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A formalism is developed for impurity screening in a transition-metal (TM) dilute alloy in the
dielectric screening approach. The full dielectric tensor is inverted using two schemes: (1) the
linear combination of atomic orbitals approximati, on, and (2) the mixed-band-structure scheme,
where s electrons are represented in the free-electron approximation and the d electrons in a local
representation. In both schemes the exact expressions are obtained for the excess impurity scatter-
ing potential EV(r) and the impurity-induced charge perturbation hn(r). In the mixed-band-

structure scheme, EV(r) and hn(r) are separable into isotropic and anisotropic contributions. The
latter is the manifestation of local-field (LF) effects. The numerical results for 5 V(r) and hn (r) are
obtained for vanadium (V) alloys witn TM impurities using a noninteracting-model band structure.
The results are consistent with the other theoretical results and experimental predictions. The LF
effects in 6 V(r) and hn (r) are found to be significant. The electric field gradient (EFG) is calculat-
ed for V alloys including LF effects. The calculations of the EFG suggest that both valence and size
effects are equally important in explaining the experimental results.

I. INTRODUCTION

The theoretical study of electronic structure of the
transition-metal (TM) impurities in cubic TM s, usually
called transitional cubic alloys, is of immense importance
both from the fundamental and technological points of
views. ' It involves two different aspects: first is the pre-
cise description of the electronic structure of the host
metal through the electronic band structure calculations
and second is a self-consistent solution of the scattering
problem which is determined by the Hamiltonian of the
host metal and the impurity scattering potential. The
basic physical quantities of interest are the impurity
scattering potential b, V(r) and the impurity-induced
charge perturbation b, n (r), which can be used to study
the different electronic properties of these alloys.

In a pure TM the conduction electrons possess both
the s and d characters. The s electrons are free to move
in the crystal and suffer resonant scattering from the
quasilocalized d electrons. It has been proved that the
major part of screening is carried out by d electrons in
TM's. ' The introduction of substitutional TM impuri-
ties in TM's makes a system characteristically difficult to
study theoretically. In these alloys the s- and d-
conduction electrons of the host TM suffer resonant
scattering from the d orbitals of the TM impurity ion,
leading to the formation of the virtual bound states under
favorable circumstances. '

Von Meerwall and Rowland studied experimentally
the nature of b.n(r) and EFG in dilute V alloys with the
TM impurities and observed very small wipeout numbers
and large values of the electric field gradient (EFG) at
first-nearest-neighbor (lNN) sites of the impurity. Here,
the wipeout numbers represent the number of perturbed

host ions per impurity. Pal et al. studied hn(r) and the
EFG in dilute V-based alloys, with bcc structure using
the partial wave method (essentially an asymptotic limit)
in conjunction with pseudopotential theory. However, it
is found that the preasymptotic effects are equally impor-
tant in these alloys. To account for the preasymptotic
effects the screening of the TM impurities in V metal in
the dielectric screening approach is described by a scalar
dielectric function EH(K) of the host metal. It takes into
account the effect of the d electrons and gives b,n(r) valid
at all distances from the impurity. The above-mentioned
calculations yield isotropic b V(r) and b n(r) and thus the
effect of anisotropy of d states which gives rise to local-
field (LF) effects is ignored. '

It is found that the LF effects play a significant role in
explaining the electronic properties of TM's. ' If one ac-
counts for anisotropy of d electrons, the dielectric func-
tion in a TM becomes a tensor e (HKK'), the off-
diagonal elements of which are manifestations of the LF
effects. ' The use of eH(K, K'), in the impurity screening
problem yields anisotropic EV(r) and b,n(r) which are
distinct along different symmetry directions. "' These
Is.n (r ) are used to estimate EFG's. Therefore it is
worthwhile to investigate the effect of LF's on the impur-
ity screening and the EFG. The scheme of the paper is as
follows. In Sec. II we describe the formalism for the im-
purity scattering in the dielectric screening approach and
in Sec. III we apply it to calculate b, V(r), hn(r), and the
EFG for V alloys with TM impurities. The results are
concluded in Sec. IV.

II. THEORY

The screened impurity potential EV(r) is related to its
Fourier transform 6 V(K) by the relation
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b V(r)= IEV(K)e' 'dK,1

(2ir)

where K is a wave vector in the Fourier space and

b V(K)= g eH'(K, K')hV (K'), (2)

A. LCAO approximation

The wave function pk(r) in the LCAO scheme is

(10)

where eH'(K, K') is the inverse dielectric tensor of the
host metal. 5V (K) is unscreened excess impurity poten-
tial defined as

where Pi(r —R„}is the atomic wave function at site R„
and the sum is over all the N lattice sites in the crystal
space. Pi(r —R„) may also be taken as Wannier function
centered on the site R„. Using Eq. (10) in (7) we find

AV"(K)= V"(K)—V (K), (3)

where Vz(K) and Vii(K) are bare-ion potential for the
impurity and host ions. Solving the Poisson equation for
6 V(K }one finds

where

n, n' lA, '

x A„"ii (K+G),

An(K)= g [eH'(K, K') —5& K ]b V (K'),
v K

where

u(K}=, [1—f„,(K)]

and

A„ii (K)=f Pi (r)e ' '$i (r+R„)dr,

i, '

k(kF k k+K

(12)

is the Fourier transform of electron-electron interaction
potential and the function f„,(K) takes care of the ex-
change and correlation interactions.

The general expression for the dielectric tensor is'

—i(k+K) ~ (R —R, )

)(e (13)

The inverse dielectric matrix is calculated using Eq. (11)
in Eq. (6}. The result is

eH(K, K') =5KK —v(K)XH(K, K'},

~here the polarizability function

(6) eH'(K, K+G)=5K K+o

+v(K) g A (K)F (K)A'(K+G),

XH(K, K')= g EA,

X ( fk(r) I
e

I 1k+K"(r) &
where

F (K)= f '(K) —g A*, (K+G')A~(K+G')
G'

(14)

Here fo(Ek) is Fermi-Dirac function. Ek is the energy
eigenvalue of the state

~

kA. &, pk(r)=(r
~

kA, & and A, is

band index which represents principal, orbital, and mag-
netic quantum numbers. XH(K, K') is a product of band
structure part (in large brackets) and overlap matrix ele-
ment part. The periodicity of the electronic charge dis-
tribution requires eH(K, K') to be nonzero when
K'=K+G, where G is a reciprocal lattice vector. Thus
Eqs. (2) and (4) may be rewritten as

b, V(K)= geH'(K, KgG)dV (K+G),
G

and

&n(K)= g [e„-'(K,K+G) —5«+o]1

xb, V"(K+G) .

An(K) and b, V(K) can be evaluated if one is able to find
eH'(K, K+G). If one uses the localized representation
for pk(r), the band structures and overlap parts of
eH(K, K+G) are factorized, making the eH'(K, K+G)
tractable. We adopt two schemes to calculate
eH(K, K+G), (i) the LCAO approximation and (ii)
mixed-band-structure scheme.

X u(K+G') (15)

bn(K)= g g Y~(K)X~(K+G), (17)

where

The subscript p =
I n A, A, 'I. The second term of Eq. (14) is

the contribution due to multipole character of the polar-
ization of charge at the lattice positions. The intraband
(A, =A, ') transitions in the various subbands produce
monopoles while the interband (A,&A, ') transitions pro-
duce dipoles at the atomic sites with form factor A (K).
Therefore, the second term of Eq. (14) includes contribu-
tions arising from monopole-monopole, monopole-dipole,
dipole-monopole, and dipole-dipole interactions mediated
by the resonant function F (K). Thus Eq. (14) describes
the screening similar to that of a dipolar model for insula-
tors. '

b V(K) and hn(K) are obtained by substituting Eq.
(14) in Eqs. (8) and (9). One gets

b, V(K)=b, V'(K)+ g g IV, .(K)X,.(K~G) (16)
G p'

and
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X (K)=A*(K)b, V (K), (18) A, (K)=f p;~(r)exp( —iK r)p, k(r+R„)dr, (27)

Y (K)= g A~(K)F~p. (K),
P

W (K)=v(K) g A (K)F~~(K) .
p

b, V(r) in r space is obtained using the identity

g u(R„)e "=g u(K+G) .
n G

This gives

5 V(r) = b, V"(r)+ g g X .(R„)W .(r —R„},
p1 p

where

(19)

(20)

(21)

(22}

f (K} g fo k fo k+K(Elk ) (Elk'
)

k &kF k k+K

X exp[ —i(k+ K).(R„—R„)] . (28)

The subscript s denotes I IA,A, 'I, i is orbital quantum num-
ber. The symbol for the subscript is changed as there are
di6'erent transitions in this scheme. The inverse dielectric
matrix is obtained as described earlier and is given as

eH'(K, K+G)
1

eo(K+G}

X~(R„}= 3 fX~.(K}e "dK,
(2m )

W~(r —R„)= 3 f W.(K)e "dK .
(2m )

(23) ~K,K+G

g A, (K)F„.(K)A,', (K+G)
eoK) ... (29)

Here X (r) and W (r) are the Fourier transforms of
X~ (K) and W~.(K). Similarly one can get the expression
for «(r) by taking the Fourier transform of bn(K)
given by Eq. (17) and using the identity (21). It gives

where

F„(K)=[f,, '(K}—f,", (K)]

= f,, '(K) —g A, (K+G')A;, (K+G')
«(r) = g g X (R„)Y .(r —R„),

n p'
(25)

v(K+G')
eo(K+G') (30)

where Y (r) is the Fourier transform of Y (K), Here
Eqs. (22) and (25) are exact in the LCAO approximation.
The first term in Eq. (22) is the unscreened excess impuri-
ty potential. The screening eFects due to the s and d elec-
trons of the host metal are combined in the second term.
Therefore in this scheme it is not possible to compare the
contributions to b, V(r) and «(r) from the s and d bands
separately.

B. Mixed band scheme

In the TM's it is suitable for all practical purposes, to
use an orthogonalized plane wave representation for the
s-electron states and the localized representation for the
d-electron states. In this combined band structure
scheme, the dielectric matrix is split up in two parts; first
is the diagonal part eo(K) arising from the intraband
transitions in the s band and is just the Lindhard func-
tion. The second contribution arises from the intraband
and interband transitions between the partially filled s
and d subbands and contains both the diagonal and non-
diagonal contribution. Therefore, in the RPA,
eH(K, K+ G) can be written as

and

b V(K)=hV (K)+ g g T, (K)U, (K+G) (31)
$' 6

«(K)=«(K)+ ggS, (K)U, (K+G),
$' G

where

In this model, polarization of d-electron charge produces
monopoles and dipoles at the lattice positions which are
screened by the s conduction electrons. ' This is similar
to the screened breathing shell model. ' For the intra-
band transitions A, (K)/eo(K) gives the screened form
factor for the monopoles, while for the interband transi-
tions it gives the screened from factor for the dipoles.
Putting eo(K)=1 for ideal insulators, Eq. (29) gives
screened dipolar model of screening. ' Equation (29) in-
cludes all shorts of interactions between the screened
monopoles and dipoles, mediated by F„(K),as discussed
earlier.

Substituting Eq. (29) in Eqs. (8) and (9), we get

eH(K, K+G) =eo(K)6& K+o
6, V (K)=4 V"(K)/eo(K), (33)

where

—v(K) g A, (K)f„(K)A;. (K+G),
$9$

(26)

hn (K)= —1 b, V"(K),vK eoK

A, (K}
T, (K)=v(K) g F„(K),

eo K

(34)

(35)
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A, (K)
S, (K)= g F„(K),

EO K

A,*(K+G)
U, .(K+G) =6 V'(K+ G)

eo(K+ G )

(36)

(37)

b, n(r)=An (r)+ g g U, (R„)S,(r —R„) .
s' n

(39)

AV (r), bn (r), U, (r), Ts(r), and S,(r) are the Fourier
transforms of b V (K), b, n (K), U, (K), T, (K), and

S,(K), respectively. Here again Eqs. (38) and (39) are the
exact expressions in the combined band structure scheme.
The first term in Eqs. (38) and (39) is isotropic and corre-
sponds to the simple metallike contribution. The second
term is anisotropic in nature and gives the d-band contri-
bution. The anisotropy in AV(r) and bn(r) is caused by
the band structure of the host metal, through T, (K) and

S,(K) and by the lattice sum. These facts make b, V(r)
and b, n(r) dependent on the crystal structure of the di-
lute alloy.

III. CALCULATIONS AND RESULTS

A. The change in potential 6, V(r) and charge density hn (r)

The exact calculations of the EFG using Eq. (25) are
nontrivial as they involve the full band structure calcula-
tions. Therefore, we calculate EV(r), b,n(r), and the
EFG in the mixed band scheme where the numerical
computations are tractable in model band structure. This
will enable us to estimate the effect of local fields on
b V(r), hn(r), and EFG's. We assume b V (K), bn (K),
T,(K), S,(K), and U, (K) to all be isotropic, i.e.,

~

K
dependent only. This is not rigorously true for T, (K) and

S,(K) since they invole the electronic band structure
through F„(K), which is not isotropic but periodic.
T, (K) and S,(K) become isotropic if the average value of
F„(K), denoted by (F„(K)), is substituted. Further,
(F„(K)) is obtained by substituting the average values
of f„(K)and f,", (K). In this approximation b, V(r) and
hn (r) are given as

b V(r)=b V (
~

r
~

)+ g g U, (
~
R„~ )T, (

~

r —R„~ ),
s' n

(40)

dn(r)=bn (
~

r
~
)+ g g U, .(

~
R„~ )S,.(

~

r —R„) .
s' n

(41)

Here essentially the anisotropy due to band structure
effects is averaged out. The anisotropy due to lattice sum
is retained through the second term of Eqs. (40) and (41).

&V(r) and b,n(r) can be obtained by taking the Fourier
transforms of Eqs. (31) and (32) and using Eq. (21). The
final expressions are

AV(r)=AV (r)+ gg U, (R„)T,(r —R„),
s' n

and

4kf, —
~

K
~

2kf, + K

4kf,
/
K

/ 2kf, —
)
K

/

1f(K)= — g md, kfd,
2m A

(42)

4kfdi —
/

K
/

X 1+
4fd; I

K
I

2kfdi+ [
K

/

&( ln (43)

and

A(K)= f jo(
~

K
~

r)R3d(r)dr .
0

(44)

Here m, and kf, are the effective mass and Fermi
momentum of the s band and md, and kfd; are the corre-
sponding quantities for the ith partially filled d subband.
R&„(r) is the radial wave function for the 3d electrons
and jo(

~

K
~

r) is the zeroth-order spherical Bessel func-
tion.

The formalism of combined band structure scheme is
applied to calculate EV(r), b,n(r), and the EFG for di-
lute V alloys: VMn, VNb, and VTa with 3d, 4d, and 5d
TM impurities, respectively. To evaluate EV(r) and
bn(r) one needs b, V (K) and eH(K, K+G). hV"(K)
[given by Eq. (3)) is estimated using the Heine-
Abarenkov —type transition-metal model potential for
both the host and impurity ions. ' The impurity pro-
duces dilation in the host matrix, leading to change in the
impurity valency. Therefore, the normal valency of the
impurity is replaced by Blatt corrected impurity valency.

The dielectric matrix eH(K, K+ G) for V metal is eval-
uated in the isotropic noninteracting band scheme of
Singh et al. , where s electrons are represented by the
plane waves and the d electrons by the tight binding wave
functions. According to isotropic and noninteracting
band structure, V metal has valency 3; its s band and the
two d subbands are partially filled, one d subband is com-
pletely filled, and the remaining two d subbands are emp-
ty and above Fermi energy. In computing the dielectric
matrix, two types of transitions are considered; (i) intra-
band transitions in the partially filled s and d subbands
and (ii) interband transitions from filled and partially
filled d subbands to partially filled s and d subbands. It
has been found that contribution of interband transitions
to the dielectric matrix is very small as compared to that
of intraband transitions.

The overlap between the d atomic orbitals Pd (r —R„)
at different lattice sites is neglected and the hybridization
between the different d subbands is included by giving
equal weight to the d subbands with different m values.
In these approximations A, (K) and f„(K) become in-
dependent of the subscript s. The functions eo(K),
A(K), and f(K) become isotropic in the noninteracting
band scheme and are given as

2ms kfs e
eo(K)=1+

~ ~ [1—f„,(K)]
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In evaluating the dielectric matrix, Hubbard-type ex-

change and correlation corrections are included in the
electron-electron interaction potential. The function

f (K), in Eq. (30), is anisotropic; therefore its values are
evaluated for the V metal along the principal symmetry
directions [100], [110],and [111]. It is found that f"(K)
is nearly the same along these directions for

~

K
~

& 8 a.u.
For large values of

~

K ~, f"(K) decreases rapidly to
zero. Therefore, the average value of f"(K) is obtained
by taking the simple average of its values along [100],
[110], and [ill] directions. Using this in Eq. (30), the
average value of function F(K), symbolized by (F(K) )
is calculated for the V metal and is shown in Fig. 1.
(F(K) ) exhibits a weak peak at small

~

K
~

which is due
to the resonant form of F(K).

b, V(r) and hn(r) are calculated from Eqs. (40) and (41)
for dilute alloys VMn, VNb, and VTa. The model poten-
tial parameters for TM impurities are taken from An-
imalu' while those for the host V metal are taken from
Singh et al. , as these reproduce phonon frequencies of V
quite reasonably in the noninteracting band scheme. To
achieve convergence over the integrals involving b V (K)
we have applied the damping factor to the TM model po-
tential as suggested by Animalu and Heine. ' Figure 2
shows b, V(r) versus r along the [100] direction for VMn,
VNb, and VTa. Figure 3 shows b, n(r) along the [100]
direction for VTa only and the behavior of An(r) for
VNb and VMn is similar to that of VTa.

It is evident from Figs. 2 and 3 that b, V(r) and hn(r)
are large near the impurity and decrease fast, exhibiting
the usual Friedel oscillations at large distances from the
impurity. The large values of 5 V(r) and hn(r) at or near
the impurity site are due to the resonant scattering of the
conducting electrons from the TM impurity. The rapid
decrease is due to the large screening of the impurity by
the d electrons of V metal. This conclusion is consistent
with the small wipeout numbers observed in dilute V al-
loys with TM impurities. The magnitudes of b, V(r) and
bn(r) are stnall at the first nearest neighbor (1NN) and
beyond but these are oscillatory in nature. It shows that

I I I I
/
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W ~
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FIG. 2. b V(r) vs r along the [100] direction for VMn, VNb,
and VTa alloys.
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K

~
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TABLE I. The calculated values of the EFG (10' cm ) at the 1NN site of impurity with coordi-
nates (a/2) [111]along with q,„„,for VMn, VNb, and VTa.

Alloy
Contributions to q~~

Isotropic Anisotropic qexpt

VMn
VNb
VTa

—0.735
0.112
0.155

—0.182
—0.325
—0.308

—0.917
—0.213
—0.153

0.280
—0.805
—0.798

0.637
1.019
0.951

0.74
0.84
1.00

the impurity is not completely screened within its
Wigner-Seitz cell. In spite of large screening the impuri-
ty has extended interaction with the neighboring host
atoms. This conclusion is consistent with the calcula-
tions of Podloucky et al. '

It is evident from Fig. 2 that
~

b, V(r)
~

for VMn is
smallest as compared to that for VNb and VTa. It is due
to the fact that the excess impurity charge AZ =ZI —ZH
on Mn impurity is 1, while it is 2 for Nb and Ta impuri-
ties. The contribution to b, V(r) and b, n(r) due to the
LF's is 10—20% in these alloys. The second terms in
Eqs. (40) and (41) contribute for the interactions between
the screened monopoles and dipoles induced at the lattice
positions. These contributions are found to decrease rap-
idly away from the impurity, therefore, only a few nearest
neighbhors of the impurity contributed significantly to-
wards the LF's. The isotropic condition on the functions
T(K), S(K), and U(K) reduced the anisotropy in b V(r)
and b,n(r).

B. The EFG

The EFG due to an impurity consists of two contribu-
tions. First is the valence EFG q" arising due to the
scattering of the conduction electrons from the excess
charge on the impurity. In cubic metallic alloys q' is a
cylindrically symmetric traceless tensor and its principal
component is along the line joining the host and impurity
atoms usually called the parallel (~~) direction. Taking the
Z axis along the parallel direction, the principal com-
ponent of the valence EFG q

ll
is expressed as

q~~(r)= —23[1 —y(r)] b, v(r) — b V(r)—d2 1 d

dr r dr
(45)

Here y(r) is the Sternheimer antishielding factor that ac-
counts for core polarization of the host atom at which the
EFG is to be evaluated. y(r) acquires a constant saturat-
ed value outside the core region, therefore, we use the
asymptotic ~alue of y(r) denoted as ) „and it is —11 for
V metal.

The second contribution to the EFG, called the size
effect, is due to the different size and electronic structure
of the impurity atom. The impurity produces strain field
in the host lattice and the neighboring host ions are dis-

placed. The dilation changes the effective charge on the
impurity; therefore, Blatt-corrected impurity valency is
used in evaluating q~ (r) and these are calculated at the
displaced positions of the nearest neighbors. The dis-
placement is estimated using spherically symmetric strain
field in the elastic continuum limit. ' The direct size
EFG q arises due to strain-field-induced redistribution of

the conduction electrons. We proposed a formalism for
q' for dilute alloys with bcc structure and its principal
component q' at the 1NN site in the parallel direction is
expressed as

s 3 1 da Cs F44
qll

—3a
Il a de

(46)

IV. CONCLUSIONS

The dielectric screening theory gives exact expressions
for b, V(r) and An(r) in the crystal space, in both the
LCAO approximation and the combined band structure

where Fii, F~q, and F44 are nonzero elements of fourth-
order tensor F for a cubic system and are evaluated using
the screened point charge model. C, is the size strength

parameter.
q

ll
and q

ll
are calculated at the displaced positions of

the 1NN site of impurity with coordinates (a/2) (111)
and these are added to obtain the total EFG q„~,. These
results are given in Table I along with the experimental
values of the EFG q,„„, from Meerwall and Rowland.
The contributions to qll from isotropic and anisotropic
bn(r) are tabulated separately. The anisotropic contri-
bution due to the LF's is significant in VMn and rather
dominating the VNb and VTa alloys. Although the mag-
nitude of the LF contribution is small, it is oscillatory in
character. As evident from Eq. (45) q

~

is related to first
and second derivatives of AV(r); therefore,

q~~
becomes

very sensitive to the LF contribution towards b V(r).
The isotropic and anisotropic contributions to the EFG
have the same sign in VMn but have opposite signs in
VNb and VTa.

The smaller values of qll show that the valence effect
alone cannot explain the measured values q,„,. In es-
timating q

ll
the value of C, is taken to be 7, which gives

reasonable agreement between
~ q„~, and q,„,for VTa

and the same value is used in calculating
~ q„~, ~

for al-

loys VMn and VNb.
~ q„~, ~

agrees reasonably well with

q,„, for these alloys. The comparison shows that qll
dominates q ll

in VNb and VTa while the reverse is found
in VMn. Therefore both the valence and size effect con-
tributions are important to explain q,„,. This conclusion
is in contrast to the prediction of Von Meerwall and
Rowland, who predicted from the linear relation be-
tween the EFG and a '(da/dc) that the EFG arises
mainly due to the size effect. Further, the principal com-
ponent of EFG tensor is along the parallel direction,
which is consistent with the nuclear magnetic resonance
(NMR) observations.
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representation. The novel feature of the combined band
structure representation is that the isotropic and aniso-
tropic contributions are separable and the latter is the
manifestation of the LF effects. If one neglects the d-

band effects the conventional dielectric screening formal-
ism of simple metals is retrieved. ' The numerical results
for AV(r), hn(r), and the EFG establish the importance
of the LF's in the TM-based dilute alloys which were
neglected in earlier calculations. '

The present theory for dilute TM alloys with TM im-

purities has the following advantages over the partial
wave method. (i) The dielectric screening theory yields
expressions for b, V(r), b,n(r), and the EFG valid at all
distances from the impurity, in contrast to the asymptot-
ic nature of partial wave analysis. (ii) The present ap-
proach is free from all the deficiencies involved in calcu-
lating the phase shifts, occurring in the partial wave
analysis, particularly in alloys with TM impurities. (iii)
The dielectric screening theory in conjunction with the
pseudopotential approach includes the Bloch character of
s, p, and d bands for conduction electrons in the evalua-
tion of b V(r), hn(r), and the EFG through the use of

the TM model potential for both the host and impurity
atoms and through the dielectric tensor of the host metal.
On the other hand, in the partial wave method the Bloch
character is introduced in the calculation of the EFG
through a core enhancement parameter. (iv) The d
potential-well-depth A2(E) ~ (E E—)

' is strongly
dependent on energy and represents s-d hybridization
analogous to that found in the orthogonalized plane wave
pseudopotential theory. Such a resonance behavior is
responsible for the existence of a virtual bound state un-
der favorable circumstances. ' The exchange corrections
take care of the nonlinear screening effects to some ex-
tent.

In conclusion we mention that we have made an at-
tempt to incorporate full dielectric tensor for impurity
screening and in estimating EFG's for dilute transitional
cubic alloys.
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