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A formalism is derived to calculate the intensities of core-core-valence Auger spectra using re-
sults of band-structure calculations. The spectra obtained can be interpreted in terms of local par-
tial densities of states. This method is applied to the L; M, ; V transitions of Ti in the systems Ti-C,
Ti-N, and Ti-O for ordered and disordered structures. In the case of Ti-C and Ti-O, a comparison
with experimental spectra shows good agreement, especially concerning the influence of non-

stoichiometry on the line shapes of the spectra.

I. INTRODUCTION

For quite a few years Auger electron spectroscopy
(AES) has been a standard technique for the chemical
analysis of solids by using the energetical positions of
peaks to identify the elements in a specimen and by using
the relative peak intensities to determine the chemical
composition. Auger spectra of solids provide, however,
much more information, in particular with respect to
peak shapes of valence-band electrons: Rather than us-
ing them only as “fingerprints,” theoretical spectra can
be calculated in order to interpret the line shapes of the
experimental spectra.

Among the two types of Auger processes mapping the
valence band, namely the core-core-valence (CCV) AES
and the core-valence-valence (CVV) AES, obviously the
former is more suitable for a comparison between theory
and experiment, because in the latter case a kind of self-
folding of the density of states (DOS) is involved and
therefore in this case interpretation of experimental data
is much more difficult. Since the two core holes in a CCV
process are localized at one atomic site, the peak shape is
determined by the local partial DOS (PDOS). The CCV
spectrum, however, is not just the PDOS, corrected for
lifetime broadening and spectrometer resolution, but
symmetry-dependent matrix elements occur which can
differ considerably for the various angular-momentum-
dependent channels.
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FIG. 1. Energy-level scheme for a core-core-valence Auger
process. Arrows show electron transitions (left, for the direct;
right, for the exchange matrix elements). The numbering refers
to hole states: 1,2 before, 3,4 after the Auger transition, respec-
tively.
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In Sec. II of the present work a spectral representation
of the valence-band Green’s function is used to introduce
the DOS into the expression for the Auger transition
probability. Together with the DOS the matrix elements
obtained yield the intensity for CCV spectra.

Applications of this method to the technologically im-
portant systems Ti-C, Ti-N, and Ti-O are shown in Sec.
III. Various concentrations of vacancies on the nonmetal
sublattices are considered and the peak shapes are found
to be strongly dependent on these concentrations. Exper-
imental results show good agreement with the calcula-
tions.

II. THEORY

A. Auger transitions in solids

Within a nonrelativistic treatment of the Auger pro-
cess the transition probability P is given by the well-
known formula (see, e.g., Chattarji'):

=—2ﬁ1|'D—E|28(83—81+e4—t—:2), 2.1)
where the matrix elements D and E are of the form
2
e
p={ [yt )¢;(r2>m¢3(rl)¢4(r2)d3r1d3r2 ,
5 (2.2)
e
Ezffl/)f(l‘l)lﬁ{(rﬂmtﬁ(rl)1/13(r2)d3r1d3r2 .

In the case of CCV transitions, indices 1 and 3 denote
wave functions (WF’s) of the core states, 2 is the continu-
um WF of the outgoing electron, and the information
concerning the valence band is contained in the functions
Y4(r) (see Fig. 1). Since we are not interested in absolute
Auger yields, we shall omit the factor 27 /# in the follow-
ing. In order to introduce the Green’s function associat-
ed with the valence WF’s we consider the square of (2.1)
explicitly:

|D—E|?>=|D|?+ |E|>-2Re(D*E) . (2.3)

Let us consider the | D | ? term first. The magnetic quan-
tum numbers of the core states 1 and 3 are inobservables
and therefore can be summed up. Also, a sum over all
valence states with energies €, has to be performed:
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[D(e)) 2= 3 3 |Dley)|8(e3—g +e4—¢,)

m,,m all
valence
states

=fde 3 3

my,m, all
valence
states

The expression on the right-hand side of (2.4) contains a
sum of the form

S, i (ry,€0)94(r5,€4)0(e—¢y)
all

valence
states

- _%ImG(rz,ré,s), L=(m). (2.5

Energy conservation is provided by the delta function
8(ge;—e,;+€—¢,). Performing the energy integral in (2.4),
€, equals e +€;—¢€;. Equation (2.4) can therefore be writ-
ten as a function of €. According to Faulkner and
Stocks,? the Green’s function G(r,r’,¢) is given in terms
of the site-diagonal scattering path operator 7""(&) by

ImG(r,r',e)= 3, Z}(r,e)Imr}(e)Z}.(r',¢€) ,
LL

(2.6)

where the functions Z/(r,€) are regular solutions of the
Schrodinger equation for the nth central field and are
normalized to single-site scattering. In the case of the
Auger process, r and r’ lie in the same sphere and there-
fore the index n will be dropped in the following.

Using (2.6), instead of the valence WF’s y,(r,g,) the
functions Z, (r,e) occur in | D |2 For the core states,
atomic WF’s are used:

| D(gy) | %8(e3—€,+€—€,)8(e—¢,) .

2.4)

—

with j =1 or 3. The outgoing Auger electron is described
by a time-reversed LEED state, the details of which are
given elsewhere (see Redinger, Marksteiner, and Wein-
berger® and references therein). Assuming that the elec-
tron is not scattered any further on its way out (the so-
called single-scatterer final-state approximation) this state
is given by

1

N i8, (gy) _
1/)2(1',82):471'21 ZYzz(Qk Je ? le(r,ez)Y[_z(Q) .

L,
(2.8)

The functions Z(r,e) are regular solutions of the
Schrodinger equation normalized to Bessel and Neumann
functions at the muffin-tin radius. ) is the angle of the
wave vector k which is antiparallel to the direction of the
outgoing electron. Using the identity

S (LR YAQ)YL(Q,) (2.9)
|ri—1,| A
where A denotes (A,u) and
A
r<
?’k(rhrz)'_— r);+1 Py (2.10)

we can now write the complete expression for the D2
term as follows:

tl/j(r,ej)=R,j(r,sj)YLj(Q) , (2.7)
_J
|D(£)[7=—%(4ﬂ)22 > [ffd3r,d3r2R,‘:(rl,el)Y,‘l(ﬂl)
L,L'm,m;

N
X3 (=), (e

L,

~i8, () _
T Z eV ()

XEYA(rl’rZ)YX(QI)YA(QZ)RIJ(rl’ES)YLJ(Ql)Zl(rsz)YL(Qz)
A

XIm7;; (e)+[c.c.].

(2.11)

Angular integration over Q, diagonalizes (2.11) with respect to L, and L, whereby L} refers to the complex-conjugate
part in (2.11). The angular part of (2.11) consists of four integrals of the form

[day, @y, (@7, @)=

where the

L I, I
m; m,; m;

1
2o @1+ D@L+ D2l +1)

211 0

0 0 0 (2.12)

L L L
m; my; m3|’

are Wigner 3j symbols. In order to replace Imr; .(€) in the expression for the transition probability by the partial DOS
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n,(¢), we use the following approximation:

" _,
S 2+1!

where F;; (¢) is given by

F;,(e)= fawsd3r Z,(r,e)Z;(1,¢)

ImTLL'(E) (E)Flel'(E)SLL' ’

(2.13)

(2.14)

and Qg is the volume of the Wigner-Seitz sphere. Using the orthogonality relation for 3j symbols and defining the in-

tegrals

IMfufo | fofo= [ [ridrirddr, fir)f3(r)yalr,m)f3(r)f4(ry)

Fi(e)=Fp; ()88, »

we finally get the following expression for the D? term:

D(e)[2=3 3 3 (21, + 1)2l;+ DA+ 1)(21,+ 1)
1A

X |IA(R,](5,)Z,2(52) | R, (e3)Z,(e)) | 2FYen(e) .

The same procedure can be applied to the | E | ? term in Eq. (2.3):

[E(©) 2= 3 321, + 1)(2l;+ DA+ 1)(21, +1)
A

X | TMR, (€0)Z,(e5) | Zy(e)R,,(€3)) | ’Fi (edmy(e) .

(2.15)
(2.15a)
AL a L)
oo0o0| 00O
(2.16)
A oL
000|000
2.17)

Note that as compared with the integral in | D | ? the functions R 13("’53) and Z,(r,¢) in I* occur in reverse order. The

cross term D*E is less compact:

D*E(e)=3 3 3 3L+ 12+ 1)2A+1D(2A +1)(2, +1)(—1)

[P
I, A1
0 0O

I Al

X 000

X[I"(R,l(el)zlz(sz) | R,}(sﬁZ,(s))]*[I"(R,l(81)Z,z(sz) | Z,(E)R,3(£3))]F,‘l(e)n,(e) .

In (2.18),
I, A I,
I A1

is a 6j symbol. Using (2.16)—-(2.18), we can define factors
o,(€) such that the transition rate for a CCV Auger tran-
sition assumes the form

P(£)=20,(E)n1(£) . (2.19)
l}

The o, are matrix elements and act as weighting factors
for the /-dependent local PDOS. Since they can be very
different in magnitude, the shape of the Auger spectrum
can deviate considerably from that of the total PDOS at
an atomic site.

I, A
0 00

13+A'+1l

I, A L[ A0
I Al

0 0 O

(2.18)

B. Approximations and restrictions of the method

Due to the approximations used in the derivation of
Eqgs. (2.16)-(2.18), calculations of Auger spectra as de-
scribed above are not generally valid. The main effect
omitted is the interaction of the two holes left on the
atomic site so that we are restricted to cases where this
kind of interaction is small enough to be neglected. This
is the case, e.g., for the early 3d metals. With increasing
atomic number in the 3d row the hole-hole interaction
energy grows as compared with the width of the valence
band and becomes dominant in the vicinity of Ni (see,
e.g., Antonides, Janse, and Sawatzky*). This interaction
leads to quasiatomic Auger spectra for the 3d elements
with higher atomic number than Ni (Sawatzky,’
Sawatzky and Lenselink®). In the case of Ti, however,
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our method should be applicable and in fact correspon-
dence between theory and experiment is quite satisfactory
as will be shown in Sec. III.

Another restriction arises from the fact that the calcu-
lation is nonrelativistic so that heavy elements cannot be
treated and that the spin is not taken into account. Since
spin-orbit coupling is non-negligible even for the lighter
elements, we consider this effect in an approximate
manner by assuming that the contribution of a special en-
ergy level to the spectrum depends linearly on its occupa-
tion. In the case of the L;M, ;¥ transition this means
that the total spectrum consists of a superposition of two
identical LM ,V-type spectra, shifted apart on the ener-
gy scale and weighted by the proper degeneracy of the
core levels. The energy shift, that is, the LS splitting be-
tween M, and M, is obtained from atomic calculations.

Although AES is a surface sensitive technique, we use
a bulk formalism. The mean free path of the Auger elec-
trons is of the order of about 10 A (see the standard for-
mulas of Seah and Dench’ or Tokutaka, Nishimori, and
Hayasg,li;8 for rutile, Duc et al.’ report a mean free path
of 18 A for the 387-eV Auger electrons). Surface effects
will therefore be important.

Apart from these restrictions, our theoretical spectra
are subject to several calculational simplifications, e.g.,
the assumption that the outgoing Auger electrons under-
go no further scattering. Furthermore, an approximation
for the scattering-path operator in terms of the local den-
sities of states is used. This last approximation is formal-
ly not necessary but it greatly simplifies the interpretation
of experimental spectra in terms of PDOS.

III. RESULTS AND DISCUSSION

The self-consistent APW potentials used in the present
calculations were, in the case of Ti-C and Ti-N, taken
from Neckel et al.,'© for the construction of the vacancy
potentials see in detail Marksteiner et al.!! The Ti-O
APW potential originates from Herzig.'> The local par-
tial densities of states for Ti-C and Ti-N were taken from
Marksteiner et al.,'! the PDOS of ordered Ti-O was pro-
vided by Herzig.!? The CPA DOS of partially disordered
Ti-O was calculated by Marksteiner, Hormandinger, and
Weinberger.'3

The matrix elements for Ti LMV transitions corre-
sponding to (2.19) are shown in Fig. 2 for the systems Ti-
C,.0 Ti-N, o, and Ti-O,,. In all three cases the d-type
states (,,,€,) take part in the Auger process much more
than s- (a,g) or p- (t,,) type states. Since #,, and e, con-
tributions are dominant in the local PDOS at the Ti site,
the spectra map almost exclusively the d-type local
PDOS. There are only small differences between the ma-
trix elements of Ti in the considered systems which, how-
ever, were to be expected because a different atomic envi-
ronment enters the expression for the matrix elements
only via the muffin-tin potential, that is, via the functions
Z, and Z,. Changes in the environment affect mainly the
outer zone of a muffin-tin sphere while the dominant con-
tributions to the integrals in (2.15) come from a radial re-
gime close to the center where the core functions R; are
large. Differences between matrix elements for the same
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FIG. 2. Comparison of matrix elements for TiC, 4, TiN,,
and TiO, , (the latter with 15% vacancies on each sublattice).
Solid lines, Ti-C; dotted, Ti-N; dashed, Ti-O. The energy scale
refers to the muffin-tin potential with interstitial regions at zero
potential. The Fermi energy of each system is marked in the d-
type curves (0.66, 0.842, and 0.7 Ry for TiC,,, TiN,,, and

TiO, o, respectively).
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FIG. 3. L;M,;V Auger spectra for Ti in TiC, with x vary-
ing between 0.5 and 1. The spectrometer resolution is taken to
be 1 eV FWHM. The spectra consist of two contributions shift-
ed relatively in energy (see Fig. 4 and Sec. II B) and are normal-
ized to the same maximum value. The zero of the energy scale
is the Fermi energy of the upper contribution.
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system but different compositions are even smaller. The
energy scale in Fig. 2 refers to the muffin-tin potential
used for the calculation of the DOS, where the constant
potential between the muffin tins is zero.

As has been described above, L-S coupling has been
taken into account by superposing the single spectra on
an energy scale shifted according to the L-S energy splits
of the core levels. For the transition LMV this would
lead to a superposition of the L,M,V, L,M;V, L;M,V,
and L;M,V spectra. However, it is a well-known fact
that experimentally only the L; M, ;¥ contribution is ob-
served in Ti due to Coster-Kronig processes in the L shell
(see, e.g., Duc et al. 9 and references therein or de Boer!%).
For that reason, superposition of single spectra was car-
ried out only with respect to the M, ; levels where the en-
ergy shift was taken to be 0.71 eV. As can be seen in
Figs. 4, 8, and 9 the general form of the spectrum is not
very much affected by this procedure.

Auger L;M, ;V spectra of TiC, are shown in Fig. 3
with compositions varying between x=0.5 and x=1. In
the case of the stoichiometric composition there exists a
single peak with approximately equal 7,, and e, contribu-
tions (Fig. 4, bottom right). With decreasing carbon con-
tent a second peak arises about 1.6 eV higher in energy,
consisting of a mainly #,, and a smaller e, contribution
(Fig. 4, top right). The latter peak becomes dominant for
x less than 0.7. This behavior is caused by the form of
the local PDOS (see Marksteiner e al.'!): Both the t,,
and e, contribution roughly consist of two bands, the
upper bands lying above the Fermi energy (E) for the
stoichiometric composition. As x decreases, they are
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FIG. 4. Left: decomposition of the Ti L; M, 3V spectrum in
(a) TiCy 5 and (b) TiC,, into its Ly M,V (at lower energy) and
L;M;V contributions. Right: further decomposition of the
LM,V part into partial I-like spectra. Top solid line, total;
dotted, ¢,,; dashed, e,; bottom solid curve, p contribution. The
s-like contribution is too small to be shown on this scale.
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FIG. 5. Comparison of theoretical (solid lines) and experi-
mental (dotted lines) Ti L;M, 3V spectra in Ti-C for various
concentrations of carbon. The dashed curve is TiCg 46, the solid
curve at the same position is TiCg ¢p5. Experimental results are
taken from Gutsev and Shul’ga (Ref. 15). The theoretical spec-
tra are shifted in energy to fit the experiment (whereby energy
shifts are equal for all cases).

shifted to lower energies and the portion below Er ap-
pears in the spectrum. The lower bands maintain their
energies but are reduced in magnitude. Comparison with
experimental spectra taken from Gutsev and Shul’ga'’
shows good agreement as far as the tendency from the
lower to the higher peak is concerned (Fig. 5). However,
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FIG. 6. Inherent difficulties in comparing theoretical with
experimental AES spectra are shown for the case of TiCy gss
(theoretical) and TiC, g (experimental), respectively. Left,
Auger spectra N(E); right, derivative N'(E) with respect to the
energy. The experimental curves are taken from Gutsev and
Shul’ga (Ref. 15).
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FIG. 7. Li;M,;V Auger spectra for Ti in TiN, with x vary-
ing between 0.5 and 1. The spectrometer resolution is 1 eV
FWHM.
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FIG. 8. Left: decomposition of the Ti L;M, ;¥ spectrum in
(a) TiNg s and (b) TiN ¢ into its L3 M,V (at lower energy) and
Li;M,V contributions. Right: further decomposition of the
LM,V part into partial [-like spectra. Top solid line, total;
dotted, t,,; dashed, e,; bottom solid curves, s and p contribu-
tions. The s-like contribution is nearly invisible.
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FIG. 9. L;M,;V spectrum of Ti in TiO, , with 15% vacan-
cies on both sublattices. The spectrometer resolution is 1.8 eV
FWHM. Decomposition of the spectrum analogous to Figs. 4
and 8.

their curves are much broader than ours. The small peak
at the low-energy side of the experimental spectra most
probably arises from hybridizations of Ti p-like states to
the nonmetal s band (see, e.g., Neckel et al. 10) the energy
regime of which was not taken into account in the
present calculation.

As far as a comparison of calculated and experimental
spectra is concerned, one has to decide whether to com-
pare the spectra themselves or their derivatives with
respect to the energy. Generally experimental data are
published as first derivative N'(E) of the spectrum N(E).
It seems therefore reasonable to calculate the theoretical
N'(E) and look for similarities. However, the right-hand
part of Fig. 6 shows that this attempt leads to quite frus-
trating results. Especially the energetical positions of the
“peaks,” the points of inflection of the spectra, are rather
different due to the stronger broadening of the experi-

1000 9 7{in TiO

LMy, 3V

Intensity (arb. units)

T T T T

E (eV)

T
420

FIG. 10. Comparison of theoretical and experimental results
for Ti-O. Solid line, 15% vacancies on both sublattices: dashed
line, ordered Ti-O. Dotted curve: experimental results as taken
from Solomon and Baun (Ref. 16).
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mental curves. In the case of “integrated” spectra N (E),
the interpretation of line shapes is much easier and clear-
er, in particular if one is interested in the information
contained in the shape of a spectrum. Publication of ex-
perimental integrated spectra N(E) will hopefully be-
come more customary in the future.

The LM, ;V spectra of TiN, , where x varies from 0.5
to 1, are shown in Fig. 7. Again there are two peaks, but
separated by approximately 4 eV. The DOS of Ti in
TiN | is rather similar to the corresponding DOS in TiC,
except that the high-energy 7,, band lies already below
E at stoichiometric composition whereas the high-
energy e, band remains above. As a consequence, the
high-energy peak in the spectrum of TiN, , originates ful-
ly from the ¢,,-type PDOS, while the lower one, similar
to that of Ti-C, is of slightly more e, character than ¢,,
character (Fig. 8, bottom right). Reducing the nitrogen
concentration leads to a relative decrease of the left peak
and an increase of the e,-like contribution (Fig. 8, top
right) so that in the case of TiNj s the composition of the
spectrum is similar to that of TiC, 5. No suitable experi-
mental data have been found for a comparison in the case
of Ti-N.

As far as Ti-O is concerned, an ordered structure and a
partially disordered structure are considered, both refer-
ring formally to the stoichiometric composition. The ma-
trix elements used in both calculations were those of the
disordered structure with a vacancy concentration of

15% on both sublattices. The result for the partially
disordered system is shown in Fig. 9. The shape of the
spectrum and the ¢,, and the e, contributions are similar
to Ti-N except that the energetic separation of the peaks
is about 4.6 eV. For ordered Ti-O, the spectrum is rather
similar but shows a bigger gap and peak-to-peak ratio.
Agreement between theory and experiment is better in
the disordered case, as can be seen in Fig. 10 where the
experimental data are taken from Solomon and Baun.!®

IV. SUMMARY

The method to calculate CCV Auger spectra as de-
scribed in this paper seems to be quite suitable to inter-
pret satisfactorily experimental spectra in terms of energy
band-structure-related quantities. For Ti-C and Ti-O it
turns out that although the experimental curves are gen-
erally broader than those predicted by theory, good
agreement is found especially as far as the influence of
nonstoichiometry is concerned.
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