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Combined intersnbband-cyclotron resonances in a GaAs-Gal — Al As heterojnnction

A. D. Wieck, K. Bollweg, and U. Merkt
Institut fu'r Angewandte Physik, Universitiit Hamburgj, ungiusstrasse I I, D 200-0 Hamburg 36, West Germany

G. Weimann~ and W. Schlapp
Forschungsinstitut der Deutschen Bundespost, Postfach 5000, D 6IOO-Darmstadt, West Germany

(Received 6 July 1988)

The quasi-two-dimensional electron gas in GaAs-Gal-, A1„As heterojunctions is studied with
far-infrared Fourier transform spectroscopy in a strip-line configuration that yields nearly perfect
light polarization perpendicular to the electron layer. In this configuration, we observe simultane-
ously diamagnetically shifted intersubband resonance, combined intersubband-cyclotron reso-
nances, and cyclotron resonance in tilted magnetic fields. In particular, this allows us to deter-
mine the depolarization shift of the 8 0 intersubband resonance.

Intersubband resonances are the most characteristic ex-
citations of quasi-two-dimensional (2D) electron sys-
tems. ' Classically, they correspond to a bound motion
perpendicular to the electron layer in the z direction and
are excited most obviously by light polarized in this direc-
tion. Such polarization is attained in strip-line
configurations which have already been utilized in the first
studies of intersubband and combined resonances on Si,
both carried out with far-infrared lasers. More recently,
combined intersubband-cyclotron resonances also have
been observed by inelastic light scattering in GaAs-
Ga i „AI„As quantum wells.

Compared to the Raman experiments, far-infrared
spectroscopy has the advantage that there is no illumina-
tion with visible light which increases the electron density
above its equilibrium value. Fourier spectroscopy has the
particular advantage that the intersubband frequency
needs not be tuned by a gate voltage or a magnetic field to
coincide with a fixed laser frequency. Because of the
weak transmittance of a strip line, Fourier spectroscopy of
intersubband resonance in GaAs-Gai-, AI, As hetero-
junctions was previously studied with radiation incident
perpendicularly to the samples. 7 Then the light is po-
larized parallel to the electron layer and excitation of in-
tersubband resonance was achieved in magnetic fields
with directions tilted away from the surface normal. In
such tilted magnetic fields, the light is coupled to intersub-
band resonance via cyclotron resonance. However, this
scheme only works in the resonant situations Eto~ fata, &
when the subband spacing E to is a multiple r 1,2 of the
cyclotron energy hco, ~ eh8&/trt of the perpendicular
magnetic field component 8&.

Here we report on Fourier spectroscopy of GaAs-
Ga| —„Al„As heterojunctions in a strip-line configuration.
In this geometry, the magnetic field becomes an indepen-
dent variable and tilted magnetic fields offer new spectro-
scopic possibilities. The observation of combined
intersubband-cyclotron resonances allows us to determine
experimentally the depolarization shift of the 8 0 inter-
subband resonance. ' " We also discuss an enhancement
of cyclotron masses due to coupling of electric subbands in
tilted magnetic fields, and the excitation mechanism of cy-

clotron resonance with light polarized in the z direction,
i.e., perpendicularly to the plane of its classical motion.

The present sample has an electron density
n, 2.2&10" cm at zero gate voltage Vg and is deplet-
ed at Vs

—1.0 V using the front Ag metallization (1000
A) as a gate contact. The two-dimensional electron gas is
separated from the sample surface by an undoped (330 A)
and doped (300 A) Gai -,Al, As (x 0.36) layer, as well
as a GaAs cap layer (200 A). The dc mobility
It=210000 cm V 's ' at T 4.2 K. The experiments
are carried out with a rapid-scan Fourier transform spec-
trometer at liquid-helium temperature T~2 K.
Transmittance ratios T(n, )/T(n, 0) are recorded and
large numbers of scans (2x6000) are imperative to
achieve the required low noise level of about 0.2%.

Spectra in tilted magnetic fields (l9 45') of various
amplitudes 8 are depicted in Fig. 1. The inset shows the
experimental configuration with its light path. At 8 0,
we detect intersubband resonance 0 1 between the
ground (i 0) and the first excited (i 1) electric sub-
band. At 8 1.5 T, satellites to this main resonance are
observed. They shift away from the intersubband reso-
nance as the strength of the magnetic field is increased.
These satellites represent combined intersubband-cyclo-
tron transitions. At 8 3.5 T, cyclotron resonance starts
to develop at wave numbers v~30 cm '. At lower mag-
netic fields, cyclotron resonance is not detectable at our
noise level =0.2%.

In magnetic fields 8)4 T, the satellite on the left-hand
side has vanished but the satellite on the right-hand side
remains clearly apparent. This observation is explained
by level occupation since the filling factor v n, h/e8& 4
at 8 3.2 T. In higher magnetic fields, the combined res-
onance E~o —hta, & which is composed of i O,n i 1

n —1 transitions (n Landau index) becomes weak as its
last initial state i O,n 1 is depopulated. On the other
hand, the resonance Eto+Ata, ~ consists of O, n l,n+1
transitions of which the 0,0 1,1 transition is left in the
magnetic quantum limit (v ~ 2) reached at 8 6.4 T.

In Fig. 1, the position v-(167+'1) cm ' of the 8 0
intersubband resonance moves to slightly lower values in
low magnetic fields (8(3.5 T). This is presumably
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FIG. 1. Transmittance ratios measured for various ampli-
tudes of a tilted magnetic field (8 45'). The geometry and the
strip line with its light path are sketched in the inset. Horizontal
bars on the ordinate indicate values T(n, )/T(0) 1. Bold and
light arrows mark positions of diamagnetically shifted intersub-
band resonances and combined intersubband-cyclotron reso-
nances, respectively. Note the transfer of oscillator strength
from intersubband (ISR) to cyclotron (CR) resonance.
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FIG. 2. Resonance energies vs magnetic field strength. The
solid lines are calculated for the triangular-well approximation
pf the electric-surface potential (F, 1.59x 104 V cm
m 0.068m, ) by second-order perturbation theory. Arrows
indicate the energy of the measured 8 0 intersubband reso-
nance E ~p which is depolarization shifted and the single-electron
subband spacing E~p which is extrapolated from the positions of
the combined resonances.

caused by a partial suppression of the depolarization
shift" discussed below. At 8 5.5 T, its position shifts to
higher wave numbers. This we interpret as a diamagnetic
shift. Hence, in accordance with the notation' for purely
parallel (8 90') magnetic fields, we address this reso-
nance as diamagnetically shifted intersubband resonance.
Its intensity significantly decreases, whereas the one of cy-
clotron resonance strongly increases as the amplitude of
the magnetic field is increased.

Experimental resonance positions are given in Fig. 2 as
closed circles. For fields 8 3.5 and 4.0 T, the added en-
ergies of cyclotron resonance he@,& and combined reso-
nance Eip —hro, ~ are indicated by the two open circles.
Their distance ~0.4 meV to the position of the diamag-
netically shifted intersubband resonance is caused by
depolarization which influences the position of the inter-
subband resonance but not the ones of cyclotron and com-
bined resonances, provided the amplitudes of the latter are
suSciently small. "

The single-electron subband spacing Eip at 8 0 thus is
obtained when the positions of combined resonances
Eip~ hco, are extrapolated to zero magnetic field (see
Fig. 2). Comparison with the position Eip of the observed
intersubband resonance yields the depolarization shift
E~p —E~p-(0.9+ 0.1) meV. The difference between the

depolarization shift in a finite (=0.4 meV) and zero mag-
netic field (=0.9 meV) may be caused by a suppression of
the depolarization shift of the diamagnetically shifted in-
tersubband resonance as its intensity becomes weaker in
stronger magnetic fields (see Fig. 1). For inversion layers
on $i, however, it was found that in the presence of depo-
larization the shift of the resonance peak due to the paral-
lel component Bi is larger than the one obtained by a sim-
ple argument of the diamagnetic shift. 'p Hence, we think
that the depolarization shift of intersubband resonance in
GaAs-Ga1-„Al„As heterojunctions in tilted fields
deserves a theoretical study.

To describe the positions of resonances that are not
depolarization shifted, we calculate the single-electron
eigenenergies

e 8)f
E; „E;+hro, (n+ —')+ [(z );; —(z;;) ]

2m

e B~f 2 I —(E;;/h co,~) (2n + I )
zf I

by second-order perturbation theory. To arrive at Eq. (1),
we treat the effect of the parallel magnetic field Bi on the
energies E;+hro, ~(n+ & ) in purely perpendicular mag-
netic fields as a small perturbation (hco, t hro, &tan8
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«E~p). We also introduce the abbreviation E;; E; E—;
and matrix elements, e.g., z;; (i'(z (i) of the subband
wave functions ( i ) at B-0. The first two terms represent
the so-called cos8 law, stating that there is a Landau
ladder with cyclotron energy hrp, & -ehBcos8/m on top
of each electric subband. The third term is the diamag-
netic shift due to the parallel component, and the last one
describes coupling of electric subbands in tilted magnetic
fields.

The solid lines in Fig. 2 are calculated from Eq. (1) us-

ing energies and matrix elements of the triangular-well
approximation ' eF,z of the electric surface potential. The
field F, 1.59x10 Vcm ' is chosen to yield the ob-
served single-electron subband spacing E~p 19.8 meV at
B 0. The mass m 0.0680m, is measured in perpen-
dicular magnetic fields and is slightly higher than the
band-edge mass 0.0663m, . This is explained by band non-
parabolicity' which otherwise is not important to de-
scribe the present experiments.

The data points for B 3.5 and 4.0 T in Fig. 2 reveal a
marked asymmetry of the resonance positions E&p+ h, rp, &

with respect to the subband spacing E ~p. This we describe
by apparent cyclotron masses m;*(8) which are readily
derived from Eq. (1) using the common definition. ' We
obtain

+ (z;;)'E;; (am, i/E;;)'
m (8) m';~; h' 1 —(gm„/E, ')'

(2)

The masses m; (8) are independent of Landau index n

and exceed the effective mass m, the enhancement being
larger in higher subbands. This explains the asymmetry
of the positions of the combined resonances E~p~ hrp,
since they involve masses m;-& (8) and m;-p(8), respec-
tively. According to Eq. (2), the masses increase when
the parallel magnetic field component is increased. In Fig.
2, this is seen as a deflection of the cyclotron energy from
a straight line.

At B 4 T, we experimentally determine masses mp (8)
(0.070+ 0.001)m, and m (8) (0.080 ~0.005)m,

for subbands i 0, 1. From Eq. (2), we obtain mp (8)
0.070m, and m1 (8) 0.071m, for the triangular-well

model. A self-consistent theory"'5 yields mp 0.069m,
and m

& 0.073m, for a realistic acceptor density
N~ 2 & 10' cm . ' For the ground subband i 0,
there is good agreement between the experimental and
both calculated values. For subband i 1, the value of the
self-consistent theory is higher than the one of the
triangular-well model but still it is too low.

In order to describe the observed intensities, we calcu-
late oscillator strengths f; „;„ for z polarization from
the perturbated wave functions. "' In Fig. 3, values for
the triangular-well approximation are given normalized to
the oscillator strength of the intersubband transition at
B 0. Strength of intersubband transitions O, n l, n are
only given in the range of magnetic fields where they con-
tribute according to their filling factors. For clarity
reasons, strengths of combined resonances are only depict-
ed for transitions O, n 1,n+1. The leading term of per-
turbation theory for the oscillator strength of cyclotron
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FIG. 3. Oscillator strengths of diamagnetically shifted ISR,
CR, and combined transitions O, n 1,n + 1. The strengths are
calculated by second-order perturbation theory for the
triangular-well approximation (F, 1.59 x 104 V cm
rn .0608m, ). The inset shows transitions starting from the
initial states (i,n) (0, 1) and (0,0).

resonances O, n ~ O, n + 1 is given by the expression
' 2 3

2(n+1 tan 8fp- i ii [I —(hrp, i/E(p)'I'
(3)

Here we introduce the cyclotron radius I& (5/eB&) '

Figure 3 shows that the strength of cyclotron resonance is
negligibly small in lower magnetic fields but strongly in-
creases in higher ones.

Experimental intensities are determined by integrating
the spectra assuming Lorentzian line shapes if necessary.
Ratios I/Ip ~ of the intensities of diamagnetically shifted
intersubband transitions and intersubband resonance at
B 0 can be compared directly with the calculated ratios
of oscillator strengths f/fp ~ since these resonances are
excited within a narrow range (&20 cm ') of frequen-
cies. This leaves practically unaltered the transmittance
T(n, -O) of the sample and the light field' inside the
strip line. There is only qualitative agreement between
experiment and theory. To give an example, the ratio
0.6+0.1 at 8 6.5 T must be compared with the theoreti-
cal value f/fp ~

-0.79 of Fig. 3.
Qualitatively, the intensities of the combined reso-

nances are also described by perturbation theory, includ-
ing their decrease of intensity in higher magnetic fields.
They are strongest in the range 8 1.5 to 3 T since they
no longer melt together with the intersubband resonance,
and transitions involving higher Landau indices n 2-4
with strong oscillator strengths contribute in this range
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(see Fig. 3).
Cyclotron resonance is clearly observed only in magnet-

ic 6elds 8~4 T with strongly increasing intensity at
higher fields (see Fig. 1). This proves that we have z po-
larization to a high degree and that cyclotron resonance is
excited via intersubband resonance. The intensity ratio
I/Ip-~ 0.2~0.05 at 8 8.5 T is a factor of about 2
larger than the value f/fp 1 0.10 of Eq. (3) calculated
with numbers zip 46 A and fp 1 0.75 of the tri-
angular-well model (see also Fig. 3). We think, that most
of the discrepancy is due to different light modes in the
strip-line and different transmittances of the sample at the
widely apart frequencies of cyclotron and intersubband
resonance. However, we also note that perturbation
theory is not expected to provide a very good description
of the intensities for the highest field 8 8.5 T studied
since the cyclotron energy h, to,i 10.2 meV is no longer
small compared to the subband spacing E~p 19.8 meV.

In conclusion, we observe diamagnetically shifted inter-
subband resonance, combined intersubband-cyclotron res-
onances, and cyclotron resonance in tilted magnetic fields.
This allows us to determine experimentally the depolari-
zation shift of the 8 0 intersubband resonance. Qualita-
tively, we can describe the single-electron energies and the
resonance intensities by second-order perturbation theory
using the triangular-well approximation of the electric-
surface potential. A more quantitative description will

provide a very stringent test for self-consistent theories,
especially in regard of the enhanced cyclotron masses of
excited subbands, the depolarization shift in tilted mag-
netic fields, and the observed intensities.
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