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A theoretical analysis of the contact resistance in the scanning tunneling microscope at very

small distances is presented. For a single atom, we find that the resistance saturates at close con-

tact, its value being h/2e . Our analysis of the recent experimental results of Gimzewski and

Moiler shows that the mechanical instability predicted by Pethica and co-workers appears for a
distance of 1.5 A between the tip and the sample.

The regime of close contact between the tip and the
sample in the scanning tunneling microscope (STM) ' is of
high current interest. Gimzewski and Mollerz have re-
cently analyzed experimentally this limit and found im-
portant corrections to the simple exponential behavior3 of
the contact resistance as a function of distance. Their
data also show a hysteresis pattern suggesting a transition
from the tunneling to the point-contact regime. 4 This
transition is related to the mechanical stability of the mi-
croscope: Pethica and co-workers ' have shown that the
tip and the sample jump together for very small separa-
tions, say, 1-2 k

The purpose of this communication is to analyze
theoretically the contact resistance in the STM at very
small distances. In our approach, we follow a tight-
binding method whereby the main parameters of the mod-
el are obtained by means of a first-principle calculation
using no adjustable parameters. We find that the tunnel-
ing current across a single tip atom presents a maximum
at distances of a few A's between the tip and the sample;
the corresponding contact resistance is related to the
quantum unit, h/e . We argue that this limit is obtained
at distances that are close to the ones defining the
mechanical instability of the microscope. Then, our theo-
retical analysis allows us to estimate the tip-sample dis-
tance at which that mechanical instability appears.

Figure 1 shows the interface geometry for two metals.
We assume for simplicity that the tunneling current only
fiows through a single atom. We describe the tunneling
problem using the following Hamiltonian:
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Hl +Hr +Hinter
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where Ht is the left tight-binding Hamiltonian of the tip,
0, refers to the sample and

Hinter Z Tlk (ekeele+ cleek+) ~ (2)
k, cr

where I is the atom at the tip's apex and k refers to the
sample's eigenstates. We assume TIk to be known; more
about this point will be discussed below. We also assume
that in the unperturbed system (H;„r„-0) the Fermi en-
ergy of the left-hand electrode is EF+eV (Vis the applied
voltage), while it is EF for the right-hand electrode.

This is a typical nonequilibrium system having a sta-
tionary state; its properties can be analyzed using Keldish

methods as applied by Caroli, Combescot, Nozieres, and
Saint-James to the tunneling problem. First of all, notice
that the total current, J, between the tip atom and the
sample is given by

G +' (1+O'Z')Go+' (1+2'G') . (5)

This is a matrix equation, with Go+ being the Green
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FIG. 1. Shows the interface geometry for two metal surfaces,
(a) in the tunneling regime, (b) in close contact.
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where () is the mean expectation value for the given
operator in the stationary state of the whole system.
Equation (3) can be written in terms of the Keldish-Green
functions Gik (Ref. 6) in the following way:
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Now, G+' can be calculated usings the following equa-
tion:
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function of the uncoupled system, with T k 0. G" and G'
are retarded and advanced Green functions of the coupled
system, and X' X' are given by the coupling Tik between
the atom I and the eigenstates k. The advanced and re-
tarded Green functions, G' and G', are obtained from the
Dyson equation:

Gr, a Gr,a+ Gr, agr, aor, a
0 0

Equations (4), (5), and (6) yield the following result:

I Tlk I 'PPi(ro)PP(in)

I —Z I Tik I Glf(~)Gk(m)
k
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Z I Tlk I Pti(EF)PP(EF)4' V k

I —Z I Tik I Gll(EF)Gk(EF) '
k

We can go a step further by noticing that for half-
occupied bands, the real parts of Git(EF) and Gk (EF) are
small compared with their imaginary components [this is
exact for symmetric densities of states, PJ)(ro) and p)(ro),
with respect to the Fermi energy]. Within this approxi-
mation we find

Gg(EF)Gk (EF)= —rr PJ((EF)pf(EF),

and Eq. (8) yields

& 2 I Tlk I 'PPi(EF)PP(EF)
4eV k (10)

I+ ir'Z I Tik I 'pfi «F )pk(EF )
k

This equation shows that J is a function, f(x), of
& Zk I Tik I PP(EF)pf(EF), with f(x) x/(1+x) .

This function has a maximum at x 1; then

2e VJ for x gI Tik I PPi(EF)pk(EF) 1. (11)
h k

We should comment that Eqs. (10) and (11) cannot be
applied to a one-dimensional system. As shown by Lan-
dauer, in this case the interface resistance is proportional
to T/(1 —T) where T is the transmission coefficient. This
effect changes Eq. (10) into

2e V 4f(x) (12)
h I —4f(x)

for a one-dimensional case, since 4f(x) appears to be the
transmission coe%cient of the interface. For the three-
dimensional system we are interested in, we can neglect
Landauer's effect. In the following, we disregard this

(7)
where GiII and Gk are the retarded Green-functions for the
uncoupled tip and sample, respectively, while pti(rn) and

p)(m) are the corresponding densities of states. In this
equation, we assume the tip has its Fermi level at the en-

ergy EF+eV.
Equation (7) is the basis of our analysis. The lowest or-

der effect in Tik is obtained replacing the denominator by
1. Higher-order terms necessary to calculate the case of
short tip-sample distances are included in the denomina-
tor. For small voltages we can write the following equa-
tion for J:

correction even for the one-dimensional systems, which
are only discussed for the purpose of comparing with the
three&imensiona} cases.

In order to show the behavior of J as a function of the
tip-sample distance, we have calculated Eq. (10) using
two different models: (i) in one case, we consider a one-
dimensional chain for both the tip and the sample; (ii) in a
second case, we have analyzed a Ag-Ag interface (see Fig.
I) with tight-binding parameters for each crystal taken
from Ref. 9. The hopping interaction, Ti, , between orbit-
als I and jof the tip and the sample, respectively, is calcu-
lated using the following equation: '

2 fo

(13)

yi ilridr „ilri tlfidr „ tlirt dr, (14)
~ OJ

where the whole space Q is split into the two subspaces Qi
and Qi by the surface os. Q Qi+Qi. Wave functions

Ilii and Ilia are taken from the Herman-Skillman tables'
for atomic wave functions.

Figure 2 shows logioJ as a function of the distance be-
tween the tip atom and the surface layer of the sample. In
the three-dimensional calculation, it has been assumed
that the tunneling intensity crosses the interface from the
single tip atom to the five nearest neighbors of the sample
[the tip atom is on a top position of the (100)-surface lay-
er of the sample], and that the main contribution to the
intensity comes from the s orbitals. These results show
clearly how the intensity saturates at small tip-sample dis-
tances. Notice that the three-dimensional and the one-
dimensional models yield very similar results. In our cal-
culation, J reaches its maximum value, with R-h/2ez,
for d~-2.5 A; as stated before, this distance is defined by
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FIG. 2. Shows 1ogIOJ vs d for the one-dimensional model with
a band width of 8 eV (dashed line) and for the three-dimen-
sional case (full line). In both cases, V 20 meV.

where os is a surface between the orbitals 1 and j. In Ref
(11),it is argued that the best approximation to Tii is ob-
tained by choosing crii to satisfy the condition
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Eq. (11) (Landauer's effect shows that the one-di-
mensional resistance of this case is zero). It is interesting
to notice that using this equation and the one-dimensional
model for both the tip and the sample, we find that Eq.
(11)yields the condition

T)2 T) ) T22,2 (IS)

where Ttz is the hopping interaction between the last
atoms of the one-dimensional crystals 1 and 2, while Tt1
and Tzz are the hopping parameters of the one-di-
mensional models used for the two metals.

This result suggests that the maximum value for J in
three-dimensions [Eq. (11)],or the zero resistance in the
one-dimensional case, must appear when both crystals are
in close physical contact, i.e., at the equilibrium distance
between the tip atom and the sample. At that moment
[see Fig. 1(b)) we can expect to have a minimum contact
resistance, its value being R h/2e (one half of the
quantum unit of resistance), in good agreement with other
theoretical independent estimations. '3

We should comment that the results of Fig. 2 are mean-
ingless for distances smaller than the one for which the
conductance shows a maximum (d ): In that regime, the
elastic deformations of both the tip and the sample crys-
tals are important and the assumption of having the two
crystals undeformed while the tip-sample distance is re-
duced has no validity. That is the reason why the results
of Fig. 2 can be taken as significative only for d & d . At
shorter distances, strong deformations will produce that
more atoms will take contact, and the contact resistance
will drop.

We will proceed to discuss these results in the perspec-
tive of the experiments of Gimzewski and Moiler. First
of all, we notice that these authors see a mechanical insta-
bility at R-4x10 0, a value somewhat larger than
lt/2e —1.3&10 0, the resistance for the close contact
for a single atom. On the other hand, we notice that
Pethica's and Sutton's work suggests that the mechanical
instability of the microscope appears when the distance
between the tip and the sample is 1-2 A. larger than the
close contact between the two crystals. Accordingly, we
propose that a minimum value in the resistance (close to
h/2ez) should be obtained in the microscope if no
mechanical instability had appeared when approaching
the tip to the sample. In Fig. 3 we show the results of
Gimzewski and Moiler, and a plausible extension of the
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FIG. 3. Shows the results of Gimzewski and Moiler (Ref. 2)
extended to shorter distances between the tip and the sample
(see text).

values obtained by these people before the instability to
shorter tip-sample distances (the inaccessible region of
Pethica and Sutton ). Notice that we assume that the
minimum resistance of the extended curve is defined by
the value of the measured resistance after the jump: At
this point, R-1.6x10 0, close, although a little larger
than lt/2ez-1. 3x10 Q. This suggests that after the
mechanical instability, the sample and the tip are in con-
tact only through a single atom; the small difference be-
tween the experimental value and h/2e can be related to
the assumptions of the theoretical analysis: For a non-
symmetric density of states at the tip or the sample (in the
experiments of Ref. 2, the tip is Ir), the resistance would
increase slightly with respect to the ideal value calculated
in this paper. On the other hand, Fig. 3 shows how the ex-
tended curve for the contact resistance suggests that the
jump between the tip and the sample at the instability ap-
pears for distances of 1.5 A, in very ~ood agreement with
the discussion of Pethica and Sutton.

In conclusion, we have presented a theoretical calcula-
tion of the contact resistance for STM at variable short
tip-sample distances. Our results are in good agreement
with the experimental evidence of Gimzewski and Moiler z

and show how to deduce the experimental tip-sample dis-
tance for which the microscope mechanical instability
appears.
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