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The conductance of a tight-binding model on a Penrose tiling is calculated as a function of Fer-
mi energy by the multichannel Landauer formula. The conductance shows spiky fine structures.
The behavior of the conductance is compared with the density of states of the corresponding sys-
tem. It is also found that the dependence of the conductance on the system size is anomalous and

analogous to the universal conductance fluctuation.

The discovery of fivefold symmetry by Shechtman,
Blech, Gratias, and Cahn' sparked off intensive investiga-
tion of a new state of matter, quasicrystals. Typical ex-
amples of the quasicrystals in low dimensions are a Pen-
rose tiling in two dimensions and a Fibonacci chain in one
dimension. Concerning electronic states, the quasicrystals
have two fundamental properties:? lack of translational
symmetry and existence of self-similarity. The former has
a tendency to cause wave-function localization. The latter
results in the property that every patch in a lattice occurs
infinitely often and the distance between two neighboring
patches is the same order of magnitude as its diameter.
This repetition causes the wave functions to become delo-
calized.® In the Fibonacci chain competition between
these two tendencies is clearly seen and there is a con-
sensus that the energy spectrum is a Cantor set® and that
wave functions of the eigenstates are critical,>% i.e., nei-
ther extended nor localized. Analysis of eigenstates of a
Penrose tiling is more difficult; however, numerical calcu-
lations of eigenstates of a Penrose tiling show similar
features to the Fibonacci chain.® The energy spectrum
also seems to be singular but does not have a simple self-
similar structure of energy gaps like the one observed in
the Fibonacci chain. Most of the wave functions are also
critical and show a power-law decay.

In the present paper we study the conductance of the
Penrose tiling. It is not trivial to define the conductance
of such an aperiodic lattice. When one uses an arbitrary
part of the Penrose tiling and calculates its conductance, it
is difficult to make a systematic analysis because there is
no natural way to attach lead lines and the rough edges
will produce large scattering. To investigate the eigen-
states of the Penrose tiling we used the periodic Penrose
tilings>’ (PPT’s) which optimally approximate the origi-
nal one; the matching rule to construct the Penrose tiling
is violated on only two edges independent of the size of the
unit cells of the PPT’s. The PPT’s are very convenient
systems in which to study conductance, since it has a nat-
ural way to attach the lead lines and it is free from the
edge scattering due to the imposition of the periodic
boundary condition in the vertical direction. We have cal-
culated the conductance with increasing system size. It
shows rapid fluctuations as a function of the Fermi ener-
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gy. The fluctuations of the conductance are related to the
roughness of the energy spectrum and are considered to
originate from the power-law decay of the eigenfunctions.
We note that the strongly localized system shows bigger
fluctuations due to resonant tunneling. Here the reso-
nance is not so sharp as in the localized system.

In a previous work we studied the two-dimensional Fi-
bonacci lattice (2D FL) as a simpler two-dimensional
quasicrystal.® There we found that quasiperiodic poten-
tial had a critical strength. Below the critical value, the
energy spectrum has finite measure but zero measure
above it. In the weak-potential regime, fluctuation of the
conductance increases with the system size but it is small-
er than the average of the conductance. Above the critical
value, the fluctuation is on the order of unity and on the
same order as the average. This example suggests the pos-
sibility of the existence of a critical energy which also
separates the two regimes in the Penrose tiling and actual-
ly we will see that the character of the fluctuation changes
from the low-energy to the high-energy case.

We calculate the conductance at zero temperature by
using the multichannel Landauer formula,® g=Tr(t"),
where g is a dimensioniess conductance in units of e?/h
and ¢ is the transmission matrix. When there is an under-
lying regular lattice (e.g., 2D FL, Anderson localization
problem on a regular lattice, etc.), it is generally more
convenient to use Pichard’s expression '° for the Landauer
formula; g =Tr{2/[TT'+(TT") ~'+21} where T is the
transfer matrix at a given energy E. But in the Penrose
tiling, the number of sites connected to a certain column is
in general not the same as in the column. In that case,
some modes of an incident wave are totally reflected in-
dependent of energy. Therefore it is impossible to define
the transfer matrix and we are obliged to calculate the
scattering matrix S directly.

As a scatterer, we use a unit cell of a PPT (/V sites) and
M sites on the adjacent line, where M is the number of the
channels (shaded region in Fig. 1). Two semi-infinite
square lattices with the same width M are connected on
both sides as lead lines. The periodic boundary condition
is imposed in the vertical direction. Therefore the system
is in a cylindrical shape with finite sites in the vertical
direction. The model we use is a tight-binding Hamiltoni-
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FIG. 1. Geometry of the scattering problem. N =76, M =10.

an with an s-orbital placed on the center of each rhombus
and where the transfer energy is a constant (—1) for
nearest-neighbor pairs. Since the atomic configuration is
not bipartite, the energy spectrum is asymmetric.

In the lead lines, the wave function with energy E can
be expanded into plane waves (open channels) and ex-
ponentially decaying functions (closed channels). They
have parallel and perpendicular wave numbers &, and k,
which satisfy the following relation:

E = —2(cosky +cosk,), 0=Rek, <n, k,=2zn/M
(n=0,1,...,.M—1).

A real k, corresponds to an open channel and a complex
k, to a closed channel. Let M be the number of open
channels. The S matrix relates amplitudes of the 2M in-
cident plane waves to those of the 2M scattering plane
waves

o=l )

where a and b are the amplitudes of the incident and
scattering waves and the subscripts L and R indicate the
left and the right lead lines. The S matrix is composed of
transmission matrices ¢,¢' and relfection matrices r,r'.
For given a; and ag, we solve the Schrodinger equation,
Hy;=Ey; at N'=N+ M sites of the scatterer and at ad-
jacent 2M sites in the lead lines on both sides (bold tetra-
gons in Fig. 1). The unknown variables are N' amplitudes
at the sites inside the scatterer, 2M( amplitudes for the
outgoing plane waves (b, and bg), and 2(M — M) ampli-
tudes for exponentially decaying modes. Therefore the
number of equations is sufficient to obtain b; and by in
terms of a; and ag.

We calculated conductance of Penrose tilings as a func-
tion of Fermi energy using five different unit cells of
PPT’s.!! The size of the scatterers is N =76, 199, 521,
1364, and 3571, and the numbers of the channels are
M=10, 16, 26, 42, and 68, respectively. Typical results
are shown in Fig. 2. We immediately notice spiky fine
structures. The structures are not simply due to the finite-
ness of the scattering sites; when a part of regular lattice
is used as a scatterer, it has larger conductance and small-
er fluctuation. These structures are due to the resonant
tunneling; however, in an ordinary metallic system reso-
nances are broadened. !> These narrow widths are expect-
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ed on the basis of our previous work® indicating that most
of the wave functions in the Penrose tiling show power-law
decay because for such a type of wave functions it is hard
to permeate into the lead lines. Overlapped with these
fine fluctuations, there are global structures depending on
energy; the conductance is large in the low-energy region
and shows some large dips.

The energy dependence of the conductance is related to
the density of states (DOS). Figure 3 shows the DOS of
the PPT’s without lead lines. On the unit cells of the
PPT’s, the periodic and antiperiodic boundary conditions
can be imposed. We obtain four eigenvalues correspond-
ing to T, X, Y, and M points in the Brillouin zone for each
band. We suppose that there is no level crossing and ap-
proximate the band by a square one between the
minimum and the maximum. We then obtain the DOS
curves shown in Fig. 3. At lower energies many bands
overlap, while at higher energies there are many tiny gaps
whose number is comparable as the number of the bands
itself. As a result, the DOS curve looks smoother in the
lower-energy region than in the higher-energy region.
This means that wave functions at lower energies are ex-
tended more than at higher energies. Clearly there is
correspondence between the DOS and the conductance.
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FIG. 2. Conductances in units of e2h of Penrose tilings as a
function of Fermi energy at every 0.01. The case of £ =2 is not
calculated.
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FIG. 3. Density of states of periodic Penrose tilings.

The conductance is also smoother at low energies.. There
are several outstanding gaps in the DOS. At the gaps, the
conductance is nearly zero, as it should be. But dips cor-
responding to very narrow gaps disappear due to the finite
size of the scatterer.

The size dependence of the conductance varies with en-
ergy. We divide the total energy region into five subre-
gions separated by large gaps in the DOS. The averages
and the standard deviations of the conductance in each re-
gion are plotted in Fig. 4. In the region A for example,
the standard deviation is smaller than the average and the
average increases with the size of the scatterer. In regions
D and E the standard deviations are order of unity and on
the same order as or greater than the averages, and both
exhibit only weak system dependence. Therefore even in
the macroscopic system the conductance is not well
defined. This is similar to the universal conductance fluc-
tuation.'? This similarity is due to the power-law behav-
ior of wave functions. We note that the behavior of the
conductance in low- and high-energy regions resemble
those of the 2D FL in weak and strong potential cases.

Thouless numbers'? SE/AE are also calculated (Fig. 5).
Here SE is the difference between the maximum and the
minimum of four eigenenergies at I, X, Y, and M points,
and AE is distance between two neighboring states defined
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FIG. 4. Averages and standard deviations of the conduc-
tances in five energy regions; E= (A) —4.00 to —2.69, (B)
—2.61to —0.95, (C) —0.82t00.78, (D) 0.88 to 1.92, (E) 1.98
to 3.00. Five systems are used: O, M =10, N=76; A, M =16,
N=199; 0, M =26, N=521; x, M=42, N=1364; V, M =68,
N=3571. The unit of g is e 2h.

by the average of these four points. The Thouless number
represents sensitivity to the boundary condition and is a
measure of the conductance. The smoothness of the DOS
manifests itself in AE and 8F is the measure of the degree
how the wave functions are extended. It is readily seen
that the overall features are very similar to those in Fig. 2.

In conclusion, we have computed systematic approxi-
mations to the conductance of a Penrose tiling using the
Landauer formula and a sequence of unit cells of the
periodic Penrose tilings, the properties of which approach
those of the perfect Penrose tiling. We have observed rich
structure in the dependence of the conductance on the
Fermi energy and an anomalous unit-cell size dependence,
similar to the phenomenon of the universal conductance
fluctuation in mesoscopic systems. This behavior is relat-
ed to the singular behavior of the density of states and the
wave functions of the quasicrystals. We believe such
anomalous behavior may be reflected in the fluctuation of
the conductance as a function of temperature at suf-
ficiently low temperatures.
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FIG. 5. Thouless number of a Penrose tiling with N=3571
for all eigenenergies.
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FIG. 1. Geometry of the scattering problem. N=76, M =10.



