PHYSICAL REVIEW B

VOLUME 38, NUMBER 14

Protonic conduction in oxide glasses: Simple relations between electrical conductivity, activation energy, and the O-H bonding state

Yoshihiro Abe, Hideo Hosono, and Yoshio Ohta Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan

L. L. Hench

University of Florida, Advanced Materials Research Center, One Progress Blvd., No. 14, Alachua, Florida 32615 (Descind 19, July 1009)

(Received 18 July 1988)

Simple relations between protonic conductivity (σ) and the peak wave number (ν_{OH}) of O-H infrared absorption band, and between activation energy for the electrical conduction and the wave number (ν_{OH}) were found in oxide glasses containing no alkali- and/or transition-metal ions. The present investigation enables one to evaluate the protonic conductivity and the activation energy at a unit proton concentration of a given glass specimen from an ir spectrum of the glass plate, respectively.

Protonic conduction in glasses has received new interest as the search for developing fast proton conductive glasses for a solid electrolyte for H_2 - O_2 fuel cell and for a H_2 -gas sensor has attracted much attention. In most oxide glasses, electric charge carriers are mobile monovalent cations such as alkali ions, Ag⁺ and Tl⁺,¹ or electrons in glasses containing multivalent transition-metal ions. Protons or water in glasses was first studied extensively by Scholze.² Proton conduction in crystalline solids was reviewed^{3,4} and some fast proton conducting hydrated solids were reported.⁵ No systematic investigation on proton conduction in glasses has so far been carried out. It is very important to clarify the characteristics on protonic conduction in glasses not only from the viewpoint of basic science but also from a practical view point of developing fast-proton-conducting glasses. Generally, it has been accepted that proton in oxide glasses is much less mobile than alkali ions; for example, Doremus⁶ estimated in silica glass that the mobility of impurity Na⁺ is 10⁴ times as large as that of impurity H⁺. This may be true in silica glass, because O-H bonding in silica glass is very strong $(v_{OH} = 3700 \text{ cm}^{-1})$.² In contrast with silica glass, O-H bonding in phosphate glasses ($v_{OH} = 2600 - 3400 \text{ cm}^{-1}$) is generally weak owing to the formation of hydrogen bonding: In oxide glasses, hydroxyl groups attaching to a network-forming cation (X) such as Si^{4+} , P^{5+} , and B^{3+} form a hydrogen bonding with a counter oxygen (X-O- $H \cdots O - X$). The strength of the hydrogen bonding is controlled primarily by the type of the counter oxygen;² hydrogen bonding force is extremely weak for the case where the counter oxygen is of a bridging type (X-O-X) compared with where the counter is of a nonbridging type $(X-O^{-})$. The type of network modifying cations also modifies the hydrogen-bonding strength. The abovementioned fact strongly suggests that H⁺ in phosphate glasses is much more mobile rather than Na⁺. In a previous paper,⁷ we reported that electrical conductivity in calcium metaphosphate glasses is proportional to the square

of the proton concentration as in Eq. (1).

$$\sigma = A_0 [\mathrm{H}^+]^2 \tag{1}$$

 $(\log_{10}\sigma = \log_{10}A_0 + 2\log_{10}[H^+]$ Eq. (1) of Ref. 1), where σ is dc electrical conductivity in S/cm at a constant temperature; $[H^+]$ is proton concentration in mol/l; and A_0 is a constant depending on the host glass. The constant A_0 is a measure of proton mobility.

It is known that electrical conductivity depends on temperature as shown by Eq. (2) and on the number (N) of electric charge carriers per unit volume by Eq. (3);

$$\sigma = \sigma_0 \exp(-E_{\rm dc}/RT), \qquad (2)$$

$$\sigma = N z e \mu , \qquad (3)$$

where E_{dc} is the apparent activation energy for dc electrical conduction; R is the gas constant; T is temperature in degrees K; σ_0 is the preexponential term called frequency factor; z is the charge number (for proton z = 1); e is the electronic charge; and μ is mobility. Combining Eqs. (1) and (3), Eq. (4) is obtained. This equation shows that the proton mobility increases linearly with proton concentration in the calcium metaphosphate glasses on the assumption that all protons are mobile charge carriers:

$$\mu = \frac{A_0[\mathrm{H}^+]}{e} \,. \tag{4}$$

Figure 1 shows plots of conductivity data in various alkaline-earth phosphate glasses at a constant temperature of 417 K (σ_{417}) against proton concentration. The concentration of proton [H⁺] was determined by using ir spectroscopy as in the previous paper.⁷ As in 50CaO-50P₂O₅ glasses previously reported,⁷ it was found that Eq. (1) holds also for these glasses. The glasses were prepared by melt-quenching technique using Pt crucibles. The starting materials used were reagent grade chemicals such as metal carbonates, metal oxides, H₃PO₄ and H₃BO₃. To control the state of dehydration, the glasses were melted

<u>38</u> 10166

FIG. 1. Relation between electrical conductivity (σ at 417 K) and proton concentration [H⁺] in 45MO-55P₂O₅ glasses. \triangle , $M - Mg; \bigcirc, M - Ca; \bigcirc, M - Ba$.

at 1000-1450 °C for various times depending on the compositions. Table I summarizes electrical conductivity data with v_{OH} and $[H^+]$ for approximately 70 kinds of oxide glasses which were all measured by us. On the assumption that Eq. (1) holds for all these glasses, the values of A_0 were calculated for these glasses. Figure 2 shows the correlation of v_{OH} and A_0 . It is evident that $\log_{10}A_0(-\sigma_{417}/[H^+]^2)$ decreases linearly with increasing v_{OH} (Fig. 2); the relation is expressed by Eq. (5):

$$\log_{10}A_0 = -0.009\,37\,v_{\rm OH} + 17.1\,.\tag{5}$$

Let us compare proton mobility in SiO₂ glass with that in a BaOP₂O₅ glass at a unit concentration of proton, $[H^+]=1$ mol/l. The former is obtained by substituting $v_{OH}=3700$ cm⁻¹ for silica glass into Eq. (5), resulting in

log_{lO} A_o(Scm⁻¹ mol⁻² l²)

-15

2600

FIG. 2. Plot of A_0 (at 417 K) in Eq. (1) vs peak wave number (v_{OH}) of ir absorption band due to OH of the glasses in Table I.

3000

 $v_{oH}(cm^{-1})$

3500

FIG. 3. Activation energy for electrical conduction (E) vs $\log_{10}[H^+]$ in glasses. \triangle , 45MgO-55P₂O₅; \Box , 50CaO-50P₂O₅; \bigcirc , 45CaO-55P₂O₅; \bigcirc , 45BaO-55P₂O₅.

a very small value which is equal to 10^{-8} times the latter (barium phosphate glass). One can quantitatively understand from Eq. (5) why H⁺ in silica glass is not mobile but, in phosphate glasses it is very mobile. The conductivity of alkaline-earth phosphate glasses containing both H⁺ and Na⁺ depends on [H⁺] but not on [Na⁺], even when [H⁺] is much less than [Na⁺].⁸

Next we will discuss how the activation energy for electrical conduction depends on the bonding strength between charge carrier and oxygen in oxide glasses. This is a very important problem from the viewpoint of basic science but any quantitative relation has not been known yet in glasses. Experimentally Eq. (6) was found to hold for $CaOP_2O_5$ glasses:

$$E = 105 - 16 \log_{10}[\mathrm{H}^+] \,. \tag{6}$$

Figure 3 shows the relation between the activation energy

FIG. 4. Plot of E_0 in Eq. (11) vs v_{OH} in glasses. \triangle , 45MgO-55P₂O₅; \Box , 50CaO-50P₂O₅; O, 45CaO-55P₂O₅; \bullet , 45BaO-55P₂O₅; O, SiO₂ glass obtained by extrapolation.

10 168

ABE, HOSONO, OHTA, AND HENCH

TABLE I. Electrical conductivity data (dc) of glasses.

Glass No	Composition	OH peak (cm ⁻¹)	[H ⁺] content (mol/l)	$log_{10}\sigma$ at $10^{3}/T = 2.4$ (T=417 K) (S cm ⁻¹)	log ₁₀ σ	$log_{10}A_0$ at $10^3/T = 23$ (T = 417 K)	E (kJ/mol)
1.1	60BeQ-40P2Qe	3360	0.20	-16.54	-2.26	-15.14	132
2-1	56BeQ-44P2Qs	3360	0.38	-17.54	-1.20	-16.70	130
3-1	50BeO-50P2Os	3260	0.28	-16.01	-2.55	-14.90	107
4 1	50MaQ 50P.Q.	2100	0.16	-14 55	1 17	-12.96	125
4-1	50MgO-50P ₂ O ₅	3180	0.16	-14.56	1.18	-12.97	125
5-1	45MgO-55P ₂ O ₅	3000	0.08	-14.17	2.65	-11.98	134
5-2	45MgO-55P ₂ O ₅	3000	0.18	-13.36	2.55	-11.87	125
6-1	40MgO-60P ₂ O ₅	2880	0.50	-12.07	1.99	-11.47	112
6-2	40MgO-60P ₂ O ₅	2880	0.50	-12.43	2.02	-11.83	115
7-1 7-2	50CaO-50P ₂ O ₅	2920	0.46	-11.67	2.06 2.18	-10.99	109
7-3			0.42	-11.88	2.16	-11.02	111
7-4			0.36	-11.90	2.26	-11.00	112
7-5			0.34	-11.90	2.13	-10.96	112
7-6			0.29	-12.02	2.37	-10.94	113
7-7			0.26	-12.09	2.18	-10.91	114
7-8			0.21	-12.38	2.13	-11.02	110
7-9			0.16	-12.69	2.18	-11.08	118
7-10 7-11			0.13	-13.32	1.75	-11.06	121
8-1	45CaO-55P2Os	2850	0.86	-10.61	2.69	-10.48	106
8-2			0.74	-10.50	2.29	-10.24	102
8-3			0.68	-10.61	2.40	-10.28	104
8-4			1.16	-9.54	2.29	-9.67	95
8-5 8-6			1.16	-10.02 -10.39	2.60 2.16	-10.15 -10.03	101 100
0 1	50CoO 2 5 ALO. 47 5B.O.	2040	0.54	-12.38	2.20	-11.84	116
9-1 9-2	JUCaU-2.JAI2U3-47.JF2U5	2340	0.34	-12.62	2.17	-11.77	118
9-3			0.32	-12.67	2.08	-11.67	118
9-4			0.27	-12.88	2.06	-11.74	120
9-5			0.24	-12.90	2.18	-11.67	125
9-6			0.18	-13.04	2.16	-11.57	121
9-7			0.14	-13.52	1.99	-11.80	126
10-1	50CaO-5Al ₂ O ₃ -45P ₂ O ₅	2960	0.25	-13.00	2.14	-11.79	125
10-2			0.24	-13.22	2.34	-11.97	125
10-3			0.19	-13.62	1.85	-11.98	127
10-4			0.13	-13.83	2.02	-12.06	128
10-6			0.10	-14.03	1.88	-12.05	130
11-1	50SrO-50P ₂ O ₅	2890	0.10	-12.86	2.57	-10.86	123
12-1	45SrO-55P2O5	2760	0.34	-10.71	2.27	-9.77	103
12-2		2750	0.16	-11.29	2.53	-9.70	110
13-1	40SrO-60P2O5	2670	0.52	-9.99	2.25	-9.42	97
13-2		2650	0.48	-10.38	2.22	-9.74	100
14-1	50BaO-5OP2O5	2860	0.10	-12.13	2.65	-10.13	118
14-2		2820	0.10	-10.98	2.32	-8.98	106
14-3		2800	0.24	-11.06	2.19	-9.82	106
15-1	45BaO-55P2O5	2760	0.76	-9.89	2.57	-9.65	99
15-2		2750	0.68	-9.59	2.77	-9.26	99 102
12-3		2750	0.40	-10.43	2.39	-9.70	102

PROTONIC CONDUCTION IN OXIDE GLASSES: SIMPLE ...

10169

Glass No.	Composition	OH peak (cm ⁻¹) _{VOH}	[H ⁺] content (mol/l)	$\frac{\log_{10}\sigma \text{ at } 10^{3}/T = 2.4}{(T = 417 \text{ K})}$ (S cm ⁻¹)	log ₁₀ σ	$log_{10}A_0$ at $10^3/T - 24$ (T - 417 K)	E (kJ/mol)
16-1	40BaO-60P2O5	2670	0.94	-8.64	3.82	-8.59	99
16-2		2660	1.00	-8.72	3.54	-8.72	97
16-3		2640	0.74	-9.25	3.11	-8.99	99
17-1	50Ca(PO ₃) ₂ -50La(PO ₃) ₃	2900	0.24	-11.82	1.79	-10.58	108
18-1	$La(PO_3)_3$	2960	0.16	-12.37	1.53	-10.79	111
18-2		2950	0.28	-11.69	1.87	-10.58	108
19-1	60Ca(PO ₃) ₂ -50Ga(PO ₃) ₃	2980	0.36	-13.28	2.25	-12.39	125
19-2			0.10	-14.45	1.97	-12.45	129
20-1	30Ca(PO ₃) ₂ -70Ga(PO ₃) ₃	2980	0.46	-13.91	2.24	-13.24	129
20-2		3000	0.20	-14.54	1.83	-13.14	130
21-1	$Ga(PO_3)_3$	3280	0.10	-17.63	0.08	-15.63	141
21-2	33Ga ₂ O ₃ -67P ₂ O ₅	3300	0.36	-15.95	0.85	-15.06	134
			0.22	-16.24	0.15	-14.92	130
22-1	40Ga2O3-60P2O5	3340	0.40	-16.03	0.48	-15.23	132
23-1	25BaO-75B ₂ O ₃	3470	0.32	-17.01	-2.83	-16.02	112
23-2			0.20	17.91	-3.17	-16.51	117
24-1	30BaO-70B ₂ O ₃	3460	0.26	-16.76	-3.85	-15.59	103
24-2			0.22	-18.30	-2.84	-16.98	122
25-1	35BaO-65B ₂ O ₃	3420	0.16	-17.83	0.41	-16.24	145
25-2		3410	0.20	-17.59	-1.61	-16.19	127

TABLE I. (Continued).

E (in kJ/mol) and the proton concentration $[H^+]$ for different glasses. For 45MgO-, 45CaO-, and 45BaO-55P₂O₅ glasses, Eqs. (7), (8), and (9) were obtained, respectively:

 $E = 110 - 12\log_{10}[\mathrm{H}^+], \qquad (7)$

$$E = 101 - 14 \log_{10}[\text{H}^+], \qquad (8)$$

$$E = 95 - 16 \log_{10} [\text{H}^+]. \tag{9}$$

Thus, E is assumed to be expressed by

$$E = E_0 + E_1, (10)$$

where E_0 is an activation energy at a unit concentration of the proton ($[H^+] = 1$), and E_1 is an activation energy depending on carrier concentration. Figure 4 shows a plot of E_0 against v_{OH} ; E_0 increases linearly with increasing v_{OH} . It was found experimentally that E_0 is expressed by Eq.

- ¹M. D. Ingram, Phys. Chem. Glasses **28**, 215 (1987).
- ²H. Scholze, Glastech. Ber. 32, 81 (1959); 32, 142 (1959); 32, 278 (1959).
- ³J. Bruinink, J. Appl. Electrochem. 2, 239 (1972).
- ⁴L. Glasser, Chem. Rev. **75**, 21 (1975).
- ⁵M. G. Shilton and A. T. Howe, Mater. Res. Bull. **12**, 701 (1977).

(11) and E_1 by Eq. (12), respectively,

$$E_0 = B_0 + B_1 v_{\rm OH} \,, \tag{11}$$

$$E_1 = -B_2 \log_{10}[\mathrm{H}^+], \qquad (12)$$

where B_0 , B_1 are a constant ($B_0 = -66$, $B_1 = 5.89 \times 10^{-2}$) and B_2 is a value depending on host-glass compositions. The protonic conduction process is considered to be controlled by the two elemental process, i.e., one is a bondbreaking process between oxygen and proton in O-H bonding, and the other is a jumping or transporting process from a given site to a next site. We assume that E_0 is related to the former process and E_1 is to the latter process. These discussion will be done in another paper in detail.

It is very convenient and significant to be able to evaluate the proton conductivity and the activation energy of a glass simultaneously by measuring an ir spectrum of a given glass plate.

⁷Y. Abe, H. Shimakawa, and L. L. Hench, J. Non-Cryst. Solids **51**, 357 (1982).

⁶R. H. Doremus, J. Electrochem. Soc. 115, 181 (1968).

⁸Yoshihiro Abe, Hideo Hosono, and Takayuki Kamae (unpublished).