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The recently discovered fractional quantum Hall effect at 37 filling has been studied by the
standard technique of finite electron systems in a periodic rectangular geometry. We have evalu-
ated the low-lying excitations and the correlation functions for 3 filling in the lowest Landau lev-
el, as well as in the next Landau level with the lowest Landau level fully filled. The results indi-
cate that the origin of the 3 effect is due to the same incompressible-quantum-fluid state which

manifests itself at odd-denominator fractions.

The recent experimental observation' of the fractional
quantum Hall effect (FQHE) at an even-denominator
filling fraction of 3 has confirmed the long-standing con-
jectures® that FQHE is not a phenomenon exclusively for
odd-denominator fractions, as was found earlier.®> The
theoretical explanation of the odd-denominator effect has
been put forward, quite satisfactorily, by Laughlin.* In
this case, the electrons are expected to condense into an
incompressible-quantum-fluid state with several interest-
ing properties.® The observation of FQHE at even-
denominator filling fractions has always been considered
an interesting possibility. It was suggested by Halperin®
that an effect at the half-filled Landau level might be pos-
sible with electron pairs. Layered electron systems are
also found to be prospective systems® for observation of
the effect at 3 filling of the lowest Landau level. For the
3 effect the authors of Ref. 1 have suggested the possible
pairing mechanism involving spin-reversed electrons,
which were earlier found to influence the FQHE at low
magnetic fields.’

In this Rapid Communication we have studied % filling
in the lowest Landau level as well as in the next Landau
level (n =1 with n being the Landau-level index). Utiliz-
ing the method of exact diagonalization for finite-size sys-
tems in a periodic rectangular geometry, we have found
indications that the FQHE at 3 is due to the incom-
pressible-fluid state similar to the one which is expected to
be present at the odd-denominator filling fractions. We
found that the electron system at v=7% (v=2xidp, I is
the magnetic length and p is the areal density) is not quite
a translationally invariant liquid. However, the low-lying
excitations and the correlation functions in the second
Landau level have a liquidlike behavior. The difference
between the results at the two Landau levels is attributed
to the difference in the wave functions at the two Landau
levels.

In order to study the ¥ and 3 states, we have em-
ployed the standard procedure of numerical diagonaliza-
tion of the Hamiltonian for finite-size systems.’ ® The
electrons are considered to be in a fully spin-polarized
state. Despite the fact that 3 is observed at a relatively
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low magnetic field (BS5 T), the ratio (e%/elg)/hw, is
still small (~0.1). (Here, o, is the cyclotron frequency
and ¢ is the background dielectric constant.) The cyclo-
tron energy hw,. is therefore quite large compared to the
interaction energy e %/elo, which is the energy scale used
throughout. Therefore, when we consider 3 filling in the
second Landau level, the influence of the lowest filled
Landau level could be safely ignored.

For a finite number of electrons N, in a rectangular
cell, we impose the periodic boundary conditions on both
sides® such that the filling fraction is v=N,/N;, with N;
being the number of flux quanta passing through the cell.
We have chosen the Landau-gauge vector potential. As
we have discussed above, when we consider the fractional
filling in the second Landau level, the lowest filled Landau
level could be considered as an uniform background. The
Hamiltonian in the n=0,1 Landau levels could then be
written as (ignoring the kinetic energy and single-particle
terms in the potential energy which are constants),
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2 (2) 1 forn=0,
TV =LqUuB)? forn=1.

Here a and b are the two sides of the rectangular cell and
are related to the number of flux quanta as ab =2xl¢Nj.
The Kronecker § with prime means that the equation is
defined modN,, and the summation over g excludes
gx =g, =0. Earlier studies of the spectrum with this
Hamiltonian have been very effective in obtaining the
correct properties of the incompressible state at v= 1.
The numerical diagonalization scheme was described in
detail earlier by Haldane.” Here we present a brief
description of the method. For every lattice vector Ly,
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there is a relative translation operator which commutes
with the Hamiltonian. The ei%envalues of this operator
are easily obtained to be e2®Ums+n)/N where N is the
highest common divisor of N, and N;. The quantum
numbers s and ¢ (s, =0,1,...,N —1) are related to the
physical momentum by

2
NsA

1/2
klg= { J [S“'So,)»(l—to)],

where the point (so,t0), corresponding to the state k =0, is
required to be the most symmetric point of the reciprocal
lattice, and A is the aspect ratio.

Let us first consider 3 filling of the lowest Landau lev-
el. The excitation spectrum in this case is shown in Fig.
1(a) for a seven-electron system. The ground state does
not appear at k =0, but for a finite value of k, as we found
earlier.® This value of k changes with the number of elec-
trons, and we have not been able to extract any useful re-
lation between these two quantities. The low-lying excita-
tions have a few almost degenerate energy levels. The
spectrum for larger system sizes provides quite similar re-
sults. Qualitatively similar results were also reported ear-
lier by Fano, Ortolani, and Tosatti. '°

In order to obtain some more information about this
state, we have also calculated the pair-correlation function
defined as®
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FIG. 1. Low-lying excitations (in units of e?/elo) for the
half-filled (a) lowest Landau level and (b) second Landau level,
when the lowest Landau level is fully occupied, for a seven-
electron system in a periodic rectangular geometry.
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where |¥) is one of the eigenstates. In Fig. 2(a), we
present the g(r) of the ground state for a five-electron sys-
tem in the lowest Landau level. The function has very lit-
tle structure and is obviously not isotropic. Qualitatively
similar results were obtained for other system sizes. In
Fig. 2(b), we have presented the correlation function for
the same system as in Fig. 2(a), but at k=0. The func-
tion is very much isotropic (within the rectangular
geometry) and has a liquidlike behavior. It should be not-
ed, however, that this is an excited state for the half-filled
lowest Landau level. The results do not change qualita-
tively with other system sizes. These results indicated that
the half-filled lowest Landau level is presumably not a
stable state. The translationally invariant liquid state ap-
pears as an excited state of the system. This could be
presumably the explanation for the absence of the 3 pla-
teau in the FQHE experiments.

The situation is very different in the higher Landau lev-
els. In the case of the fully filled lowest Landau level and
the next Landau level only half-filled, the excitation spec-
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FIG. 2. Perspective view of the pair correlation function g(r)
for a five-electron system at v= 3 in the lowest Landau level (a)
for the ground state and (b) at k =0, which is an excited state in
the system. The axes are normalized as X =x/a and Y =y/b.
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trum is markedly different. The spectrum for N, =S5 in
the n =1 Landau level is shown in Fig. 1(b). The ground
state appears to be at k=0, and a gap structure can be
seen in the spectrum. The gap is, however, very small.
This is perhaps the reason for the difficulty in obtaining a
clear plateau at 3. For all the other odd-number electron
systems, qualitatively similar spectrum is observed. For
the even number of electrons in the rectangular cell, the
ground state does not appear at k =0, but always appears
at s =3 N, t =0. Therefore, we can scale the ground state
to k =0 by writing
o 1/2

— L ar)2442,211/2
NSA, [(S 7 N) +A“t ] .

klo’[

This scaling procedure in the case of rectangular
geometry preserves all the symmetries of the system.
After this redefinition of the ground-state wave vector, the
excitation spectrum is found to have the gap structure,
qualitatively similar to those for the odd number of elec-
trons. For the square geometry, it is not possible to
redefine the ground state as above; however, the ground-
state energy in this geometry is slightly higher (~0.007)
than in the case of the rectangular geometry. Therefore,
in marked contrast to the lowest Landau level, the ground
state at 3 always appears at k =0. It should be remarked
that a similar procedure cannot be applied to the results in
the lowest Landau level because there the ground-state
wave vector changes discontinuously with system size.

The correlation function for the five-electron system in
the n=1 Landau level is shown in Fig. 3. There is more
structure in this function, as compared to the g(r) in the
lowest Landau level. At v=1, MacDonald'' generalized
the Laughlin wave function for the n=1 level. We note
that the structures in our correlation function are qualita-
tively similar to his result. No long-range order is notice-
able in this function. The qualitative features of the
correlation functions described in the present work are the
same for larger systems. Five-electron system results are
the simplest ones where the features are most clearly seen.

Earlier studies of the FQHE states for odd-denominator
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FIG. 3. Same as in Fig. 2(a), but in the second Landau level.
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TABLE I. Ground-state energies (in units of e */elo) for four-
and six-electron systems at v=13 for various values of the total
spin S. The Zeeman energy is not included in the energy values.

N. S=0 S=1 S=2 S=3
4 —0.3644 —0.3655 —0.3849 :
6 —0.3782 —0.3783 —0.3785 —=0.3797

fillings in the higher Landau levels'? also found a very
different behavior as compared to the case of fractional
filling of the lowest Landau level. For example, in the
periodic rectangular geometry at v= % in the second Lan-
dau level, the spectrum showed a gapless compressible
mode,'? in contrast to the lowest Landau level, where
there is a large gap. This difference in the results for the
two Landau levels can be attributed to the presence of
nodes in the n =1 wave function at the center of the cyclo-
tron orbit. The situation is similar to the present half-
filled systems.

Considering the low magnetic fields where 3 is experi-
mentally observed, it is quite tempting to include the spin
reversal of some of the electrons in this state. The Zee-
man energy, however small it is, would then of course add
a nonvanishing contribution to the exchange energy.” The
Zeeman energy (per particle) for different spin polariza-
tion is given as Ez =(1 —2p)gupBs, where p is the ratio
of the number of spins parallel to the field to the total
number of spins, g is the Landé g factor, ug =eh/2mc is
the Bohr magneton, and s = 1. For GaAs with all spins
parallel to the field, Ez = —0.008¢%/elo for B=5 T and
£==0.52, and e=13. We have studied the ground state
for four- and six-electron systems at v= 3 in the second
Landau level for different spin polarizations. The results
are presented in Table I. The system so far has a fully
spin-polarized ground state, even in the absence of the
Zeeman energy. The energy difference between the vari-
ous spin states is very small. However, for a spin-reversed
system to be energetically favored, the energy of this state
must be larger than that of the spin-polarized state by at
least the Zeeman-energy contribution. Such a situation
might occur for larger systems than the ones considered
here, as the even-denominator system results are known to
be very much system-size dependent. It should be noted,
however, that the few characteristics of the Laughlin-type
incompressible fluid state, which we have found for the
fully spin-polarized state, have to be retained by the spin-
reversed state, in order to explain the FQHE at 3.
Therefore, we do not expect any major change in the
present results, even if the spin reversal wins over the Zee-
man energy for large systems. From these observations,
we wish to conclude that the state 3 is the same in-
compressible quantum fluid state that Laughlin originally
proposed for the odd-denominator filling fractions.
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