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The relevance of van der Waals interactions in the scattering of neutral atoms from adsorbates
has been recently confirmed by highly sensitive molecular-beam techniques. The theoretical
descriptions of the collision dynamics which followed the experimental studies have necessitated

very careful qualitative and quantitative examinations and evaluations of the properties of atom-

adsorbate van der Waals interactions for specific systems. In this work we present a microscopic
calculation of the strengths and reference-plane positions for van der Waals potentials relevant for
scattering of He atoms from CO adsorbed on various metallic substrates. In order to take into ac-
count the specificities of the polarization properties of real metals (noble and transition metals) and

of chemisorbed CO, we first calculate the spectra of the electronic excitations characteristic of the

respective electronic subsystems by using various data sources available and combine them with the

existing theoretical models. The reliability of the calculated spectra is then verified in each particu-
lar case by universal sum rules which may be established for the electronic excitations of surfaces
and adsorbates. The substrate and adsorbate polarization properties which derive from these calcu-
lations serve as input data for the evaluation of the strengths and reference-plane positions of van

der Waals potentials whose computed values are tabulated for a number of real chemisorption sys-

tems. The implications of the obtained results are discussed in regard to the atom-adsorbate scatter-

ing cross sections pertinent to molecular-beam scattering experiments.

I. INTRODUCTION

Dynamic electronic properties of surfaces and adsor-
bates have for a long time been in the focus of discussions
concerning the interactions of atomic particles or elec-
tromagnetic radiation with matter. Inelastic scattering of
ionized or neutral atoms and molecules with either clean
or adsorbate-covered surfaces, as well as the refiection
and absorption of radiation at surfaces, are, to a large ex-
tent, determined by the energies and dynamics of the
electronic excitations characteristic of the substrates and
adsorbates involved. The spectra of these excitations
determine also the dynamic polarization properties of the
respective systems and hence the strength of the long-
range van der Waals (vdW} or dispersive interactions act-
ing between surfaces and adsorbates, between the adsor-
bates themselves and between the adsorbates and the par-
ticles in the gas phase. The interest in the latter interac-
tions, and thereby in the electronic excitation spectra of
surfaces and adsorbates, has recently been revived with
the development and the application of thermal energy
atom scattering (TEAS} in the investigations of the
structural and electronic properties of surfaces and adsor-
bates. '

Thermal energy helium scattering from surfaces has
proven to be a particularly sensitive tool in studies of the
clean surfaces on one hand, and of the properties of ad-
sorbates, on the other hand. Experiments in which He
atoms have been scattered from CO and Xe adsorbed at
low coverage on noble and transition metals have demon-
strated that the low-energy He atom collisions with ad-

sorbates are dominated by the long-range vdW interac-
tions, 2 a feature which had also been noted earlier in
analogous collisions in the gas phase. Hence the inter-
pretation of the experimental data on atom-surface col-
lisions which are dominated by the long-range vdW in-
teractions and the calculations of the corresponding cross
sections require, as outlined in Sec. II, rather detailed
knowledge of the surface and adsorbate electronic spec-
tral properties. These properties are investigated in Secs.
III and IV, with a particular emphasis on the atom-
adsorbate vd% potentials encountered in real collision
systems. A calculation of the strengths of these poten-
tials is presented in Sec. V, together with a discussion of
their effects on the atom-adsorbate scattering cross sec-
tions.

II. VAN DER WAALS INTERACTIONS
AND SURFACE SCATTERING

Massey and Mohr and Landau and Lifshitz have
shown that the low-energy scattering cross section o. for
two neutral gas-phase atoms a and b is, to a good approx-
imation, given by the formula

' 2/5
6

0 =f
U

where y is a constant which depends on the approxima-
tion employed (7.547 and 8.083, as given in Refs. 4 and 5,
respectively}, v is the relative velocity, and C6 is the
strength of the vdW interaction between the atoms a and
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b at relative distance R =
~

R ~, viz. ,

C6
E,dw(R)=—

For anisotropic molecules the two-body interaction (2)
becomes anisotropic as well, and one has to average over
the impact angles in order to get the effective C6 which,
through Eq. (1), would yield the vdW scattering cross
section observed experimentally.

In the scattering of atoms from adsorbates the per-
tinent vdW interactions are much more complicated due
to the changes of the electronic configuration of the com-
posite system. This change arises from two major effects.

(i) The presence of a third polarizable body, i.e., the
substrate surface, whose polarization affects the direct
vdW interaction between the particles a and b.

(ii) The modification of the electronic structure of the
I

adsorbate a caused by the formation of a chemisorptive
bond between the adsorbate and the substrate.

The first effect gives rise to the occurrence of two
surface-mediated contributions to the direct vdW interac-
tion between a and b, viz. , the image and the interference
term ' which are anisotropic even if the electronic sub-
systems a and b are isotropic. However, all three vdW
interactions exhibit the same asymptotic dependence
R for large R.

Of particular interest in regard to TEAS experiments
are the vd% interactions between gas-phase He atoms
and adsorbed CO molecules. ' In CO adsorption at low
coverage on Cu and transition metals, the CO molecule
axis is perpendicular to the metal surface and the
geometry of the collision is illustrated in Fig. 1. The
three atom-adsorbate vdW interactions can be expressed
in terms of the coordinates of the particles a and b and
the substrate surface located at z= 0 as

E„d'w(R) = —2(1+2@) 1+ P2(cos8)R' &+2@

CaMbME&m (R) Ed&r (Re )
ab

CabM
E'„d'w(R)=2 I(4 —3cos 8—3cos 8*)—(1 —p)[5+9cos Ocos 8*—6(cos-8+cos 8*)

(RR')
+9 sin8 sin&'cos8cos8*]

I .

(3a)

(3b)

(3c)

The meaning of R, R', 0, and 6j* is defined in Fig. 1; Pz
denotes the second-order Legendre polynomial and
itt=at/ai is the ratio of the transverse and longitudinal
molecular polarizabilities of CO. The strengths of the in-
teractions (3a)-(3c) are determined by the constants

I

ence planes proper for the atom-adsorbate vdW interac-
tions, either with respect to the outmost crystallographic
plane of the metal (the geometric surface) or, with respect
to the edge of the equivalent positive background denoted
by Zz ——0 in Fig. 1. As has been shown in Ref. 11, the
positions of the reference planes for the substrate-

~dQ
C~b = Q ( lu )Ctb( lu )

0 2' (4a)

oc dQ
C,~bM —— a, ( u)ta (ibu)R o(tu), (4b)

~ dQ
C,b~ —— a, (iu)ab(iu)RO(iu),

0 2K
(4c)

where a, (cii) and ab(co) denote the dynamic polarizabili-
ties of the molecule a in adsorbed phase (chemisorbed
CO) and of the gas phase atom b (He), respectively, and
R o(co) denotes the long-wavelength limit of the frequency
and wave-vector-dependent surface response function
Ro(di). ' The integrals in (4a) —(4c) are conveniently
carried out over the imaginary frequencies I,u to avoid the
integration across the poles of R „{co ).

The interactions {3a)—{3c)are the leading terms in the
expansion of the total atom-adsorbate vdW interactions
in inverse powers of

~
R

~

. The next-order terms, propor-
tional to R and higher, will emerge from the higher-
order terms in the expansion of the surface response func-
tion R&(co) in powers of the wave vector Q of the surface
excitations. The R corrections, when combined with
the R terms (3a)—(3c) enab1e the definition of the refer-

z"

FIG. 1. Geometry of the He-CO collision. The substrate oc-
cupies the z &0 half-space. a and b represent the adsorbed CO
molecule and He atom, respectively. a is the image of the CO
molecule with respect to the edge of the positive jellium back-
ground denoted by Z& ——0. a, represents the image of the CO
molecule with respect to the pertinent vdW reference plane Z&

[either Z, MbM or Z,„M, as defined by (5a) and (Sb), for interac-
tions (3b) and 3(c), respectively].
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mediated interactions (3b) and (3c), measured relative to
Z~, are given by the expressions

ZaMbM
1 ~du a, (iu)ab(iu)R p(iu)dip(iu), (Sa)

CaMbM

1 du
Z,bl —— a, (lu) ab(lu)Rp( tu)d tp( tu)

C bM 0 2m
(5b)

where dip(to) is the frequency-dependent centroid of the
image charge (see Refs. 12—14 and Sec. III below).

The surface-mediated interactions (3b) and (3c), togeth-
er with the change of the molecular polarizability upon
adsorption from a, ( cp) in the gas phase to a, (cp) in the
adsorbed phase, will give rise to the total cross section X
describing the scattering of atoms b on the adsorbed mol-
ecule a which may differ from the corresponding cross
section 0. in the gas phase. Indeed, an enhancement of X
over o. amounting to about 20—40% has been observed
experimentally, and this feature calls for an interpreta-
tion of X in terms of the effects (i) and (ii) discussed
above. Although the anisotropy of the total vdW poten-
tial makes a direct application of Eq. (1) for the deter-
mination of C's [Eqs. (4a) —(4c)] from X impossible, this
expression may still be used as a rule of thumb estimate
of the strength of the total vdW atom-adsorbate poten-
tial. Due to the —', exponent in Eq. (1), the enhancement

of X observed experimentally is recovered if the strength
of the vdW potential is approximately doubled. ' This is
in accord with both the physical intuition and the
rigorous calculations of X based upon the complete
(repulsive and attractive) atom-adsorbate potentials
which incorporate the constants (4a) —(4c) as parameters.
The derivation of X in terms of these potentials has been
given and discussed in detail in our earlier works. ' '
In the present work we shall concentrate our attention on
the derivation of the strength of the vdW potentials for
real systems.

The vdW constants (4a) —(4c) are given by the integrals
over the entire spectrum of virtual electronic excitations
characteristic of the adsorbate, the substrate surface, and
the impinging atom. Since both effects (i) and (ii) pointed
out above are incorporated into X through the expres-
sions (4) and (5), any quantitative study and interpreta-
tion of surface scattering experiments requires a detailed
knowledge of the spectral properties of the adsorbate, the
surface, and the beam atoms.

In our calculations of the vdW interactions at surfaces,
we shall first compute the electronic spectral properties
of real metal surfaces and the chemically induced
changes of the electronic spectra of adsorbates by using
various sources available. Then we shall use these as the
input data for the calculation of the vdW constants
defined by Eqs. (4) and the reference planes defined by
Eqs. (5). Due to the diversity of the data sources used,
the calculated spectra will be examined by universal sum
rules which can be established for both the surface and
the adsorbate electronic excitations. The vdW potentials
obtained this way may then be employed for the evalua-
tion of the total He-adsorbate scattering cross sections X
and this procedure has been demonstrated in Refs.
16—18.

III. ELECTRONIC SPECTRAL PROPERTIES
OF SURFACES

The sum rules for bulk electronic excitations have been
established' and investigated in quite some detail only
for some metals. ' ' The development of the surface-
sensitive spectroscopies has brought to the fore the prob-
lem of the definition and the properties of the surface
response function, for a number of transition and noble
metals.

A. Surface response function and sum rules

dt's Sq c0
0

1 1

co —co +16 co+co +l6 (7)

can be identified with the surface response function of the
electron system whose standard response function
g&(z', z",cu), expressed in terms of the Fourier transform
of the electronic density fluctuations translationally in-
variant in the (x,y} directions, is connected with (7)
through the relation

R&(co)= f dz'e ' f dz "e ' X&(z', z",co) .

The function S&(cu) appearing in the spectral representa-
tion on the RHS of Eq. (7) defines the spectrum of surface

Several derivations of the surface response function
have been given in the literature and the most convenient
one for the present purpose starts from the quantum ana-
log of the classical image theorem. Here we shall out-
line the definition and the general properties of the sur-
face response function only briefly, and restrict the dis-
cussion to those features which are directly connected
with the calculations of the properties of the vdW poten-
tials [Eqs. (4) and (5)].

If an external potential P(r, t) is applied outside a metal
surface, the latter will respond so as to screen out the ap-
plied perturbation. Within the linear response, the total
self-consistent potential V"'(r, t) will be given as a sum of
the source potential P(r, t) and the induced potential
P'" (r, t). For a system occupying the half-space z&0,
and translationally invariant in the direction parallel to
the surface, the two-dimensional Fourier components of
these potentials will satisfy the image theorem

1 —e&(co )
Vq'(z, co) =(()q(z, cp)+ P&( —z, co ),1+e&(to }

in which the last term on the right-hand side (RHS)
represents the Fourier component P& (z, co). Here z is the
direction perpendicular to the surface (located at z=0), Q
is a two-dimensional wave vector parallel to the surface,
e&(co} is a complicated two-dimensional analog of the
bulk dielectric function e(q, co) with q denoting the
three-dimensional wave vector, and co is the frequency of
the Fourier transform of the time-dependent external po-
tential. Making use of the causal properties of e(q, tp),
and thereby of e'&(co), one can show ' that the quantity

1 —e&(co )
Rq(to) =

1+e&(co)
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excitations of wave vector Q and frequency co characteris-
tic of the electronic system considered. It can be ob-
tained from the identity

So(co) =—
~
ImRq(co)

~

1
(9)

1. Perfect screening sum rule

This sum rule originates from the requirement of the
total charge neutrality of the system. The perfect screen-
ing of an external static charge located near the metal
surface requires the induced charge of opposite sign and
equal magnitude. In terms of the response function,
this implies that the long-wavelength limit of the first in-
verse moment of S&(co) satisfies '

S&(co)
lim f dco =—,'(1+2QZ, }+O(Q ),
Q~O 0 N

(10)

where Z, is the centroid of the static induced charge. If
Z, is taken as the z-coordinate origin, the first term in the
power expansion of the first inverse moment of S&(co)
will be quadratic in Q. Hence, we may write

So(co)
ls i= f dco

0 CO

1

2

with So(co) being the long-wavelength limit of S&(co).

2. Surface f-sum rule

This sum rule, which derives from the requirement of
the conservation of the current parallel to the surface and
the number of electrons in the system, reads '

f dcocoSq(co)= f dz e &'p(z), (12)

where m and p(z) are the electron mass and the density
profile of the electron system in the z direction, respec-
tively. This sum rule holds for arbitrary Q, and in the
long-wavelength limit yields

0,
pi = dco coSO(co) =

0 2
(13)

in which either of the representations of R&(co) [viz. (7)
or (8)] may be used.

The qualitative features of the surface excitation spec-
trum can be calculated for simple models of metallic sur-
faces like jellium by using: (i) the power expansion of
S&(co) in the region of small (Q, co) values, and (ii) the
surface sum rules in the high-energy region of the spec-
trum. The low-energy part of S&(co) comprises in this
case only electron-hole (e-lt } pairs, i.e., intraband transi-
tions, and is linear in co for co~0 and small Q, as it
indeed should be due to the general properties of the Fer-
mi liquid. ' At higher energies S&(co) is dominated by a
collective (zero sound) mode, i.e., surface plasmon, and in
real metals also by interband transitions. There exist two
general sum rules for the moments of S&(co) which origi-
nate from the universal conservation laws and which
have analogous counterparts in the dielectric theory of
bulk electronic systems. '

where Q, =(2ne N/m)'~ is the surface plasmon fre-
quency of the electron system whose total density (includ-
ing the core electrons) is N electrons per unit volume.

For the jellium model of a surface, Eqs. (11) and (13)
may be combined to find, for instance, the frequency and
the dispersion of the collective mode. Together with
the power expansion of S&(co), they may also be used to
determine a qualitative behavior of the surface excitation
spectrum of a semi-infinitive electron gas.

As has already been noted in Sec. II, the determination
of the reference planes proper for the substrate-mediated
vdW interactions (3b) and (3c) requires the knowledge of
the linear Q term in the expansion of R&(co) in powers of
Q. ' ' ' In the long-wavelength limit one can con-
veniently write'

Rq(co) =Ro(co)[1+2Qdtp(co)]+0(Q ), (14a)

where Ro(co) is the limit of R&(co) for zero wave vector,
and

dtp(co) =d,p(co) td,'p(c—o) (14b)

+So(co)[1+2Qdtp(co)] . (15)

Due to its analytic properties, dtp(co) can also be written
in the spectral representation analogous to Eq. (7), and its
imaginary part obeys a form of an f-sum rule as well. ' '

The calculation of dtp(co) is a very formidable task even
for simple model systems and its static and large-co lim-
its have been calculated exactly for a self-consistent jelli-
um model of the surface. ' Recently, the complete fre-
quency dependence of dtp(co) for simple metals has been
estabhshed. "' ' ' Hence the sum rules for dfp(co) pro-
vide a useful check in the estimates of the quantitative be-
havior of dtp(co) and thereby of the vdW reference planes
for various systems.

B. Surface excitation spectrum of real metals

The sum rules (11) and (13) are quite general and do
not depend on the specifities of the models used in the
study of real systems. However, the actual shape of the
surface excitation spectra of real metals may be very
complicated functions of Q and co, and could differ con-
siderably from one system to the other due to their
specific electronic structures. This situation simplifies
only in the long-wavelength limit in which the metal elec-
trons respond to a perturbation homogeneous in the
direction parallel to the surface. This particular com-
ponent of the surface response of real systems, which also
determines the properties of the vdW interactions
(3a)—(3c), can readily be obtained or computed from the
data coming from various independent measurements of
the long-wavelength limit of the complex bulk dielectric

is the frequency-dependent complex centroid of the im-
age charge, introduced in Sec. II [cf. Eqs. (5)]. The ana-
lytic properties of dtp(co) are connected with the analytic
properties of S&(co) through Eq. (9), which applied to
(14a}yield

lim S&(co)= Qdtp(—co)Re[Ra(co)]
2

Q~o 7r
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function e(0, ni ), ' optical properties such as the
complex index of refraction N(ni) =n (ro)+ik (cu)
= [e(0 ni)]' ' the absorption coefficient p whic is
related to k(co) by iM(co)=(2'/c)k(ai), ' or by fitting
the data in the very-low-energy regime &co . e
classical Drude formula. In the cases in which only the

1 or imaginary parts of the quantities desired are avail-rea or
able, the Kramers-Kronig analysis may be perform

b
'

th ther part as e.g., in the calculation of n ni .
In our calculations we have used all these sources o a a
to recover the surface response function (7 pertinent to
real metals.

The major simplification in the actual calculations
arises from the fact that the bulk and the surface dielec-
tric functions ave af '

h a common long-wavelength limit
and therefore

e2(tu)

Q-o ir [I+&i(tu)]'+&2(ni)
lim S (co)=—

S, [

0.2

0.1

O.SI-

10 40 50 60 70 SO 90 100 (ey)

where e, (ni) and e2(co) are the long-wavelength limits of
the real and imaginary part of the complex bulk dielectric
function e q, ni, re( ) respectively. Hence the calculation o

ver theRo ni) and So(tu) can be performed directly whenever t e
values of et(co) and ez(ni) are available. In other cases
one has to resort to the analyses of the data as outlined
above. However, since the various input quantities or
our calculations of So(to) differ in precision and quality
due to the limitations of the methods employed for their
derivation (resolution, etc. ), we have also tested our com-
puted spectra by subjecting them to the surface sum rules
(11) and (13), which in the long-wavelength limit epend
only on the macroscopic parameters of the system.

As the most representative metals of various groups,
we have chosen Al (free-electron metal), Cu and Pt (noble
metals), and Ni, Pd, and W (transition metals) because
there are the substrates most frequently encountered in
various a s p

'
s adsorption systems and in surface scattering.

excita-Th t S (tu) of the long-wavelength surface exci a-T especra Om
tions of these metals are shown in Figs. 2(a) and (, an

Table I. For Al andtheir properties are summarized in Tab e . or
Cu we were able to compare the surface sum rule tests of
Table I with the corresponding bulk f-sum rules known
from the literature [20(b) and 21]. For other metals we

0.4

0.2

I I

10 20 30 40 50 60 70 80 90 100 z(eY)

FIG. 2. (a) Spectra of the long-wavelength surface excitations
of free-electron (A1) and noble metals (Cu, Pt). (b) Same for typ-
ical transition metals (Ni, Pd, and W).

have investigated, such bulk (or surface) texts covering
the entire frequency interval are not avai a e.

'
a le.

The long-wavelength surface excitation spectrum of Al
[Fig. 2(a)] in the energy interval below the 72. -72.7-eV
threshold displays a behavior typical of a free-electron
gas characterized by the electron density parameter
r, =2.12. Above this threshold the excitations from the
inner core levels start to contribute to So(ro). However,

m uted ro erties of the excitation spectra of various real metal surfaces as tested by
g' Eq (11) and (13) for the perfect screening andsurface sum rules. The theoretica gretical values are given by s.

d and the theoretical value,1 . 6 is the difference between the compute an e esurface f-sum rule, respective y. is e
expressed in the percentage of the theoretical value.

Surface

Theoretical

value

Computed

value

Perfect screening sum rule

(%)

Surface f-sum rule
Theoretical Computed

value value
n(N)

2
( V2)

2
(%)

A1

CU

Pt
Ni

W

l

2
l

2
I

2
l

2
l

2

0.508
0.494
0.520
0.518
0.535

+ 1.60
—1.20

+ 4.00

+ 3.60

+ 7.00

270.15

845.90
1788.10

883.42

1609.30

269.79
806.96

1663.60
864.30

1613.80

—0.13
—4.60
—6.96
—2.16

+ 0.28



10 328 D. LOVRIC AND B. GUMHALTER

the majority of the spectral weight is concentrated in the
surface plasmon peak at 10.8 eV, whose full width at half
maximum is 0.36 eV. Although the data from different
energy regions are characterized by different experimen-
tal errors and resolution, the Al surface spectrum of Fig.
2(a), including the core excitations, satisfies the sum rules
(11) and (13) very accurately, the deviations being of the
order of a few percent only (cf. Table I). This should not
come as a surprise because the Al bulk excitation spectra
have been found to satisfy the bulk f-sum rule with near-
ly the same accuracy.

All other metals which we have considered are charac-
terized by the d bands close to or overlapping with the
Fermi level. Therefore, their surface excitation spectra
should be representative also of the interband transitions
involving the d bands, in addition to the intraband transi-
tions characteristic of the Al spectrum. A mere inspec-
tion of Fig. 2(a) shows that So(co) for Cu and Pt is
characterized by several maxima which can be attributed
to various interband excitations and hence an unambi-
gous identification of a collective mode in these systems
becomes a formidable task, if possible at all. In spite of
the fact that in the spectrum of Cu there arises a peak at
about 7.6 eV, which may coincide with the surface
plasmon frequency corresponding to r, =2.67, its large
width makes its clear identification with a plasmon mode
hardly possible. However, although the Cu spectrum is
very complicated, we have found that it also satisfies the
surface sum rules (11) and (13) to a few percent (cf. Table
I), in accordance with the corresponding bulk f-sum rule
test. ' The same applies to the surface excitation spec-
trum of Pt which, although characterized by electronic
transitions in the high-energy region, satisfies both sum
rules very nicely. This fact may be regarded as a cri-
terion of the validity of the computed spectral values and
of the reliability of any calculated quantity which in-
volves integrals over So(co).

The surface excitation spectra of the transition metals
Ni, Pd, and W are shown in Fig. 2(b). They also exhibit a
multiple peak structure characteristic of interband transi-
tions involving the d bands. The dominant peak in the
surface excitation spectrum of Ni is located at 9.5 eV,
and its flanks extend from 6 to 12 eV. The estimates of
the surface plasmon frequency based on the electron den-
sity parameters r, =2.6 and 2.09, which correspond to
one or two valence electrons per atom, yield the values of
the surface plasmon energy of 7.9 and 11 eV, respective-
ly. Although the dominant peak in the Ni surface spec-
trum indeed lies in the interval bounded by these values,
it is hard to attribute it to a distinct collective excitation
mode due to its large width and the overlap with the sur-
rounding structure. Again, both sum rules (11) and (13)
are satisfied with an accuracy equivalent to the one found
for Cu (cf. Table I).

The dominant structure in the long-wavelength surface
excitation spectrum of Pd is a relatively distinct peak
centered at 7 eV which is much narrower than all other
maxima in the part of the spectrum displayed in Fig. 2(b).
The number of valence electrons in Pd is uncertain, but if
it were around one electron per atom ( r, =2.6), the corre-
sponding surface plasmon excitation energy would be 7.9

C. vdW reference planes for real metal surfaces

The positions proper of the vdW reference planes
Z,sr„~ and Z, bM defined by Eqs. (Sa) and (Sb), respective-
ly, and Z3's defined in Sec. IV are given by the integrals
involving the frequency-dependent centroid of the image
charge dIp continued analytically to the imaginary fre-
quencies I',u. En our calculations we have used the expres-
sion for dip as proposed by Persson and Zaremba

EI(iu)
dip(iu) = . . d~~(iu),

lu +Eblu'
in which dIi(iu) is the free-electron contribution to the
centroid of the image charge and e& and eb are the intra-
band ("free" electron) and interband ("bound" electron)
contributions to the bulk dielectric function, respectively.
Hence the total complex bulk dielectric function (16) can
be expressed as

(17)

Cd 62(Cil )
e(iu) = I+—I de

7T 0 Q) + Q

= 1+EI( tu )+Eb(IQ ),
where ez(co) is the imaginary part of e(co), viz. ,

E(CO) =C](CO) + i E'2(CO)

=e, (co)+i [eI2(co)+e2(co)] .

(18)

(19)

For the purpose of the present calculations, we have ap-
proximated the intraband contribution by the Drude for-
mula

2

EI2(co) =
co(co +b )

(20)

eV. This correlates relatively well with the position of
the dominant peak in the Pd spectrum. Hence, certain
manifestations of the surface plasmon mode in the sur-
face response of Pd may not be excluded. Unfortunately,
the optical data for Pd were restricted to a low-energy in-
terval (up to the uv region), which prevented us from ver-

ifying the completeness of the spectrum through the sum
rules. However, since the same methods have been used
for the calculation of the Pd spectrum as for the previous
ones, we are confident that the values obtained are as reli-
able as those for which the sum rules have been tested.

The surface excitation spectrum of W [Fig. 2(b)] exhib-
its a series of peaks of ascending intensity up to about 20
eV. Using r, =2.34, 1.86, and 1.62 corresponding to 2, 4,
and 6 valence electrons per atom, one obtains the values
of 9.31, 13.14, and 16.16 eV for the surface plasmon ener-

gy, respectively. On the other hand, the prominent peak
in the W surface spectrum appears around 21 eV, and
therefore, any discussion of the observability of the sur-
face plasmon seems immaterial before one knows the de-
tailed structure of the intraband and interband transi-
tions in W. Despite such a complicated structure of the
spectrum, the sum rules are obeyed surprisingly well,
supporting once again our confidence in using these spec-
tral values for the calculation of the quantities which de-
pend on the long-wavelength limit of the surface response
function.
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(21)

IV. DYNAMIC POLARIZABILITY OF ADSORBATES

The dynamic polarizability a(co) of a gas-phase atom
or a molecule is usually expressed in terms of the dipole
oscillator strengths f =f;,, which denote the proba-
bilities of electronic transitions from discrete occupied
level

~

i ) of energy e; into an unoccupied level
~ j ) of en-

ergy e . If the corresponding transition energies are
denoted by co =e, —e;, the polarizability can be ex-
pressed as (in atomic units}

a(co)= g
m CO —Nm

(22)

where, in principle, the summation ranges also over the
transitions into the continuum of electronic states above
the vacuum level e, . The oscillator strengths satisfy the
well-known sum rule

gf =N, , (23)

where N, is the total number of electrons in the atom
(molecule). For anisotropic molecules a(~) becomes a
tensor, with different values along the axes of molecular
symmetry.

The calculation of real f and co for atoms and mole-
cules is a difficult task and one usually resorts to pseudo-
oscillator strengths and corresponding excitation energies
which are constructed so as to describe the electronic
transitions between some fictious discrete levels only, but
which also satisfy the sum rule (23). The values of such
pseudo-oscillator strengths and energies are available for
a number of atoms and molecules ' and in what follows
we shall always refer to and deal with such pseudoquanti-

where co f and 5 are the effective plasma density and the
inverse lifetime of a free electron, respectively. Since we
have determined the dielectric function of real metals as
well as the corresponding Drude parameters (cf. Sec.
III B) from various optical data, it was not necessary to
employ any approximate expression for the interband
contribution e~. In our case this was calculated as the
remainder appearing on the RHS of Eq. (18):

Eb(iu ) =e(iu }—1 ef—(lu )

2

=e(iu) —1—
u +uk

The free-electron contribution to the centroid of the im-
age charge d ~ has been modeled by the expression corre-
sponding to jellium and consistent with the sum rule de-
rived by Persson and Zaremba. ' Since there exists some
ambiguity in the determination of the proper electronic
density of jellium which would simulate the behavior of
"free" electrons in metals, we have carried out the calcu-
lations with two possible values for the jellium density
given either by r, =(3/co f )'~ or by the valence electron
densities (cf. Table III). As may be seen from the table,
the corresponding Z's differ rather significantly for some
metals, but these differences do not affect much the vdW
potentials between the subsystems at mutual distances
which are physically relevant (i.e., in the region in which
the vdW expansion converges).

ties unless specified otherwise.
When an atom or a molecule is adsorbed on a surface

of a metal, the relative positions and widths of both the
occupied and unoccupied levels may change due to the
interaction of the adsorbate with the substrate. The phy-
sisorptive component of the interaction is not expected to
give rise to any significant changes in real f and co of
an adsorbate (tildes denote the quantities f and co for
adsorbates). However, the chemisorptive component of
the interaction, which is responsible for the formation of
the adsorbate-substrate chemisorption bond, may give
rise to chemically induced shifts and broadening of the
localized adsorbate valence levels and thereby to a
modification of some f and co with respect to f and

32, 36
~m

In regard to the vdW interactions involving CO ad-
sorbed on transition and noble metals we may expect that
the main modification of the adsorbate polarizability will
be due to the hybridization of the empty CO 2m' orbital
with the metal valence states. The hybridization-induced
broadening of the 2~* level into a resonance which
crosses the substrate Fermi level will cause a partial occu-
pation of the resonance by the electron charge transfer
from the substrate. This back-donation mechanism is be-
lieved to be responsible for the stabilization of the CO-
metal chemisorption bond and there exists abundant ex-
perimental and theoretical evidence of this effect.

The energetics of such fractionally occupied CO 2m*

derived resonances has been discussed in detail else-
where. ' Here we shall discuss only the implications of
the fractional resonance occupation on the dynamical po-
larizability of adsorbates, in general, and of chemisorbed
CO, in particular.

The major effect on the adsorbate dynamic polarizabili-
ty which may arise from the partial electronic occupation
of a resonance will be the occurrence of a new channel
for electronic excitations localized on the adsorbate.
Following the experimental evidence, we assert that in
CO adsorption on Cu, Pt, and transition metals the CO
2~' derived resonances are centered a few eV above ez
(for details see below) with a resonance tail extending
below ez and occupied by the charge transfer from the
metal valence band. The magnitude of the charge
transfer may be estimated only roughly, e.g. , from cluster
calculations of CO adsorption, if the pertinent occupa-
tion numbers obtained from the population analysis are
identified with the resonance occupation in the resonance
model of chemisorption.

In fractionally occupied adsorbate valence resonances
an electron may be excited from the occupied part below
e~ into an unoccupied resonance state above e~ (see Fig.
3). These intraresonance transitions which are character-
ized by the excitation energy v will affect the total adsor-
bate polarizability through their intraresonance oscillator
strengths f„,(v) (per unit energy interval). Hence the
contribution to the adsorbate polarizability due to the ex-
citation of the bosonized intraresonance e-h pairs wi11 be
given by (in atomic units) I"

„„(v3
a„,(co)=j dv

CO —V
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VQC

where n; denotes the occupation of the ith channel (com-
ponent} of the resonance

6F
n; =f drop'„, (co) . (28b)

FIG. 3. Electron-hole pair excitation within the adsorbate-
derived resonance fractionally occupied by the charge transfer
from the substrate.

~
n ) and

~

n') denote the unoccupied and
occupied localized resonance band states, respectively.

where the integral extends over all intraresonance excita-
tion frequencies ranging from zero to the upper bound
given by the resonance bandwidth. To obtain the total
adsorbate polarizability a, (co), one should add a«, (co) to
the polarizability ad(co) originating from the transitions
between any two discrete levels of the adsorbate which
are not likely to change significantly upon adsorption (cf.
discussion above). Hence

(25)

f„,(v)= ——Im[R„„(v)] .1
(26)

R„„(v) is calculated as a convolution of the intrareso-
nance electron and hole propagators. In the case of g-
fold degenerate resonances one has to calculate first f'„,
corresponding to the excitations in each of the resonance
channels i =1, . . . , g. Each f'„, is, on the other hand,
given by the self-convolution of the one-electron density
of states p'„,(co) in the ith channel. ' Hence the total
resonance oscillator strength reads

Ã

f„,(v)= g f des'p'„, (ro')p'„„(ro' —v) .
i =1 0

(27)

The total resonance occupation which may be identified
with the charge transfer then reads

n, , (28a)

where ad(co) can be calculated with the pseudo-oscillator
strengths pertinent to gaseous CO (with due account for
the anisotropy of the molecule).

The calculation of the oscillator strengths f„,(v}
proceeds on noticing that the excitation of an electron-
hole (e-h) pair within the resonance is described by the
response function R „,(v) corresponding to the dynamic
polarization process depicted in Fig. 3. This response
function can also be written in the Lehmann representa-
tion and its spectrum, which yields the intraresonance e-h
excitation probability per unit energy interval, represents
then the required intraresonance oscillator strength

To investigate the properties of f„,(v) we shall make use
of Eq. (27), the causal properties of the density-density
response functions in the time representation, and the
definition of R„„.(t) in terms of the intraresonance elec-
tron density fluctuations. ' This enables us to derive
the following sum rule for the integrated intraresonance
oscillator strength:

f„,= f dv f„,(v)= g n;(1 n—;) .
0 i=1

(29)

This expression is the desired f-sum rule for
chemisorption-induced intr aresonance oscillator
strengths of an adsorbate and it complements the "atom-
ic" f-sum rule (23) for intra-adsorbate transitions from
discrete levels. It should also be noted that in the case of
either empty (n; =0) or fully occupied resonances
( n; = 1), f«, would vanish according to (29). Therefore
the contribution a«, (co) will be present only in adsorbates
with fractionally occupied resonances. Thus the expres-
sion (29), together with the sum rules (10) and (12), con-
stitutes an indispensable framework for checking the con-
sistency of the calculations of polarization properties of
various adsorption systems.

In order to calculate the intr aresonance oscillator
strengths (27) one needs to know the adsorbate resonance
density of states p'„,(ro). In the present problem of CO
adsorption on noble and transition metals we shall recon-
struct p'„,, from the data available from inverse photo-
emission. Following the experimental evidence we shall
first assert that the density of states of the CO 2m' de-
rived valence resonances in the systems considered can to
a good approximation be represented by a simple
Lorentzian

1 ~res
p„'„( )=-

rr (ro e„,) +b„, — (30)

Here, e„,=e2 & 0 is the 2m' resonance energy measured
from the substrate Fermi level and A„„=Az is the reso-
nance halfwidth at half maximum, and in some cases it is
possible to determine both quantities from the data avail-
able from the literature. Another advantage of choosing
the Lorentzian form of the resonance density of states
(30) is that f„„(v)can in this case be calculated analyti-
cally, and this guarantees that the f-sum rule (29) would
be satisfied automatically.

From the data available, we can fully reconstruct (i.e.,
determine e„, and 6„„)only the CO 2m" derived reso-
nances in adsorption systems CO/Cu(110) and
CO/Ni(111). Incidently, these systems are characteristic
of weak and strong CO chemisorption, respectively. The
inverse photoemission experiments give ez ——2.8 eV and
e2„——3 eV for the cases of CO/Cu(110) and CO/Ni(111),
respectively, and Az will be estimated by combining Eqs.
(28) and (30) and equating X2„[Eq. (28a)] with the occu-
pation of the CO 2n.* derived states obtained from the
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opulation analysis of the orbitals of the clusters whichpopu a
35model CO adsorption on Cu and Ni. This gives the

values of Az„shown in Table II.
The intraresonance oscillator strengths for various po-

sitions and strengths of the adsorbate resonance are illus-
trated in Fig. 4(a). f„,(v) relevant for the systems
CO/Cu(110) and CO/Ni(111) are shown in Fig. 4(b). It
should be noted that for low intraresonance excitation en-
ergies,

Z = a(iu)Rp(iu)de(iu) .
C3 o 2m.

(33b)

In both equations a(iu) represents the dynatnical polan-
zability of either the He atom (in the case of He-substrate

plane position Z3 measured with respect to the positive
.13, 14jellium background edge:

lim f„„(v)=g[p,'„(eF)] v+O(v ),
v~o

(31)
0.3

and this limiting behavior becomes important in the case
of static polarization. For Lorentzian-like resonances
centered close to the substrate Fermi level for which
n; = —,', the property (31) enables one to use the ansatz

f„,(v ) =g [p„'„(&F)]'v exp[ —&g p„'„(eF)v] . (32)

This ansatz approximates the original expresston (27) for
e2 ——0 very accurately [cf. Fig. 4(a) and Eq. 16 of Ref.

17(c)] and satisfies exactly the sum rule (29) for n; = —,.
Table II summarizes some of the parameters and the
properties of the 2m* resonance relevant for the calcula-
tion of the polarizability a„„(co) of CO chemisorbed on
Cu and Ni as obtained in the present Lorentzian model.

Q25

0.2

(a)

V. STRENGTHS OF THE vdW INTERACTIONS
IN SURFACE SCATTERING

0.1

The functional behavior of Sp( r)o, dip(ru), and fz„(ru)
calculated in Secs. III A, III 8, and IV, respectively, en-
ables us now to compute the strengths of the vdW poten-
tials [Eqs. (4a) —(4c)] and the relevant reference planes
[Eqs. (5a) and (Sb)] for the case of He scattering from CO
adsorbed on various noble- and transition-metal sub-
strates. The required quantities Rp(ru) and az (cu) are
obtained as Hilbert transforms of Sp(ru) and fz (cu)
which, when substituted in Eqs. (4) and (5) yield the re-
sults shown in Table III. For the sake of completeness
we have also displayed in Table III the constants C3.

0.05

0 1 2 3 4 5 6 7

v (e

0.03
cx lQ Ro lQ

o 4m
(33a)

which determine the strengths of the He-substrate and
CO-substrate vdW interactions which fall of as
—C3/(Z —Z3), and the corresponding vdW reference-

TABLE II. 2m. resonance parameters and properties for CO
adsorption on Cu and Ni substrates. e2, "2, Ã, , p&,Ã ' and
denote the 2m* resonance energy, halfwidth at half maximum,
total occupation, density of states, and integrated intrareso-
nance oscillator strength, respectively (cf. Sec. IV).

0.01

10 15
v (ev)

25

2~*
Resonance

~,„(eV)
~,.(.V)

N2
p', „(eF) (eV-')

CU(110)

2.8
0.20
0.09
0.0080
0.088

Substrate

Ni(111)

3.0
0.57
0.24
0.0195
0.226

FIG. 4. Oscillator strengths f„,(v) of the intraresonance
electronic excitations. (a) Solid line, f„,(v) calculated from Eq.
(27); dashed line, f„,(v) as obtained from the ansatz (32). Reso-
nance energies measured relative to the substrate Fermi level.
Resonance half-width at half maximum 5„,=1 eU in all curves
displayed. (b) f„,(v)=f2 (v) relevant for CO adsorbed on
Ni(111) and Cu(110). The corresponding parameters e& and
62„given in Table II.
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interaction) or the CO molecule (in the case of CO-
substrate interaction).

Several trends as to the magnitude of the He-adsorbed
CO vdW interaction strengths can be deduced from
Table III. The strength C,b of the direct interaction is
the dominant one and exceeds the strengths of the in-
terference term C,&M and of the image term C,M&M by
about 120% and 160%, respectively, in all the cases stud-
ied. The three constants would be equal only in the hy-
pothetical limit Ro(co) = —1 characteristic of an extreme-

ly high-density electron gas for which co, ~ ao (i.e.,
r, ~0). Hence an increase of C,t,~ and C,Mtst for Pt and
W, which exhibit higher valence electron densities than
Cu and Ni, is thus hardly surprising. However, this in-
crease is not large, which reflects some common features
of the screening properties of the metals investigated, and
which has been noted earlier in the study of the surface
sum rules (cf. Sec. III B).

An opposite trend, i.e., a decrease of the magnitude of
the distance of the vdW reference planes Z, Mt, M [Eq. (5a)]
and Z, t,M [Eq. (Sb)] relative to the positive jellium back-
ground edge with the increase of the metal electron densi-

ty is also evident. This is in accord with the earlier estab-
lished behavior that the dynamical image reference plane
shifts closer to the jellium edge as the frequency of the
surface mode(s) of the screening metal is increased. ' The
same conclusion applies also to the properties of the He-
surface and CO-surface vdW interactions (cf. Table III).

Lastly, it should be noted that the values of the vdW
constants given in Table III differ very little from those
calculated in Ref. 7(c) for a free-electron gas character-
ized by the electron density parameter r, =2.6, which
may simulate the free-electron properties of Ni. This can
be interpreted as another manifestation of the common

screening properties of metal surfaces expressed through
the sum rules (11) and (13). Therefore, for the same ad-
sorption geometry the change of the substrate will affect
more the chemically induced contribution to the vdW
constants (here the 2n.-derived quantities) than the
physisorption-induced effects which enter C,&, C,~&~,
and C,bM through the surface response function Ro(co).
Due to the variety of the metal surfaces studied in the
present work, such a conclusion can be safely extrapolat-
ed also to other adsorption systems of similar chemisorp-
tive characteristics. Therefore, as the collisions of
thermal energy He atoms with CO adsorption complexes
are to the greatest extent governed by the long-range
vdW interactions, the corresponding total scattering
cross sections X should not vary appreciably with the
change of the substrate unless the chemistry and the
geometry of the system are changed. A detailed account
of the substrate-induced effects on the magnitude and be-
havior of X for specific (He~CO)-metal collision systems
is given in Ref. 18.
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