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High-frequency dielectric loss of Na P-alumina: Evidence for relaxation crossover
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The ionic-conductivity (o) and electric-modulus (M ) data for melt-grown Na P-alumina in the
10'—10'-Hz frequency range have been previously interpreted with a formalism in which the decay

of an observable, such as the time-dependent electric field in the sample, follows the ("fractional-
exponential" ) form exp[( tie—)' "], where 0&n &1. Ionic-conductivity data for frequencies be-

tween 10' and 10" Hz cannot be interpreted in terms of this formalism, but instead the ionic relaxa-

tion at high frequencies is consistent with a simple exponential (i.e., with n =0). These observations

are in agreement with the predictions of a relaxation model in which the frequency co„which
defines the crossover from fractional to simple exponential relaxation, is included as an explicit pa-

rameter.

I. INTRODUCTION
The fast-ion conductor Na P-alumina exhibits a variety

of unique dielectric, acoustic, and thermal properties
which are very much like those observed in glasses and
amorphous polymers. ' This behavior has been attributed
to the topological disorder induced by the non-
stoichiometric Na+-ion excess within the conduction
planes of this "superionic" conductor. The disorder
leads to a high density of two-level tunneling modes [i.e.,
two-level systems (TLS)] which dominate the low-
temperature properties of this crystalline solid. At
higher temperatures (&90 K), thermally activated ionic
conduction involving the cooperative motion of ion pairs
constitutes the major contribution to the dielectric loss.
For frequencies between 10 and 10 Hz, this loss has
been interpreted satisfactorily in terms of a formalism '

in which the decay of an observable, such as the time-
dependent electric field within a capacitor E(t), is of the
Kohlrausch ("fractional-exponential" or "stretched-
exponential" ) form, i.e., E ( t)=E (0) exp[( t lr)' "], —
where 0 & n & 1. For Na P-alumina n is typically
-0.5 —0.6 and slightly temperature dependent for
T & 100 K. The observed fractional exponential relaxa-
tion is commonly observed also for the low-frequency
( &10s Hz) permanent dipolar dielectric relaxation in

many disordered solids. '

At high frequencies (&10 Hz), the dielectric loss in
disordered solids is generally dominated by disorder-
induced coupling to phonons. ' The phonon-related
far-infrared dielectric loss in many polymers and glasses
depends approximately quadratically on frequency and is
generally much larger than the loss due to electronic or
ionic relaxation effects.

For Na P-alumina, on the other hand, the dielectric
loss which can be attributed to a phonon mechanism, ex-
hibits a much stronger frequency dependence (-co ) over
the 10' —10' -Hz range. '" This leads to a much dimin-
ished phonon-loss contribution below 10" Hz compared
to many other disordered solids. Consequently, the con-
tribution of competing relaxation loss processes, due to
the tunneling (at low temperatures) or (at sufficiently high
temperature) hopping motion of ions, dominates the
high-frequency dielectric loss in this material. Na P-
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II. DIELECTRIC-LOSS DATA

It has been shown by Macedo, Moynihan, and co-
workers ' that the appropriate function to analyze the
dielectric relaxation due to mobile carriers is the inverse
complex permitivity M*=1/e*, known as the electric
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alumina, therefore, offers a unique possibility to study the
frequency dependence of the dielectric loss due to ionic
relaxation into the microwave range. Previously, such a
study has been carried out for the low-temperature loss
which is dominated by tunneling modes. ' ' The
microwave-loss data at higher temperatures (& 100 K)
have been available, ' but have not been interpreted in de-
tail in conjunction with the low-frequency ( & 10 Hz) re-
sults. A particularly striking feature of these data is a
dramatic change in the frequency dependence of the
dielectric loss in the 10 -10' -Hz range. This observa-
tion has not been heretofore explained in a satisfactory
manner.

The purpose of the present paper is to reexamine the
dielectric-loss data for Na P-alumina in order to establish
a definitive link between the data in the 10 —10 -Hz re-
gion and the 10 —10' -Hz region. It will be shown that
the distinct change in frequency dependence of the dielec-
tric loss near —10' Hz can be interpreted in terms of a
fundamental change in the ion relaxation mechanism. It
will also be shown that this "crossover" in ionic relaxa-
tion is not only exhibited in the frequency dependence of
the dielectric loss, but also in the temperature depen-
dence of the dc conductivity. We believe that the present
interpretation of the dielectric-loss data for Na P-alumina
is of potential interest for other solids with significant
ionic- or electronic-relaxation-loss contributions.

The outline of the paper is as follows. The next section
brieAy summarizes the appropriate experimental observa-
tions and describes previous theoretical fits to these data.
The relaxation model employed in this paper is described
in Sec. III, and the application of this model to the dielec-
tric loss data is discussed in Sec. IV. Other corroborating
evidence, which supports the theoretical interpretation, is
presented in Sec. V. The significant conclusions are sum-
marized in the final section.
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modulus. For an ionic conductor M*(co) provides infor-
mation about the dynamic aspects of ion motion in terms
of the time decay of the electric charges on opposite sides
of the sample. This variation of the charge is described
by the time variation of the electric field F. (t)=E(0)4(t).
The electric modulus is expressed as ' ' '
M "( co)=M„1+f dt exp( —icJt)d+(t)/dt

0

where M„ is the high-frequency limit of the real part of
M" (cu). Note also that M' =M'+iM" = I/e" = 1/
(c' —ie" ). The imaginary part e" of the complex permit-
tivity e* is related to the real part of the conductivity by

O
(7i
O

—4

NaP —AlaOs T = 113 K

IIO' =EOE (2)

where eo is the permittivity of free space. The frequency
dependence of e', e", and o. can be calculated via

8
log+( (Hz)

I

10

e'= M' /[(M') +(M") ]

and Eq. (2), where

r."=M" /[(M')z+ (M" )z] .

(3)

(4)

FIG. 1. Imaginary part of the electric modulus M" data in a
frequency range 102&f &10" Hz at 113 K. The data in the

low-frequency range of 10' to 10' Hz at 113 K are reproduced
from data by Almond and West (Ref. 2).

The dc conductivity o d, is related to the average relax-
ation time (r) of the electric field by

od, ——lim o (to) = e/o(M„( r)),
6J~O

where ( r ) is given by

(r) = J @(t)dt . (6)
0

In an analysis ' ' ' of the electric modulus data for
glassy ionic conductors it was determined empirically
that the optimum form for 4(t) was the "fractional-
exponential" (Kohlrausch) form

4(t) =exp[ —(t/r*)' "], 0 & n & 1, (7)

where ~ is a characteristic relaxation time. For n =0,
Eq. (7) reduces to a simple exponential decay. The two
adjustable parameters in Eq. (7) 7' and n determine, re-
spectively, the position and the shape of the imaginary
part of the electric modulus. We have previously
presented fits using the above formalism to the electric-
modulus data of Almond and West for Na P-alumina.
The data were taken over a frequency range from 10 Hz
to slightly less than 10 Hz for temperatures ranging
from 92 to 141 K. In the left portion of Fig. 1 the data of
Almond and West are replotted on a logarithmic scale for
a temperature of 113 K. The excellent fit to experiment
is demonstrated by comparison with the calculated curve
for T =113 K, as shown by the solid line in Fig. 1. The
parameters used to obtain this fit were n =0.64 and
log ]or* =4.93.

At frequencies greater than 10 Hz the quantity that is
measured is the imaginary part of the dielectric constant
e" which is related to the conductivity by Eq. (2). On the
right side of Fig. 2 are shown the previously pub-
lished' " high-frequency conductivity data for Na P-
alumina at several different temperatures. Also shown in

Fig. 2 are the electric-modulus data of Almond and
West (as in the left portion of Fig. 1), where e" was ob-
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FIG. 2. ac conductivity data of Na P-alumina in the frequen-
cy range 10' &f & 10" Hz for three different temperatures.

tained from the measured values for M' and M" and Eq.
(4). Using the inverse relations, as given by Eq. (3) and

(4), has also led to the determination of the 113-K mi-

crowave frequency points on the right-hand side of Fig.
1.

The Kohlrausch-type fit to M" in Fig. 1, when extend-
ed to frequencies higher than 10 Hz, predicts a frequen-

cy dependence of M" such that log, oM"-to" '. On a

log-log plot this implies a straight line with slope n —1,
where n -0.65. The measured microwave data clearly
do not correspond to this prediction, but instead follow a
curve predicted by n =0. The inability of the fractional
exponential formalism ' to explain the data above 10 Hz
is demonstrated perhaps more succinctly in Fig. 2. Here
the dependence of log, oo -n log, of, which is predicted
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by Eq. (2) using Eqs. (1) and (4), is not displayed by the
microwave data, which are independent of frequency at
least over one decade in frequency near 10' Hz.

III. RELAXATION MODEL

The empirical fractional exponential model ' outlined
by Eqs. (1)—(7) cannot account for all of the data shown in
Figs. 1 and 2. An alternate model has been pro-
posed ' which contains some of the essential features
of the empirical "fractional-exponential" model, ' but
also several additional parameters which can be directly
related to microscopic observables. As will be seen, this
"coupling" model leads to several coupled equations con-
taining one set of parameters. A detailed outline of the
model can be found elsewhere. ' ' Some of the essen-
tial results will be given here. An important application
of the coupling model to ionic solids has been the
clarification of the anomalous isotope mass dependence of
ionic conduction.

An important equation in the coupling model is the
generalized equation for the normalized relaxation func-
tion 4(t):

dC (r)/dr = —W(r)4(r), (8)

for co, t & 1
W(r)=

Wp(co t) " for co t & 1, 0&n &1 .

where the transition rate W(t) may be time dependent.
The time dependence of W has its origin in the coupling
between the mobile ions. Interaction between an indivi-
dual ion with the lattice is usually considered as the cause
of the irreversibility of the hopping process of the ion
from site to site. As such, the lattice serves as the con-
ventional heat bath. Under certain approximations (the
so-called van Hove limit), it has been shown ' that the in-

teraction of the ion with the heat bath gives rise to a
time-independent hopping-relaxation rate Wp in the
hopping-rate equation d@ldt = —W04. The relaxation
rate Wp is determined by the attempt frequency vp and
the microscopic energy barrier. The above equation can-
not describe the real situation for systems such as Na P-
alumina in which the correlations between mobile ions
are known to be important. The coupling model ad-
dresses the problem of calculating the effect of the many-
body correlations between the relaxing ions on the relaxa-
tion rate of an individual ion. This difficult problem is
basically concerned with many-body effects in irreversible
processes, and an analytical first-principle solution start-
ing from model Hamiltonians, with which W(t) can be
calculated explicitly, does not exist at this time. In the
absence of an Hamiltonian formalism, we have adopted
an alternative nonempirical approach which leads to
meaningful results and predictions. Various ap-
proaches ' have been used to derive the time depen-
dence of the form for W(t). All these have in common
the conclusion that the initial relaxation rate Wp is
"slowed down, " becomes time dependent and, after a
characteristic time co, ', assumes the self-similar time
dependence of W (~,ot) ", i.e.,

In this way only the functional form of the time depen-
dence of W( t) is deduced and the values of n and co, have
not been calculated for any real material at this time. In-
stead, their values can be obtained from experimental
data. This model approach can only be successful if it
leads to predictions of materials properties which in turn
can be verified experimentally. It is interesting to note
that the t " response in Eq. (9) has the same functional
dependence as that which was previously reported by
Kohlrausch.

Using the relaxation rates W(t) [Eq. (9)] and substitut-
ing in Eq. (8), we obtain for W( t) = Wo

4&(t)=e px[ —(tlro)] for cu, t &1,
where ro= Wo ', and for W(t) = Wo(co, t)

4(t)=exp[ —(tlr')' "] for cu, t y 1 .

(10)

Equation (11) has the form of the Kohlrausch fractional-
exponential solution, where the relaxation time ~* is de-
scribed in terms of the parameters ~p and co, by

[( 1 n )
n ]1/(1 —n) (12)

There are two important points to be made with regard
to Eqs. (9)—(12). First, the expression for r' in Eq. (12) is
directly related to the quantities co, and ip as well as the
fractional exponent n All th. ree quantities (n, co rp) are
determined separately by experiment. The second point is
that there is a direct relationship between the high- and
low-frequency response through the microscopic relaxa-
tion time ~p. It is important to note that from the two
diff'erent time behaviors of the relaxation function 4(t)
for t &eo, ' [Eq. (10)] and for t &co, ' [Eq. (11)], and the
requirement of continuity of 4(t) at the crossover, ' a re-
lation similar to Eq. (12) between r in the long-time re-
gime and 'Tp in the short-time regime can be obtained.
This represents a simple way to understand the form for
Eq. (12).

As defined by Eqs. (10) and (11) the crossover from
fractional exponential to the linear exponential is near
t, =co, '. This condition will be defined as "t, crossover"
in time or "co, crossover" in frequency. The crossover
condition will also depend on the magnitude of the quan-
tity e, ~p. Thus if the condition e,~p))1 is satisfied
(which can be arranged by lowering the temperature, if wo

is thermally activated) then it can be shown' that C&(t)
has hardly decayed from unity before it assumes the frac-
tional exponential form of Eq. (11). This property of &b(t)
is called "fractional-exponential dominance. "' ' On the
other hand, if co, ro « 1 then the relaxation function 4(t)
decays according to the linear-exponential solution from
unity to almost zero before its t, crossover to the
fractional-exponential regime. This behavior is called
"linear-exponential dominance. " There is a "crossover of
dominance" when the condition co, ~p=1 is satisfied. The
predictive nature of the above formalism distinguishes
the present model from recent alternative efforts which
have been limited to deducing the Kohlrausch form.
Simultaneous application of the coupled relations
(10)—(12) to relaxation phenomena in various complex
systems has allowed the explanation of additional puz-



38 HIGH-FREQUENCY DIELECTRIC LOSS OF Na P-ALUMINA: 10 353

zling behavior beyond the Kohlrausch titne (or frequen-

cy) dependence of the relaxation function 4. A discus-
sion of specific examples can be found elsewhere. ' ' 1. 0

ego ll = 0 $5
W~ &~C~ t. 3

~00000000000000

IV. RELAXATION CROSSOVER IN Na P-ALUMINA 0 8 ~ e x P C —t. /' 7g

The coupled-relaxation model will be applied to the
data for Na P-alumina which was shown in Figs. 1 and 2.
We need to specify the magnitude of the parameters n,
co„and ~p. In addition, we need to examine the possible
temperature dependence of these parameters. The fit to
M" in Fig. 1 was obtained for n =0.64 and log, p~* ——4.93
for a temperature T =113 K. Equation (12) relates r" to
the microscopic relaxation time ~p which in turn is

thermally activated and of the form

ro ——r„exp(E, /T), (13)

where the activation energy E, is in units of K. The best
fit to the electric-modulus data has determined that
7 =5.6)& 10 ' s and E, = 810 K. This value of E, is in

good agreement with the microscopic thermal activation
energy of a cation as predicted by Wolf (see Ref. 1 for ap-
propriate references) and as obtained from low-
temperature nuclear-magnetic resonance and internal
friction measurements.

The value of n is temperature dependent, particularly
in the range from 100 to 140 K where evidence for
structural changes in the Na ion sublattice have been re-
ported. ' ' Physically, one can view this temperature
range as one where the material undergoes a transition
from an ionic conductor with liquidlike ionic conductivi-
ty at high temperature to a low-temperature glass like
phase. The changes in n with temperature are such that
n decreases from the 0.64 value at 113 K to 0.55 at 141
K. For T & 141 K I'(co) data are not available. From
an analysis of the temperature dependence of O.d„ to be
discussed in Sec. V, we find that n =0.52 at 200 K and
0.50 at 300 K.

The final parameter to be specified is co, . The choice of
co, =2m. X10' s ' follows from the observed onset of
changes in the 300-K microwave conductivity data in

Fig. 2. This value of co, must necessarily be considered
approximate. As discussed earlier, the marking of co, rel-

ative to an observed relaxation crossover will depend on
the magnitude of the product co, ~p and the resulting time
dependence of C&(t). In Figs. 3 and 4 are shown calculat-
ed curves for N(t) using Eqs. (10)—(12) and quoted values
for ro at two temperatures (141 and 1200 K). A constant
value of n =0.55 is chosen in order to illustrate the effect
of the variation of co, ~p. It is apparent from Fig. 3 that
the condition co, ~p)) 1 is satisfied and that the calculated
4(t) is close to unity and given by the linear-exponential
form until the condition for the t, crossover has been
satisfied. On the other hand, Fig. 4 is appropriate for the
condition co, ~p &&1. We will show in Sec. V that the pre-
dicted crossover defined by the condition m, ~= 1 is con-
sistent with dc conductivity data for a value of
co, =2m && 10' s '. Thus Fig. 3 (co,~p)) 1) is appropriate
for describing the ionic conductivity of Na P-alumina at
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FIG. 3. Sample calculation of the normalized relaxation

function 4( t) with the choice of cu, = 2m. )& 10' s

ro ——5.6X10 "exp[(810 K)/T] s at T=141 K and n =0.55.

The effective ~* calculated according to Eq. (12) is 9.3)& 10 ' s.

The t, crossover from exp[ (tlro)] t—o exp[ —(t!r )' "] is

shown.
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p
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and there is a direct relation between the dc conductivity
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FIG. 4. Sample calculation of the normalized relaxation
function 4( t ) with the choice of co, = 2m. &( 10' s
ra=5. 6X10 "exp[(810 K)/T] s at T =1200 K and n =0.55.
The effective ~* calculated according Eq. (12) is 1.2)&10 ' s.
The condition co, ~o && 1 is marginally satisfied and the calculat-
ed 4(t) is now dominated by exp[ —(t/ro)]

low temperatures ( & 300 K). For the condition co,ro»1
it is clear from Eq. (12) that r »ro This im. plies that it
is an excellent approximation to take 4(t) to be
exp[ —(tlr')' "] for all t. In other words, the t, cross-
over of 4(t) has a negligible effect on the magnitude of
( r ) . Hence from Eq. (6)
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and

(r)= I exp[ tlr—o)]dt=To N ro« 1
0

(16)

0 dc ~0 M~ 70& COc7O (g (17)

The coupling model can now be applied to calculate
the electric modulus and ionic conductivity for values of
n, co„and v.

o which were specified above. Using Eqs.
(10)—(12) in conjunction with the definition for M" and o
in Eqs. (1)—(4) we have calculated M"(ru) and o(ro) for
three representative temperatures (113, 200, and 300 K).
The results of this calculation are shown in Figs. 5 and 6.
The overall agreement between these calculated curves
and the data shown in Figs. 1 and 2 is quite good. There
are some small quantitative differences particularly at 113
K. The primary reason for these discrepancies between
model and experiment is the breakdown of the assump-
tion that relaxation due to ionic conduction is the dom-
inant contribution to the dielectric loss. As temperatures
fall below —150 K there are significant contributions due
to other relaxation mechanisms, including the tunneling
motion of ions. These additional contributions, which
are especially important at high frequencies, are not ex-
plicitly included in the relaxation formalism outlined
above. Consequently, the calculated conductivity above
10' Hz for T =113K and to a lesser extent at 200 K un-
derestimates the actual conductivity. For this same
reason the electric-modulus-data points above 10' Hz in
Fig. 1 lie above the values above 10' Hz predicted by the
M" calculation in Fig. 5.

crd, and w* as given by Eq. (5):

crd, =(1 —n)eol[M„I [il(1 n—)]r*], ro, ro&g 1 . (15}

The last two equations are important for direct compar-
ison between the ac and dc conductivities. In the oppo-
site limit of tu, ro «1 the domination of 4(t) by the fast
relaxation exp —(tlro) leads to the corresponding rela-
tions:
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FIG. 6. Calculated ac conductivity. Details are described in
text. Significance of dashed lines as in Fig. 5.

It is clear from Fig. 6 that the coupling model can
reproduce the significantly different temperature depen-
dences observed for the highest (10' —10' Hz) and
lowest ( & 10 Hz) frequencies. The temperature depen-
dence at low frequencies approaches that for the well-
known dc conductivity, which will be discussed in more
detail in the next section. The temperature dependence
above 10' Hz has not been explained satisfactorily here-
tofore. In Fig. 7 are shown previously published data at
9.46 0Hz for temperatures between 300 and 635 K.
Within experimental error the microwave conductivity is
consistent with a temperature-activated form with an ac-
tivation energy of approximately 810 K, which is the
same as E„defi end in Eq. (13}. This is precisely the ex-
pected activation energy for this regime where the condi-
tion co~* &~1 is satisfied. Further discussion on the point
of activation energy follows in Sec. V.
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FIG. 5. Calculated imaginary part of the electric modulus
M"(f) vs frequency f Dashed lines indicate co, r=. l. Ap-
proach of calculated curves toward co=co, is deomonstrated in

Fig. 3.
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FIG. 7. Arrhenius plot of log, oo{f) vs 1000/T for f =9.46

GHz and T & 300 K.
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V. dc CONDUCTIVITY: EVIDENCE FOR
DOMINANCE CROSSOVER

The general expression for 0 z, is given by Eq. (5). The
form for (r) is given by Eqs. (14) and (16) for the limit-
ing cases co 7O))1 and co, v.o&&1, respectively. If v.

o is
thermally activated as ro r„——exp(E, /kT), then for
co,~o&&1, according to Eqs. (5) and (16), oz, will be
thermally activated with activation energy E, . On the
other hand, if co,~o&y 1, then according to Eqs. (5) and
(14) o ~, will be thermally activated with activation energy

E,* such that

r"=I[1 n—(T)]co,"' 'r I' ' "' ' exp(E,*/kT),

where

(18)

E,' =E, /[ 1 n( T)]— (19)

At the highest temperature of 1093 K, the effective ac-
tivation energy is equal to 815 K. This value should be
identified with E, provided the condition co, ~o(+1 is
satisfied. The value of ~o is calculated using Eq. (17),
where o&,——0.38 (Acm) ' at T =1093 K and M =0.02
as taken from low-temperature dielectric-loss data. We
find that 7 o = 1.17 )& 10 " s and with the previously
determined value of co, =2m & 10' Hz we find that
co 7O=0. 73 at 1093 K. Hence the dominance crossover

occurs near the latter temperature and to a very good ap-
proximation we can set E, equal to the activation energy
at T =1093 K, i.e.,

and where the temperature dependence of n has been ex-
plicitly included. The two different activated regimes as
defined by Eqs. (16)—(19) characterize the occurrence of
dominance crossover.

The dc conductivity of Na P-alumina has been mea-
sured by various investigators with contact as well as
contact-free techniques. There is general agreement
that if the conductivity is plotted according to the Ar-
rhenius expression cr&, T =oo exp( H/RT), —the plot is

linear. In that case the constants H and oo have the
values 3.79 kcal/mole and 2. 37)& 10 (0 cm) ' K, respec-
tively. However, there is strong supportive evidence
that the more appropriate way to analyze the ionic con-
ductivity is in terms of a simple Arrhenius expression
a z„cro e.x——p( H/R T). T—his conclusion is also con-
sistent with the Maxwell relation, Eq (5), which . does not
exhibit an explicit temperature factor in the preexponen-
tial. Analysis of experimental data of other ionic conduc-
tors ' ' ' reveals the actual temperature dependences of
M„and n and lends further support to a temperature-
independent prefactor of o.z, . Given the interpretation of
the ionic conductivity in terms of the simple Arrhenius
formula leads to a plot of logo~, versus 1/T which will

no longer be linear. The apparent activation energy
defined by —d lno~, /d (1/T) can be evaluated from the
expression a~, T =o.

o exp( H/RT). Its v—alue, in K, is
temperature dependent and given by the equation:

—d lno&, /d (1/T) =1908—T for 123 & T & 1093 K .

(20)

E, =810 K (or 0.07 eV) . (21)

This value together with Eqs. (19) and (20) leads to the re-
lation

n (T)= 1 —810/(1908 —T) . (22)

The temperature-dependent values for n predicted by Eq.
(22) are n =(300 K)=0.50, n(200 K)=0.53,
n(141 K)=0.55, n(121 K)=0.55, n(113 K)=0.55.
These values for n ( T) have been used in the calculations
shown previously in Figs. 5 and 6. There is good agree-
ment between n(141 K) and the value of 0.53 obtained
by fitting the electric-modulus data obtained at 141 K.
The discrepancies between the values of n (T) obtained
from Eq. (22} and the values obtained previously from
fitting the electric-modulus data below 141 K are due in

part to structural changes occurring in a broad tempera-
ture range around 121 K which are not taken into ac-
count in detail in Eq. (22).

Given values of ro, co„and n (T), we use Eq. (12) to
calculate r' as a function of T. Then Eq. (15) leads im-
mediately to the dc conductivity. The solid line in Fig. 8
represents calculations of the dc conductivity for a range
of temperatures. The appropriate variables which were
chosen were co, =2m & 10' s ', M „=0.02,
ra=7&&10 ' exp(810/T), and n (T) as given by Eq. (22).
All values of these parameters are the same as previously
determined except that ~„was modified slightly from
5.6)(10 ' s to 7.0&10 ' in order to achieve an overall
better agreement with the experimental measurements
given by open squares in Fig. 8. We do not expect exact
agreement between predictions and experimental data be-
cause n ( T}obtained via Eq. (22) is only approximate and
any possible temperature dependence of M „has not been
taken into account. Considering the uncertainties in
these factors, the overall agreement shown in Fig. 8 lends
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I
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FIG. 8. Plot of dc conductivity vs 1000/T. The squares are
from an equation given by Whittingham and Huggins (Ref. 32}
that represents their conductivity measurements very well. The
solid line is from the model as described in text.
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additional support for the validity of Eq. (8) and can be
considered as further evidence for dominance crossover
in Na P-alumina.

VI. SUMMARY AND CONCLUSIONS

In this paper we have reexamined the microwave
ionic-conductivity data of Na P-alumina for temperatures
greater than —100 K where the hopping and not the tun-
neling motion of ions is expected to dominate the dielec-
tric relaxation. The data exhibit a pronounced change in
the frequency dependence of the ac conductivity in the
10 —10' -Hz range. Below this range the ionic conduc-
tivity is frequency dependent and can be modeled very
satisfactorily in terms of a fractional-exponential relaxa-
tion model, according to which an observable such as an
electric field decays as exp[ —(t lr')' "],where 0 & n & l.
Above 10' Hz the ac ionic conductivity is independent
of frequency over at least one decade in frequency, just
below the onset of the phonon absorption bands. This
observation has been interpreted in this work in terms of
the change, or crossover, of the relaxation from a frac-
tional exponential to a simple exponential such as

exp[ —(tlro)]. Equation (12) provides a definite relation
between the relaxation times ~0 and ~* solely in terms of
the parameter n and the crossover frequency co, . All pa-
rameters are directly determined from experiment. For
example, a fit to dielectric loss or electric modulus data in
the 10 to 10 -Hz range determines n and ~*. The param-
eter co, can be treated as an adjustable parameter or as
determined by the observed distinct change in the fre-
quency dependence of the ac conductivity. In either case
we find a consistent fit to all of the dielectric-loss data for
a choice of co, =2m g10' s '. The temperature depen-
dence of ~o and ~* can be directly related to the tempera-
ture dependence of the dc and ac conductivities observed
for Na P-alumina. The observed relaxation crossover is
not expected to be unique to this ionic conductor, ' but
is likely to be observed in other disordered electronic or
ionic conductors in which the microwave conductivity is

not dominated by coupling to phonons,
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