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Using the Korringa-Kohn-Rostoker method we compute the band structure for a classical sca-
lar wave scattering from a periodic array of dielectric spheres in a uniform background. The op-
timal volume filling fraction f of spheres for the creation of a total gap in the density of states,
and hence localization, is found to be approximately 11%. This gap persists for refractive index
ratios as small as 2.8.

The static structure factor of a disordered medium
plays a crucial role in the determination of transport prop-
erties of waves in strongly scattering media. ' For weakly
scattering media, defined by the criterion that the classical
elastic mean free path I is long compared to the wave-
length k, various approximation schemes adequately de-
scribe wave propagation in terms of classical diff'usion on
long length scales. These approximations, in general, as-
sociate no statistical correlation between scatterers at
different positions. For optical propagation in relatively
dilute or low dielectric contrast microstructures, this
"white-noise" approximation to the disorder captures the
essential physics of coherent multiple scattering on length
scales long compared to I.

This approximation has been successfully applied to de-
scribe various correlation and fluctuation phenomena in
the weak-scattering regime. s 'n Among these are the op-
tical analog of universal conductance fluctuations
observed in electronic systems and the intensity time auto-
correlation function for light scattering from dilute mobile
dielectric spheres. s 'n Even in the absence of localization
phenomena, it has been suggested that time autocorrela-
tions may be used as a spectroscopic tool to probe the stat-
ic and dynamic structure of complex fluids exhibiting mul-
tiple light scattering.

The possibility of photon localization, however, requires
that light propagate through a relatively dense collection
of high dielectric constant scatterers of size comparable to
the optical wavelength. " The first correction to the sim-
ple "white-noise" picture is to associate a form factor with
individual scatterers but to let their positions remain
essentially uncorrelated. This allows the possibility of
single-scattering Mie resonances which can signi6cantly
reduce the elastic mean free path. ' ' It is, nevertheless,
problematic to achieve the criterion 2trl/1, = 1 for localiza-
tion proposed by IoAe and Regel' at densities sufficiently
low that the scatterers do not become optically connected.

It has been recently suggested' that the resolution to
this dilemma may be found by considering carefully
prepared dielectric superlattice structures. Here localiza-
tion may occur even for very weak disorder relative to the
otherwise periodic structure. This is based on the funda-
mental assertion that the criterion for a mobility edge pro-

CO—V p(r)+U(r)p(r) ebp(r)
C2

(la)

posed by Ioffe and Regel' is in fact inapplicable in

strongly correlated scattering media. Any significant per-
turbation of the photon density of states by the scattering
medium will significantly alter the criterion for localiza-
tion. This is most easily seen in the extreme case of a
strong periodic modulation which creates a gap in the
photon spectrum. At a band edge, light of wave vector k
is Bragg scattered into k —G where G is a reciprocal lat-
tice vector of the medium. The resulting superposition is a
standing wave. At frequencies co slightly above the gap in
the photon density of states p(ro), the wave reacquires a
propagating character which is expressed by a long-
wavelength envelope which modulates this standing wave.
As co approaches the band edge, the wavelength k' of the
envelope diverges. For sufficiently weak disorder that the
gap persists, the criterion for localization is no longer
2trl/k= 1 but rather 2trl/A, '= l. It is highly plausible that
there is continuous crossover of the localization criterion
from one form to the other as the static structure factor
S(q) of the medium varies from being independent of
wave vector q (white-noise model) to having sharp Bragg
peaks (periodic superlattice).

From an experimental point of view it is, therefore, of
particular interest to determine the optimal scattering
structure for the creation of either a gap or a pseudogap in
p(ta). The above argument suggests that any significant
departure of the photon group velocity from its phase ve-
locity can significantly enhance the prospect for the obser-
vation of a mobility edge.

We consider the scattering of a scalar classical wave
from an fcc lattice of identical dielectric spheres of dielec-
tric constant e, and radius R, embedded in a uniform
background dielectric with eb 1. The method discussed
below employs a variation-iteration method developed in-
dependently by Korringa' and Kohn and Rostoker'
(KKR) for computing the band structure of electrons in a
periodic lattice. The wave equation for a classical scalar
wave of amplitude p(r) and frequency ro propagating in
such a dielectric medium can be expressed in the form of a
Schrodinger equation:
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where
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Here kb = [(p) /c )eb] 'l and integration in (3) is over all
space. Since Bloch's theorem requires that (b(r+R)

exp(ik R)(b(r) for some photon "crystal momentum"
k, the integral equation can be reduced to one involving
integration only over a single unit cell of the lattice

Eb~ r (R~,
e.(r) - ~

0, r~R, .

Here R runs over all translation vectors of the lattice and
c is the vacuum speed of "light. "

Equation (la) can be formally reexpressed in terms of
the associated free-photon Green's function

I (r, r') = — exp
1kb I r r'I—

(2)
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as a linear integral equation:

p(r) d'r'I (r, r')U(r')(b(r') .

and
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Since the new Green's function G satisfies the Bloch con-
dition, it is straightforward to verify that (b(r) does as
well.

As discussed by KKR, the integral Eq. (4) may be de-
rived from a variational principle. The solution of (4) cor-
responds to a stationary point of the functional

A[(I)]
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with respect to variations in (b(r'). As approximate solu-
tion may be obtained by introducing a trial wave function
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where Ci are undetermined expansion coefficients,
k, =[(cp /c )e,]',ji is a spherical Bessel function and
YP is a spherical harmonic. Truncating this expansion at
1,„2yields a 9x9 determinantal condition on the "ei-
genvalues" (p) /c )eb of Eq. (la) for a fixed "crystal
momentum" k. This may be expressed as

Here primes denote derivatives, ni is a spherical Neumann
function, and the square brackets denote the Wronskian
evaluated on the surface of a scattering sphere:

[X,Y]—= Xd Y —YdX
dr dr . R-

The coefficients Bl i are determined for a given k and
p) entirely by the static structure factor of the medium
and are independent of the nature of the individual
scatterers. They can be expressed in terms of a smaller
number of independent structure constants DLM.

detail, m;I', m'

where
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Convergence of the infinite lattice sums is facilitated b~
expressing DLM as the sum of reciprocal lattice sum DLM
and a real-space sum DLt(r. Following Ham and Segall'
we write DLM DLM+DLM+ b'L pDpg:
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where V is the volume of the unit cell, )I is an arbitrary real positive convergence parameter (DLM is in fact independent
of ri), and 6 runs over the entire reciprocal lattice:
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FIG. 1. Brillouin zone for an fcc lattice showing the extremal
k points of the irreducible part: L(0.5,0.5,0.5), X-(1.0,0.0,
O.O), K-(0.75,0.75,0), ~-(1.0,0.25,O. 2S), and W-(1.O,

0.5,0.0). The triangles LKW and XAW subtend the region of
the irreducible Brillouin zone. The above wave vectors are given
in untis of 2ir/a where a is the length of the side of the cube of
the fcc lattice.

For the choice g 0.6, we found that convergence could
be achieved by summing over 125 points in reciprocal
space and 26 points in real space. '

Depicted in Fig. 1 is the first Brillouin zone for an fcc
lattice. For the dielectric contrasts considered 6&@',/
cb ( 12 we find that the size of the photonic band gap is
determined by the eigenvalue spectrum at points L and 8',
these corresponding to the extremal points of the zone sur-
face. For fixed e, =12 and eb 1, the band structure for
classical wave propagation was calculated for various
values of the volume filling fraction f of spheres. At this
large dielectric contrast a complete gap in the spectrum
occurs over a wide range off with a maximum occurring
at f= 1 l%%. This is depicted in Fig. 2. The band gap is
expressed in terms of the "energy" eigenvalue
E—= (ru /c )eb of Eq. (la) and is measured in units of
(2ir/a) where a is the side length of the elementary cube
of the fcc lattice (Fig. I). In Fig. 3 we show the frequen-
cies [in units of (2n/a)l for the upper and lower band
edges as a function of f for e, /ab 12. Finally in Fig. 4
we show the computed ratio of the band gap in frequency
to the center frequency of the gap. A maximum ratio of
13/o is found at f=0.15. In all cases the lattice constant
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FIG. 3. Plot of the upper boundary of the

(ai/c) Jab at L and the lower boundary at W as
volume filling fraction f (in units of 2ir/a).
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a function of

a was kept fixed and the radius R, of the spheres was
varied to change the volume filling fraction.

At the optimum volume-filling fraction f 0.11 the re-
fractive index contrast was reduced until the gap disap-
peared. The band gap persists down to a ratio (e,/eb)'/
of 2.8. Since high refractive index materials of this nature
are available ' both in the microwave and optical regimes
it is highly plausible that strong localization of photons
may be observed in carefully prepared, weakly disordered
arrays of scattering spheres. In general, large refractive
index spheres may be fabricated from semiconducting ma-
terials with electron band gaps slightly larger than the en-
ergies of the relevant electromagnetic waves to be scat-
tered. A trade-off is nevertheless required between large
real part of the dielectric constant and an increasing
imaginary part of the dielectric constant as the photon
frequency enters the regime of the absorption edge of the
semiconductor.

Application of these ideas to physical electromagnetic
waves requires the generalization of the KKR technique
to the case of a propagating vector field. It is likely that
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FIG. 2. Plot of the band gap in (co /c ) bb in units of (2~/a)
as a function of volume filling fraction f The largest gap occurs.
at f=0.1 1 (e,/eb =12).
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FIG. 4. Plot of the ratio of band gap hco in frequency to cen-

tral frequency of band gap ~.
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the existence of two polarization states will require a
slightly higher refractive index ratio than that required to
produce a band gap for a scalar wave. ' However, the sca-
lar wave calculations may provide a valuable guide in
determining the optimal volume filling fraction. This con-
jecture is consistent with recent studies of photonic band
structure by Yablonovitch using microwaves.

Recently, Economou ' has suggested that the photon
band gap obtained for the periodic structure is in fact the
remnant of a Mie resonance obtained for a single sphere.
That is to say, although the single-scattering resonance is
removed by the optical connectivity of the spheres it reap-
pears as a perturbation on the total photon density of
states. This argument suggests the existence of a number
of higher frequency band gaps associated with each of the
higher angular momentum Mie resonances of the single
sphere. The precise volume-filling fraction required to op-
timize the size of these higher gaps and the robustness of
these gaps with the introduction of disorder remain as im-
portant open questions. One immediate distinction be-
tween scalar waves and electromagnetic waves is the ab-
sence of an s-wave resonance due to the transverse nature
of the electromagnetic wave. This may lead to an increase
in the optimum volume-filling fraction from (0.1 &f
& 0.15) for the observation of the lowest-order band gap

for true electromagnetic waves.
In summary, the existence of a nontrivial static struc-

ture factor of a disordered medium can have profound
consequences on the nature of wave transport in it. Since
the traditional Ioffe-Regel criterion is almost attainable
for classical waves in an uncorrelated random medium, it
is plausible that nearly any significant depression of the
photon density of states from its effective medium value
(obtained by single-scattering theory) will considerably
enhance the prospects for the experimental observation of
localization. The numerical results presented here strong-
ly support the feasibility of producing the materials re-
quired for such an experiment as well as the need for fur-
ther band-structure calculations in the case of physical
electromagnetic waves.
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