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Generalized transfer Hamiltonian for the study of resonant tunneling
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Tunneling of electrons through a barrier has been commonly studied by means of a transfer-
Hamiltonian method that is not appropriate for describing resonance effects. We generalize that
formalism by carrying out an infinite-order time-dependent perturbation theory. Transition proba-
bilities per unit time turn out to be a function of the total Green's function of the system, allowing
the study of problems where real intermediate states are involved. We check the method by obtain-

ing excellent results when it is applied to cases in which the exact solution is known.

I. INTRODUCTION

The transfer Hamiltonian (TH) formalism' is one of
the most useful tools for the study of tunneling through
barriers separating two semiinfinite media. The idea of
that approach is to analyze the total Hamiltonian H of
the system by means of a first-order time-dependent per-
turbation theory applied to the eigenstates of two unper-
turbed Hamiltonians HI and Hz describing the left and
right sides of the system, respectively. With this pro-
cedure, the transition probability from an eigenstate

i
L )

of HL to an eigenstate
~

R ) of Hit is given by a kind of
Fermi's golden rule
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EL and Ez being the corresponding eigenvalues of HL
and H~ and
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TLR (~R ~PL ~L ~OR ) dSLR
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with pL(r) = (r
~

L ) and QR(r) = (r
~

R ), the current be-

ing evaluated on a surface SLz separating the left and
right regions. The weaknesses of the method are con-
nected with the fact that it is a first-order perturbation
theory. For simple problems, as the tunneling through a
square barrier, this reAects only in the lack of an estima-
tion of errors. However, TH becomes unable for describ-
ing more interesting problems where real intermediate
states are involved. One possibility is to extend TH to
the case of three spatial regions, but this is only useful
for a few simple problems. Therefore, the aim of this pa-
per is to proceed to all orders in perturbation theory to
get a formalism in which resonance effects are fully de-
scribed. On top of standard problems as the double bar-
rier tunneling, the method appears to be especially suit-

able for cases as magnetotunneling, where a good approx-
imation to the Green's function of the total system can be
computed.

In Sec. II we present a time-dependent perturbation
theory up to infinite order to describe tunneling process-
es. We get transition probabilities which are formally
different for a continuous spectrum than for a discrete
one. The formalism allows the introduction of resonance
effects in a very simple way as it is shown in Sec. III.
There, we apply this theory to a problem with exact solu-
tion to check the capability of the method. Section IV
contains a brief summary

II. GENERALIZED TRANSFER HAMILTONIAN

We want to develop a generalized transfer Hamiltonian
(GTH) formalism by starting from the same grounds than
in the TH but going far beyond. It will require a careful
analysis of the time-dependent perturbation theory. For
discussion purposes we sketch in Fig. 1 the procedure for
a system with a double barrier and an applied bias in the
center region, but the method is valid for any other struc-
ture. As mentioned above the total Hamiltonian H [Fig.
1(a)] is separated in left and right terms by means of two
Hamiltonians HL =H [Fig. 1(b)] in the left side and
H„=H [Fig. 1(c)] in the right side. We use an interac-
tion picture to switch on adiabatically the required per-
turbations to recover the total H. So, we write

H:—HL, + VL e" =HR + V~ e" .

Adiabatic switching means that the process is initiated in
t = —~ and g is going to zero. For perturbative purpose
VI and V„will be considered of the same order. We
start with a time-dependent wave function for the total
system
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Pl.„—»m —
I
uR(r)

~

Gf 2

q-0 dt

Using (6) and (11), Eq. (12) becomes

(m +n)ge'
PLR ——lim g (L

~ VLG„+[EL+i(m —1}g]V„G~+(EL+i'}Vz
~
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(12)

(13)

where E =EL —E„. This equation has to be handled in different ways depending upon whether the spectrum is con-
tinuous or discrete. Let us start with the continuous case. Then, there are no divergences in the analytic expression of
the Green s functions so that the limit re~0 of the matrix elements can be taken independently from that of the frac-
tions which result to be (2m /A)5(E) for any m and n Th.en, for a continuun the transition probability per unit time is

PL„= 5(E~ En) —g (L
~

VL[G~+(EL)V„] '
~R &(R

~

[V„G~+(E~)]" 'V~ ~L &
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I
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'
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I being the unity operator and 6+ the incoming Green's
function corresponding to the total Hamiltonian.

We will discuss the implications of Eq. (14) after hav-

ing the equivalent equation for a system with a discrete
spectrum which is more cumbersome. In such a case the
limit g~O implies to have poles in Gz+ for E„=EL that

I

can coincide with the poles at Ez ——EI for the fractions
in Eq. (13). This is a consequence of the fact that the
spectral representation of GR+ contains the state

~

R &.

The contributions coming from the poles of G„+ can be
associated in sets corresponding to m +n constant. For
low orders in the perturbation series, i.e., for m +n=1,
2, or 3, it is possible to check that the contribution of

each set cancels out. In a discrete spectrum the extension
of this result to any order allows one to substitute in Eq.
(13) the Green's function Gz+(Ez ) by

[R, &&R, [

gR (EL} X ( PR GR (EL}
a, ~~ EL+ —ER

=PG~+(EL. ) ~ (15)

where EI+ ——lim OEI +i' and PR is the projection
operator on the state

~

R &, while P is defined by the last
part of Eq. (15). Then, the limit ri~O can be taken in a
similar way to the case of a continuous spectrum and the
transition probability in the discrete case becomes

PLR —— 5(EL ER )
I
(L

I VL,
—(l+gg+ Vg+gg+ Vsgg VR+ ' ' '

)
I
R (16)

The series in Eq. (16) is managed in a better way if one considers P associated to V„ instead of to G„. Then

g„V„+gz Vega VR+ =[G„++GR (PVn)G„++ ]PV„
= (EL+ HR —P V„) 'P—V„

= (EL+ H+ P„V„) 'P V—~ .

So, the transition probability is given by

i~=
~

5(EL ER) I &L
I VI. +V—LG+(I —P~V~G +

In many practical cases the parentheses in Eq. (18) can be
well approximated by the unity so that Pz„recovers a
shape very similar to Pfz. The first term (L

~
VI

~

R & in
the matrix elements of P&& and P&& is the one coming
from first-order perturbation and consequently the only

one appearing in the TH method. In the simple case of
tunneling through a single barrier this is the most impor-
tant term, the other ones being negligible so that TH is a
good approximation. The differences between the expres-
sions for PL~ and PI„are simply a consequence of the
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self-consistency connected with the charge density stay-

ing at the well. This can be done by means of its effect on

G, and X. The formalism is well adapted to treat some
other interesting problems. For instance the application
of GTH to magnetotunneling with the magnetic field ap-
plied either parallel or perpendicular to the current is the
subject of a subsequent paper.
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APPENDIX

GR(cv) =(tv —Htt )

=(cv HL ——VL+ Vtt )
—1

=GL(cv)+Gt (cv)( V„VL )—GL(tv)+ (A4)

We want to show that the wave function given by Eqs.
(4), (6), and (11) if for any order j normalized up to this
order. We start with the case of first order,

~

4"'(t})=f' 'e
~

L )+gatI"(t)e "
~

R ) .
R

(Al)

Since the normalization to zero order gives f' '=1, we
have up to first order

+ ] (A5)

The terms beyond the first in (A5) are of orders higher
than first so that we only need to analyze the first one,
which is

Re(L
~

GL (Et +ill) Vt
~

L )

The term we are analyzing becomes

e"'[ Re(L
~

GL (EL +i ri) VL
~

L )

+ Re(L
I GL (Et +i g)( V„—VL, )GL (EL +i ri) Vt I

L )

( y(1)
~

y(1) )

=1+2Rege " (L
~

R )aa"
R

(A2)

so the last term of the right side must be zero. In order
to check this we use the solution (11) for az"' that gives

(A6)

So we have checked that the last term in (A2) is zero to
first order which implies

~

+"'(t)) is normalized up to
first order. It is straightforward to repeat these argu-
ments for any order

~

+'~'(t}) obtaining the normaliza-
tion we were looking for.
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