 8 as well as in previous thermodynamic calcula-
tions ' always require k~ T~ /J =2 to get the order-
disorder transition at x, =0.3. Thus, even allowing un-

certainty in K/J, the calculated J is at least one order of
magnitude too large to be consistent with the thermo-
dynamic model.

Another difficulty with the thermodynamic model is
that for MBE prepared (GaAs), „Ge2„samples, growth
temperatures of 700 and 820 K produce homogeneous
and segregated samples, respectively. The thermodynam-
ic phase diagrams ' ' indicate that, for a fixed composi-
tion, the system segregates at low temperatures while in-
creasing T favors homogeneously mixed (ordered or
disordered according to x) phase in contradiction with
the MBE results.

The growth model offers a simple explanation for the
phase separation of MBE samples grown at Ts ——820 K.
At this temperature there should be enough thermal en-

ergy (k&T&-0.07 eV) not to allow Ge to bind on either
Ga or As at the surface of the growing sample and there-
fore forming Ge segregated domains.

In the kinetic model of Kim and Stern (KS) it is impli-
citly assumed that on the growth surface
J» ——J

& &

——00 and all other pair interaction energies
are taken to be finite and equivalent, as pointed out by
GNF. This necessarily yields a random distribution for
the Ge, i.e., op ——O=o.+& p

——o.
p +& and o& ———1. The

model of Davis and Holloway' (DH) also implies
cr& ———1, but they consider Ga-As as bound molecules,
i.e., each Ga(As) in the alloy has at least one As(Ga) NN.
This induces correlation in the Ge, so that op&0 and

op+& ——o.
+& p&0. In Fig. 2 the SRO parameters for

x=0.5 in the GNF, KS, and DH calculations are indicat-
ed. Notice that in GNF, Ge is quite correlated
(o 0——0.44) while cr

&

——0.2 indicates a considerable frac-
tion of "wrong" bonds. On the other hand, the KS and
DH results are constrained to the o. , = —1 axis. The ger-
manium correlation in DH corresponds to up=0. 14.

The results obtained here for the bulk interaction ener-
gies indicate that different atomic affinities among the
species could also be expected on the growing surface.
As for the bulk, energetically Ge-Ga and Ge-As pairs
might bind less easily than Ge-Ge, although they are all
favored with respect to Ga-Ga and As-As. Growth simu-
lations ' show that allowing o. , to increase from —1 des-
troys the order-disorder transition, while increasing o.o
favors the ordered phase.

In summary, we have generalized the usual binary al-
loys parametrization' for the statistics of site occupation
to treat ternary alloys of the type (A"'8"), „Cz„with
SRO and LRO. The statistics is based on pair probabili-
ties and is used in connection with the CBLM to study
the electronic structure of (GaAs), „Ge2„. Three levels
of approximation within the CBLM were tested for the
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calculation of the electronic energy, and the five-atom
cluster in a KF effective medium was considered satisfac-
tory for the present purposes.

Analysis of the variation of the average electronic ener-

gy with the SRO parameters allows us to parametrize it
simply in terms of pair interaction energies. Two in-
dependent combinations, J and I(, are obtained that fit
our results within -0.01 eV for all compositions, all de-
grees of LRO and SRO, and different values of the
valence-band offsets. The individual interaction energies
are obtained by taking the pair interactions which are ex-
pected to be of the same order to be equal [Eqs. (21)].
Our calculation also confirms the validity of Ising-like (in
this case, spin 1) models to treat (GaAs)& „Ge2„, with
NN pair interaction energies which are independent of
composition and of the degree of SRO and LRO.

Our study leads to the conclusion that the zinc-
blende —diamond transition observed in these alloys is
driven by the kinetics of growth, and that Ge correlations
must be incorporated in realistic models.
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Figure l(a) shows the allowed range of 0 0 as a function
of x. The allowed range of o1 depends on both Op and x.
Figure 1(b) shows the maximum range which occurs at
the largest allowed value of op. The minimum allowed
range occurs for the minimum crp. For x & —,', the
minimum range is —1&cr, &1—2x /(1 —x) and for
x )—,

' the minimum range shrinks to just —1.

APPENDIX B: CBLM FORMALISMS FOR
TETRAHEDRAL SEMICONDUCTOR ALLOYS

We define on-site and hopping matrices by its matrix
described in (11)

[BI)]„„—:(i,p ~

%
~
i,v),

[v;i(I,J)]„„=(i,p ~

—%
~ I,v),

(Bl)

(B2)

and

HI}=[HI)] (B3a)

where it is understood that the species at nearest-
neighbor sites i and j are I and J, respectively, and
v J(I,J) depends on 5;i=r; —ri, the relative position be-
tween the sites. In the zinc-blende structure the vector
5; has eight possible values: 5&, 52, 53, 54 if i is in sublat-
tice a, and —5, , —5z, —53, —54 if i is in sublattice P.

The Hermiticity of & implies

APPENDIX A: ALLOWED RANGES OF SRO
PARAMETERS WHEN h, =M'=M =0

The range of allowed eirl is determined from Eq. (6)
using the constraint that pKL )0. This requires

+KL ) (A 1)

For b, =M'=M=0, the only two independent SRO pa-
rameters are a 0 and o, . Equation (10) relates
cr ~, 0=uo +, to o 0. With Eq. (A 1) it requires,

v; (I,J)=[vÃ(J, I)] (B3b)

Assuming real wave functions, the symmetry of s and p
orbitals gives

[vQ (I,J)],7 ———[v;i(J,I)), . (B4)

Consider a cluster such that the central site (0) belongs
to sublattice y and is occupied by species I. Dyson's
equation gives the matrix elements of the Green's func-
tion G(E)=(E —&) ' between the central site and any
other site r„:—n occupied by species E:

—1 &o'p& (A2) [EJ PK)]G„o 5„—02+ g vq(—K,L(k))G„0 .
A, =1

(B5)

The other dependent SRO parameters, a+, , ——o. , +„
are determined using Eqs. (6) and (8), giving

2x op
2

O1, —1
——O1+

(1—x)

Equation (Al) then implies

2x op
2

—1 &o1& 1+
(1—x)

(A3)

(A4)

max. —1, — 1 —x
X

&o'p&
X

(A5)

Thus the limits on o. , and o.
p are not independent. How-

ever, Eq. (A4) does imply a further limit on the minimum
allowed value of op such that the range of O.

1 is nonzero:
2 ' vq (K,L (A.') )G„0 .

A,
' (~A, )

(B6a}

Analogously, if K is on site n belonging to sublattice P

Here, 2 is the identity, the index k labels the four
nearest-neighbor vectors 5& relative to site r„and L (A, ) is
the species at site r„+5&=—n &.

Suppose atom K belongs to sublattice a and is in the
Bethe-lattice (eff'ective medium} region. Then one of its
nearest neighbors is closer to the origin than it is, as illus-
trated in Fig. 3. This is called the "parent" atom, ' and
taken to be of species J on site n&. The z —1=3 other
nearest neighbors are the "descendants" at sites n&~&
and of species L (A.'). From (B5)

[E2—~3K}]G„0——vq(K, J)G„0
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Relations (B6)—(B9) imply

EJ P—K) —g gq (K,L (A, ')) G„o——vq(K, J)G„o,
A.

' (~A. )

(B10)

where

gq (K,L (1,') ) =vq (K,L (A, ') )t~, (L (A.') )

)& v~, (L (A, '), K ) (B1 1)

FIG. 3. Typical sites in the effective-medium (Bethe-lattice)
region. Relative to site n, site n& belongs to the path leading to
the cluster region and is called the "parent" site, while the three
other sites are the "descendants. " Species are labeled as re-
ferred to in the text.

[E9 gK) ]G—„o=v q(K, J)G„

may be interpreted as the self-energy contribution to
species K on sublattice a due to a descendant L(A.') at
site n&.

The usual configurational averaging for the alloy
CBLM proposed by Kittler and Falicov' '5 (KF) consists
of eliminating the dependence of the partial self-energy
on the "descendant" species by averaging (Bl 1):

aP

Xq (K)= ( g& (K,L ) )L
——g g);(K,L) (B12a)

I. Pg

and analogously

+ g vz, (K,L (A, '))G„
A.

' (~A, )

(B6b)
Pa

Xq,(K)= g p gq, (K,L) .
L PK

(B12b)

where 5&
———5q.

Equations (B6) may be approximately solved by the
transfer-matrix ansatz:

(B7)

Note that in using (B12) in (B9), the configuration aver-
age of the inverse of a quantity is replaced by the inverse
of its average. A better approximation is to take

t (K)= E2 VK) g—gz(K—, L(p'))
p'( ~p) IL (p') I

(B13)

(B&)rxJ(p) =&p(K)vp(K, J),
where p =A, , A, and the reduced transfer matrices t satisfy

tq(K) = EJ gK)—
vz (K,L (A, ') )t& (L (A, ') )

A,
' (~A. )

X vz (L (A, '),K ) (B9a)

t~(K) = E2 gc K)—
vq, (K,L (A, ') )tg (L (k ') )

A,
' (~A. )

Xg (L (&'),K) (B9b)

which relates the Green's function on K to that at the
parent site, and similarly the Green's function on the
descendants to that on K. It is easily shown that

where p =A, or A, and the average is performed simultane-
ously over the species of the three descendants [L(p')).
Assuming K belongs to a, the contribution from descen-
dants [L„L2,L3] shown in Fig. 3 is weighted by

This improved a~e~ag~ of (B10) is

equivalent to the averaging in Hubbard's first-order
method for one-dimensional chains. Higher-order ver-
sions of his method may also be generalized to the Bethe
lattice because of its simple topology.

Within a given approximation~(B9) is solved iteratively
for the transfer matrices and Goo(E) is obtained for a
fixed configuration C of the cluster. The matrix elements
required for the density of states in (12) are obtained by
averaging {Goo(E) )~ over all cluster configurations with
species I at site 0. The numerical evaluation of the
Green's function is significantly simplified by using group
theory and the total energy integral (13) is also facilitated
by deforming the contour of integration into the complex
plane. These techniques are described in Ref. 15.
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