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Tunneling of electrons through a barrier has been commonly studied by means of a transfer-
Hamiltonian method that is not appropriate for describing resonance effects. We generalize that
formalism by carrying out an infinite-order time-dependent perturbation theory. Transition proba-
bilities per unit time turn out to be a function of the total Green’s function of the system, allowing
the study of problems where real intermediate states are involved. We check the method by obtain-
ing excellent results when it is applied to cases in which the exact solution is known.

I. INTRODUCTION

The transfer Hamiltonian (TH) formalism"? is one of
the most useful tools for the study of tunneling through
barriers separating two semiinfinite media. The idea of
that approach is to analyze the total Hamiltonian H of
the system by means of a first-order time-dependent per-
turbation theory applied to the eigenstates of two unper-
turbed Hamiltonians H; and Hy describing the left and
right sides of the system, respectively. With this pro-
cedure, the transition probability from an eigenstate | L )
of H; to an eigenstate | R ) of Hy is given by a kind of
Fermi’s golden rule?
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E;, and E; being the corresponding eigenvalues of H;
and Hy and
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with ¢, (r)={(r|L) and ¢z (r)={r|R ), the current be-
ing evaluated on a surface S;; separating the left and
right regions. The weaknesses of the method are con-
nected with the fact that it is a first-order perturbation
theory. For simple problems, as the tunneling through a
square barrier, this reflects only in the lack of an estima-
tion of errors. However, TH becomes unable for describ-
ing more interesting problems where real intermediate
states are involved.>~> One possibility is to extend TH to
the case of three spatial regions,® but this is only useful
for a few simple problems. Therefore, the aim of this pa-
per is to proceed to all orders in perturbation theory to
get a formalism in which resonance effects are fully de-
scribed. On top of standard problems as the double bar-
rier tunneling, the method appears to be especially suit-
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able for cases as magnetotunneling, where a good approx-
imation to the Green’s function of the total system can be
computed.

In Sec. II we present a time-dependent perturbation
theory up to infinite order to describe tunneling process-
es. We get transition probabilities which are formally
different for a continuous spectrum than for a discrete
one. The formalism allows the introduction of resonance
effects in a very simple way as it is shown in Sec. III.
There, we apply this theory to a problem with exact solu-
tion to check the capability of the method. Section IV
contains a brief summary

II. GENERALIZED TRANSFER HAMILTONIAN

We want to develop a generalized transfer Hamiltonian
(GTH) formalism by starting from the same grounds than
in the TH but going far beyond. It will require a careful
analysis of the time-dependent perturbation theory. For
discussion purposes we sketch in Fig. 1 the procedure for
a system with a double barrier and an applied bias in the
center region, but the method is valid for any other struc-
ture. As mentioned above the total Hamiltonian H [Fig.
1(a)] is separated in left and right terms by means of two
Hamiltonians H; =H [Fig. 1(b)] in the left side and
Hy, =H [Fig. 1(c)] in the right side. We use an interac-
tion picture to switch on adiabatically the required per-
turbations to recover the total H. So, we write

H=H; +V,e"=Hg+Vge™. (3)

Adiabatic switching means that the process is initiated in
t = — o and 7 is going to zero. For perturbative purpose
V, and Vp will be considered of the same order. We
start with a time-dependent wave function for the total
system
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(a) | W(— o)) must describe a particle on the left side. This

is fulfilled by imposing
f(—ow)=1 and ag(—o)=0. (5)
H

After a while the particle in a precise left state | L) can
in principle evolve to any state | R ) to the right so that a
summation upon R is required in Eq. (4). The time-

(b) dependent coefficients are determined from the
Schrodinger equation by an expansion in a perturbation
series. We take

F)=f9 and agx(t)= 3 af'(t), (6)
L j=1

H

where the superindices denote the perturbation order.

() We have made use of the fact that the set | R ) is a basis
so that no higher orders are required for f(¢). The lack
of zero order for ay(¢) is a consequence of the boundary
conditions. Since we look for density probabilities some

Hl

care is needed on the normalization of |W(z)). In the
Appendix we show that the wave function for any order j
is normalized up to this order. With this wave function,

(d) the Schrodinger equation gives to first order
aa‘” o
if |R)=e “Rt'emy, |L), (7)
HC

where wg; =wp —w, . For higher-orders one has

FIG. 1. Sketch of the different Hamiltonians used to study j)
tunneling with the GTH method. (a) Total, (b) left, (c) right,
and (d) center Hamiltonians.

ze U-‘(t)e"'VR[R1> . (8

These iterative equations are solved by projecting them
on the state (R |, giving

W)= (e "“H'|LY+ Sage “F'|R), @
K af(t) ———(R|VL|L)f dt, e R )
where w; =E; /#i and wgy =Eg /#i. Tunneling is related
to very specific boundary conditions. At the initial time, and
J
; 1
af(t)=—— 2 <R|VR|Rl><R1|VR|R2)"'(Rjal|VL|L>
(i#) RRy, ..., R,
iw t t io t t iwg t
X ft dtlem‘e ! f l dtzemze R‘Rzzf fj ldtjem’e Byt (10)

The solution is

(R| Vg |R)){R, | Vg |R, )"'(RJ‘IIVLlL)emRL'e”’

ag'(t)= ;
RyR (= (wpp —ijn) ok L—l(_]—l nl-- wR L—n])
einLtejm -
=m<1¢ | VRGRIEL +i(j —1)mIVg -+ VRGR(E +in)V, |L) , (11

where Gg (E; +ian) is the incoming Green’s function for Hz commonly used in scattering theory.’

Once the wave function | W(7)) is determined to all orders it is possible to calculate the transition probability from
left to right per unit time,
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Pp=tim % ag(n)]? (12)
T)—+0 dt
Using (6) and (11), Eq. (12) becomes
(m +n)ne'™+mm .
=1 L|V E m—1]Vg - GF(E Ve | R
Prr= nlf})z (mn—iE)nn+iE) (L|V,GR[EL+i(m —1)m]Vg GR(EL+imVg |R)
X{R | VRGR(E, +in) - VRGRE, +i(n =]V, | L), (13)

where E =E; —Ej.

This equation has to be handled in different ways depending upon whether the spectrum is con-

tinuous or discrete. Let us start with the continuous case. Then, there are no divergences in the analytic expression of
the Green’s functions so that the limit 7—0 of the matrix elements can be taken independently from that of the frac-

tions which result to be (27 /#A)8( E

c
Pigp=

m,n

=20 8B, —EQ) | (L | V(I + G Vi +-Gi Va G Vi +

—éLB(EL—ER [(L|V,+V,G Vg |R)|?,

I being the unity operator and G * the incoming Green’s
function corresponding to the total Hamiltonian.

We will discuss the implications of Eq. (14) after hav-
ing the equivalent equation for a system with a discrete
spectrum which is more cumbersome. In such a case the
limit 7— 0 implies to have poles in Gz for Ep =E; that
can coincide with the poles at Ex =E; for the fractions
in Eq. (13). This is a consequence of the fact that the
spectral representation of G contains the state | R ).
The contributions coming from the poles of Gg can be
associated in sets corresponding to m +n constant. For
low orders in the perturbation series, i.e., for m +n=1,
2, or 3, it is possible to check that the contribution of

Pl =2T5(E,

The series in Eq. (16) is managed in a better way if one considers P associated to ¥ instead of to Gg

R VR +8K VrER Vr+ -~

=(Eff —H +PgVy)~
So, the transition probability is given by

2T
Prp= #

In many practical cases the parentheses in Eq. (18) can be
well approximated by the unity so that P2, recovers a
shape very similar to PSz. The first term (L | ¥V, | R ) in
the matrix elements of P’ and Pfy is the one coming
from first-order perturbation and consequently the only

—ER) [ (L |V, (148 Vr+8F Vr8K VR + -

=[Gg +Gg(PVR)GF + - -~
=(Ef —Hg —PVy) " 'PV,
'PVg .

'—S(EL—ER)| <L l VL+VLG+(1_—PR VRG++ Tt

) for any m and n. Then, for a continuun the transition probability per unit time is

8(EL Eg) S AL |V [GFEVRI" ' R)R |[VRGF(E]" "'V, |L)

“)|R)|?

(14)

f

each set cancels out. In a discrete spectrum the extension
of this result to any order allows one to substitute in Eq.
(13) the Green’s function Gg (E; ) by

R )R,
R,#ER EL _ER,
=PGF(E,), (15)

where E; =lim, oE; +in and Py is the projection
operator on the state | R ), while P is defined by the last
part of Eq. (15). Then, the limit y—0 can be taken in a
similar way to the case of a continuous spectrum and the
transition probability in the discrete case becomes

JIR)|?. (16)

. Then
1PV,

(17)

)PV |[R)|?. (18)

one appearing in the TH method. In the simple case of
tunneling through a single barrier this is the most impor-
tant term, the other ones being negligible so that TH is a
good approximation. The differences between the expres-
sions for PS5 and PP are simply a consequence of the
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fact that zeros in denominators of the spectral represen-
tation of a Green’s function must be excluded in the
discrete part of the spectrum while they can be kept and
integrated in the continuous part of the spectrum.®

We want to stress that the expressions we have ob-
tained for the transition probabilities Pz and P/ con-
tain explicitly the Green’s function of the total system.
That means a significant improvement on the TH method
because now all the processes involving complicated
geometrics® or real intermediate states can be fully de-
scribed. Section III is devoted to see how such a task can
be done in a simple and precise way.

III. RESONANCE EFFECTS

The interest of expressions (14) and (18) for the transi-
tion probability is the appearance of the total Green’s
function. In many cases G*' can be computed but, in
general, it is much more appealing to look for approxima-
tions to G which contain the main physics of the prob-
lem. This is the case of resonance effects that can be easi-
ly treated in G*. In order to discuss these questions we
apply the GTH method to the problem of tunneling
through a double barrier. In this case, the transmission
can be calculated exactly>'? so that we can use it as a test
for the GTH method. The potential profile is depicted
Fig. 1. Resonance effects are due to transitions from left
to right by means of virtual processes involving reso-
nance states localized in the well. Therefore the main
physics is just connected with well states so that a good
approximation is to substitute G+ by the Green’s func-
tion G.* of a center Hamiltonian H, as the one shown in
Fig. 1(d). For energies below the barriers this is a very
simple approach because only a few localized states are
important for the spectral representation of G,;f. This
approximation can be too drastic because it uses discrete
S-functions to describe a continuum with resonant states.
It is rather easy to improve the approach in order to re-
cover the continuous aspect of the density of states. We
use a self-energy

3=V, +V.G}V,, (19)
so that the approximation for G * is
Gt=~G(1-3GH)! (20)

which remains very simple to handle. For the case we
are concerned with, the wave functions have simple ex-
pressions and all the required integrals are analytically
performed. In Fig. 2 we show In | T, | % as a function of
the energy E; =Ey, with

ﬁZ

m*

T,_R=—2 (L|V,+V,G Vg |R) . (21
We present the results for the two approximations
G*t=G, and Gt =G (1—-3G.;})~" as well as the exact
result for this transmission'® in the case of the double
barrier shown in the inset and an effective mass of 0.067.
Since the three results cannot be distinguished, in the
lowest part of the figure we show the error made by tak-
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FIG. 2. Logarithm of the transmission coefficient as a func-
tion of the energy (in eV) for an electron with m *=0.067 tun-
neling through the double barrier shown in the inset. The exact
results (Ref. 10) and the ones obtained with GTH are undistin-
guishable for each other. Lower part of the figure shows the er-
ror introduced by GTH by using two different approximations:
G~G,(---)and G~G.(1-3G,)7' (...

ing the above-mentioned approximations. We have per-
formed the same calculation for different values of the pa-
rameters having the same behavior for the transmission:
for Gt ~G. a small error that is corrected by introduc-
ing the self-energy. These results are in support of the
GTH method as a simple and efficient tool to study tun-
neling.

IV. SUMMARY

We have extended the TH method to all orders in per-
turbation theory. This allows the study of tunneling phe-
nomena including resonance effects. The transition prob-
ability results to have a different expression for the case
of a discrete spectrum than for a continuous one, but in
both cases it takes a shape similar to a Fermi’s golden
rule. The transition probability explicitely depends on
the Green’s function G of the total system. Resonance
effects in double barriers are well described by approxi-
mating G by the Green’s function G, of the central well
corrected by a self-energy 2 that essentially takes into ac-
count the fact that one is working with a continuous
spectrum. This formalism is very suitable to introduce
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self-consistency connected with the charge density stay-
ing at the well. This can be done by means of its effect on
G, and 2. The formalism is well adapted to treat some
other interesting problems. For instance the application
of GTH to magnetotunneling with the magnetic field ap-
plied either parallel or perpendicular to the current is the
subject of a subsequent paper.
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APPENDIX
We want to show that the wave function given by Egs.
(4), (6), and (11) if for any order j normalized up to this
order. We start with the case of first order,

—Ia)Rl

|W“‘(t)):f‘O)e_iwL'[L)+Za,‘(”(t)e IR) .
R

(A1)

Since the normalization to zero order gives =1, we
have up to first order

1=(\I’(1){‘l’(“>
=1+2RezeiwLRt(L | R ag! (A2)
R

so the last term of the right side must be zero. In order
to check this we use the solution (11) for !’ that gives
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Re S afe (L |R)
R
(L|R)R |V, |L)
= - et
R —filwpg —in)
=Re(L |G{(E +in)V  |L)e™. (A3)

The Green’s function of the left Hamiltonian can be writ-
ten in terms of the one of the right Hamiltonian

Grlw)=(0—Hg)™!
=(o—H, =V, +Vg)!
=G (0)+ G Vg =V )G (@) + - -
The term we are analyzing becomes
e"[Re({L |G, (E, +in)V, |L)
+ Re{L |G, (E, +in) (Vg =V )G (E +in)V |L)
+ -] (AS)

The terms beyond the first in (AS5) are of orders higher
than first so that we only need to analyze the first one,
which is

Re{L |G, (E, +in)V,|L)

EL—EL'
=3 (L|L')L'|V,|L)—————=0
2 e B e

(A6)

So we have checked that the last term in (A2) is zero to
first order which implies | ¥'"(¢)) is normalized up to
first order. It is straightforward to repeat these argu-
ments for any order | ¥(¢)) obtaining the normaliza-
tion we were looking for.
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