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Diffusive hopping of hydrogen in PdH, has been reexamined with molecular-dynamics (MD)
simulations in order to clarify earlier results of Gillan. We obtain the same values for the diffusion
coefficient and width I'; of the quasielastic neutron scattering function when Gillan’s potentials are
used, but go beyond Gillan in performing a statistical analysis of the jumps. The analysis shows that
over 95% of the jumps are uncorrelated and nearest neighbor, but the distribution of times between
jumps is highly nonexponential. This latter feature accounts for the departure of I, noted by Gil-
lan, from the Chudley-Elliott (CE) theory based on simple one-step nearest-neighbor hopping. A
simple physical model of the hopping as a two-step process can explain the results and suggests they
are highly sensitive to the H-Pd potential at short distances. A new MD simulation with a harder-
core potential gives a ', in much better agreement with CE. We conclude that the non-CE behav-
ior originally found by Gillan might be seen in real experiments on systems with suitably soft poten-

tials.

I. INTRODUCTION

Molecular dynamics (MD) has proved a powerful tool
for studying both equilibrium and dynamical properties
of condensed-matter systems.! Of particular interest here
has been the usefulness of MD in modeling diffusion of
vacancies and interstitials in crystalline solids. Because
MD uses classical equations of motions, its relevance can
be questioned for the motion of light atoms such as hy-
drogen which show quantum effects. Nonetheless Gillan?
has obtained interesting results for hydrogen diffusion in
palladium at temperatures sufficiently high (up to 967 K)
that classical over-barrier hopping should dominate
quantum tunneling. Although Gillan obtained a diffusion
coefficient D in agreement with experiment, the simula-
tion results did not agree with quasielastic neutron
scattering (QNS) data® for large momentum transfer.
Gillan attributed this disagreement to aspects of the par-
ticle motion in the simulations which he variously de-
scribed as correlated jumps and multiple jumps. He
pointed to improper potentials, neglect of quantum
effects, and neglect of interactions with conduction elec-
trons as possible reasons for the failure of the simulations
to account for the experimental results. On the basis of
fragmentary work using other potentials, he was inclined
to doubt that the potential was a major source of the
discrepancy. In this paper we find that the results are in
fact strongly influenced by the Pd-H potential. We show,
that with a suitably soft potential as used by Gillan, it is
perfectly reasonable on physical grounds to obtain the
hopping behavior found by Gillan and described below.
Although this behavior apparently has not been seen®* in
PdH, it may occur in other systems.” Our own MD cal-
culations give the same ‘“‘raw data” as Gillan, but we give
a different interpretation of the hydrogen jumps that is
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based on statistical analysis and careful definition of what
is meant by a “jump” when dealing with continuous MD
trajectories.

The behavior found by Gillan and us is directly related
to the width I'j of the dynamical structure factor S(q,®)
observed in QNS.> For a single particle undergoing a
random walk with nearest-neighbor jumps, I'; is given by
the well-known Chudley-Elliott (CE) expression®

r,=001-v,), (1)

where y,=(1/2) 3, elqls' with the sum going over the Z
values of nearest-neighbor displacements 8; of magnitude
5; =56 and where, for a cubic lattice, the characteristic
jump rate is related to the diffusion coefficient by
QO =6D /8% As illustrated in Fig. 1, the MD simulation
shows ') to have a weaker dependence on g than given
by the CE expression (1). It instead has a form closely
resembling Eq. (9) below. Since neutron data for PdH,
seem to be in accord with CE, Gillan suspected there may
be a fundamental problem with the simulation. From an
examination of the trajectories, Gillan concluded that
there were nearest-neighbor jumps, but they were strong-
ly correlated in that particles which had jumped tended
to jump again very quickly with a persistence of direc-
tion, and that this was a likely source of the discrepancy.
He noted that such persistence of jumps could result
from an insufficient rate of energy transfer between hy-
drogen and the lattice. If this were due to effects other
than the choice of potentials, it obviously would have
serious implications for the use of MD in studying the
dynamics.

Section II describes our own simulation and analysis of
the distribution of jump times. This analysis is not trivial
because some care has to be used in translating MD tra-
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FIG. 1. Comparison of I', from simulations using Gillan’s
potentials with the CE model for points in the first Brillouin
zone along the [100] and [110] directions. The constant  in
Eq. (1) is chosen to fit the data at small q.

jectories into what can reasonably be classified as jumps.
Although, for the same potentials used by Gillan, we find
the same behavior of ', the analysis shows that the vast
majority of jumps are essentially uncorrelated hops to
nearest-neighbor sites but there is a highly nonexponen-
tial distribution of residence times which leads to the
departure from CE. We then show MD results using a
metal-hydrogen potential with a stronger repulsion at
short distances. This new potential gives a more nearly
exponential jump-time distribution and I, in closer
agreement with CE (1). We therefore conclude that the
difference between Gillan’s results and CE and the QNS
data for PdH, were caused largely by choice of potential.

In Sec. III we present a simple two-level model for the
jumping process which illustrates how strong departures
from Eq. (1) can result even if the hopping is uncorrelated
and restricted to nearest neighbors. The deviation from
Eq. (1) or CE depends on the ratio between the rate W to
jump between sites from levels at the top of a potential
well and the rate w to equilibrate between these levels and
ones at the bottom of the well. CE requires W <«<w, i.e.,
rapid equilibration at a site before a jump occurs,
whereas the MD data for the relatively soft potential are
consistent with W =uw so that an appreciable number of
jumps occur without a particle being able to come to
equilibrium at the site to which it has jumped. This can
give the appearance of the particle jumping greater than
nearest-neighbor distances (or of correlated NN jumps),
since an excited particle can make many nearest-neighbor
hops before getting ‘“trapped” in a well. We further ar-
gue how giving the potential a more repulsive core can
decrease W /w and thus lead to CE behavior, and simula-
tion data are shown in support of this.
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Section IV contains a summary and discussion. In-
cluded are reasons why we think small-sample-size and
quantum effects are not serious problems in our and
Gillan’s simulations and a discussion of which lattice
geometries are likely to be most favorable for having the
non-CE behavior.

II. SIMULATION AND ANALYSIS
OF JUMP DISTRIBUTION

We reproduced the results of Gillan by following the
description given in his paper. We used the same poten-
tials: for the Pd-Pd interactions a power series in 7 cut off
at 3.3 A which reproduced the experimental phonon
dispersion curves of pure Pd at room temperature; for
Pd-H a simple exponential Ae ~"? cut off at 3.8 A in
which the scale factor p was given the value 0.5 A and 4
was assigned the value 15.3 eV which reproduces the ob-
served local mode frequency for PdH, y,,; and the H-H
interaction was taken as identical to Pd-H. The lattice
constant a was taken as 4.07 A.

The equations of motion were integrated using the al-
gorithm described by Schofield,’” and for the reproduction
of Gillan’s calculations we used a time increment of
2.6125x 10715 s, 5% greater than his. The usual period-
ic boundary conditions were applied. A system of 108 Pd
on their fcc sites, and 20 H inserted randomly in the octa-
hedral sites was given a total energy which corresponded
to 1025 K using the harmonic approximation for the po-
tential energy. It was found that this produced an aver-
age kinetic energy for the system corresponding to 975+2
K, very close to the 967 K used by Gillan for his
displayed data. This system was allowed to equilibrate
for 4 10* steps, and then hydrogen position data were
recorded for the next 1X10° steps. Since the purpose
was to examine the long-time diffusive motion, the hydro-
gen coordinates were recorded on an absolute basis (i.e.,
boundary crossings were recorded) and the values record-
ed were the average over 10 time steps which is about
of a vibration period ¢y for the hydrogen local mode.

We calculated the diffusion coefficient from the average
square displacement of the hydrogen versus time and
obtained D,=2.27x10"* cm?/s at 975 K and
D;=5.69x107° cm?/s at 700 K, from which an activa-
tion energy of 0.29+0.02 eV was deduced. Our values of
D, and other quantities to be reported agreed with those
of Gillan to within better than 5% in all cases where
numbers were quoted or could be deduced from figures in

Gillan. We also calculated the neutron incoherent
scattering function’
S(q,t)={exp{iq-[r(z)—r(0)]}) , )

in which the triangular brackets denote statistical aver-
age.

The Fourier transform of S(q,?) is the dynamical
structure factor S(q,w), the line-shape function for QNS.
The hopping part of S(q,?) is an exponential with damp-
ing factor I'y, so that S(q,w) is Lorentzian with half
width at half maximum I';. The effect of vibratory
motion is included by introducing a Debye-Waller factor
and limiting the validity to times long compared with the
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FIG. 2. Semilogarithmic plots of the neutron incoherent
scattering function S(q,t) versus time for q at the edge of the
Brillouin zone in the [100] direction and for a point § of the
way to the edge in the same direction. Also shown are straight
lines drawn according to the procedure described in the text
used for determining the value of I'; for all simulations. Data
are for T =975 K.

vibrational period, whereby the approximate relation is
S(gt)=e el Te" 3)

in which the quantity {(«2) in the Debye-Waller factor is
related to the mean-square displacement associated with
vibrational modes.

Example semilog plots of the S(q,?) from the simula-
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FIG. 3. Comparison of the simulation results at 975 and 700
K to the prediction of CE for points in the first Brillouin zone.

J. W. CULVAHOUSE AND PETER M. RICHARDS 38

tion are shown in Fig. 2 for two values of q, (27 /a,0,0)
and (27/3a,0,0), where a is the fcc lattice constant.
These plots are essentially identical to those of Gillan, ex-
cept that the data for (27/4,0,0) are smoother than
Gillan’s as a result of our use of positions averaged over
10 simulation steps. Also shown in the figure are straight
lines fit to the data between 1.05 and 2.1 ps, the slope of
which is used to determine I',. The simulation results for
Fq, plotted in Fig. 1, were obtained by this method for a
range of q. These agree with Gillan for the q’s which he
calculated, but we have calculated twice as many points.
[The fact that we have a simulation volume of side L =3a
does not limit the validity of S(q,?) to components of q
being multiples of 27 /3a, since we accounted for bound-
ary crossings.] As stated in the Introduction, the simula-
tions disagree drastically with the predictions of the CE
model shown as a solid curve in Fig. 1. For this and all
other comparisons with CE, the value of  in Eq. (1) was
chosen to fit the diffusion coefficient. That is, the g—0
limit of ', /q* was chosen to agree with D obtained from
the slope of {r?) versus .

We also calculated the I',’s for a simulation at 700 K
which is the highest temperature at which experimental
data are available. In Fig. 3, we plot the ratio of the
simulation I') to the CE prediction for both tempera-
tures. Although the 700 K data show marginally better
agreement with CE, there is sizable discrepancy at both
temperatures. A much more dramatic temperature
dependence might be expected if non-CE behavior were
associated solely with “liquidlike” effects setting in at the
highest temperature, as has been suggested in regard to
superionic conductors.?

Gillan speculated that multiple jumps (or correlated
NN jumps) might be the reason for this disagreement.
Such effects can be approximated in an extension of the
CE theory in which fractions a; of the jumps are to ith
nearest neighbors. Considering jumps to the nearest
neighbors (NN) and next nearest neighbors (NNN), the
QNS linewidth is given by a minor generalization of Eq.
(1),

L,=0[a(1—7 )+ —a)(1—y)] (4)
in which v, is the structure factor for the ith nearest
neighbor and a, is the fraction of NN jumps. The struc-
ture factor for the next nearest neighbor yﬁf’ goes to uni-
ty at the edge of the first Brillouin zone, and thus can de-
crease ', from the standard CE prediction.

In Fig. 4, we compare the simulation data with three
different models by plotting the ratio of the model predic-
tions to the simulation results. As in Fig. 3, theoretical
curves are normalized to give the same I', for ¢ —0. For
the standard CE model the agreement is totally unsatis-
factory as already shown in Fig. 3. For the model just de-
scribed which includes the possibility of NNN jumps,
(I —a;) was chosen to give a best fit to the value of I'; at
the edge of the Brillouin zone. The value required corre-
sponds to 30% of all jumps being NNN, but clearly any
choice for the fraction of NNN jumps cannot produce a
satisfactory fit. This results from the fact that (1—7/;2))
peaks at an intermediate point on paths from the center
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FIG. 4. Comparison of model predictions to the simulation
at T =975 K for points in the first Brillouin zone. All models
have been normalized to give agreement for g —0. The points
for each model have been connected by lines to aid the eye. The
CE model generalized to include 30% NNN jumps produced
agreement at the zone edge, but large disagreement remains at
intermediate points. The two-step model described in Sec. I11
yields very good agreement.

to the edge of the Brillouin zone. Also displayed in Fig. 4
is the two-level model described in Sec. III, which fits
very well.

In Fig. 5 we show examples of single particle trajec-
tories which are very much like those shown by Gillan,
who cited them as evidence that multiple jumps are rath-
er frequent. These are projections on a (100) plane. The
octahedral sites are identified by open circles. In a single
(100) plane only half of the intersections are octahedral
sites, the other half being Pd sites. The dots correspond
to a single step in the simulation or about 4 of a vibra-
tion period for the hydrogen. The simulation volume
used for this example is two unit cells on a side and
periodic boundary conditions have been imposed so that
paths exiting one side of the square will reenter at the
other side.

Plots of this type show clearly that the hydrogen spend
most of their time at octahedral sites. The time sequence
is not transparent in such displays, but from viewing
many of these one does note that once a particle jumps, it
tends to jump again very shortly afterward, and one can
occasionally spot elements of the trajectories which ap-
pear to go almost directly between two sites that are not
nearest neighbors. Such an example is identified in Fig. 5
by an arrow. Examination of this trajectory step-by-step
in three dimensions shows that the particle passed very
close to the intermediate octahedral site, but hardly
paused there.

The nature of the trajectories is better appreciated by
plotting the x,y,z coordinates for selected H atoms as a
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FIG. 5. A projection of the hydrogen motion on a (100) plane
for a simulation at 930 K using a simulation volume two unit
cells on a side (32 Pd atoms and 6 H atoms). Periodic boundary
conditions are imposed at the border of the figure. The open
circles identify the projected positions of octahedral sites which
lie on alternate planes. The intervening planes contain metal
atoms at the same projected positions. The tetrahedral sites
project onto points at the center of squares with corners at the
open circles and lie in planes between those containing metal
ions and octahedral sites. The positions of the H atoms are
shown at intervals of % of the vibrational period of the hydro-
gen. A total of 7 ps of the simulation is shown. One part of the
path is marked by an arrow and referred to several times in the
text.

function of time as in Fig. 6(a). The time interval, sample
volume, and boundary conditions are the same as in Fig.
5. The horizontal lines are the coordinates for the octa-
hedral sites. A jump between NN octahedral sites re-
quires that the center of oscillation for two of the three
coordinates change from one of the lines to an adjacent
one. This example shows four jumps which are indicated
by the arrows in the figure. The transitions occur in the
order of 10 to 30 time steps. In Fig. 6(b) we plot the
coordinates averaged over 10 time steps and for a period
six times as long. The longer time view and suppression
of the rapid vibration make well-separated jumps easy to
pick out, but for closely spaced jumps a very careful
analysis is required. The example shown exhibits burst of
jumps which is a characteristic reported by Gillan. How-
ever this qualitative observation is not necessarily evi-
dence of correlated or non-NN jumps which would ex-
plain non-CE behavior. Even the CE model could give
the impression of this effect simply because short
residence times are more probable than long ones for an
exponential distribution of residence times, as expected
with normal random hopping. A quantitative study of
the distribution of residence times is required. This also
requires a precise definition of what is meant by
“residence time” and identification of when a jump
occurs. Such quantities would be evident in a Monte
Carlo simulation where discrete hopping is built into the
picture, but they are much less transparent in MD which
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FIG. 6. (a) A plot of the coordinates of a typical hydrogen
atom during a simulation using a simulation volume two unit
cells on a side. The horizontal lines represent the coordinates of
octahedral sites. A transition from one octahedral site to a
neighboring one requires that two of the three coordinates
change from one line to a neighboring line. (Because of periodic
boundary conditions the top and bottom lines are neighbors.)
The points are spaced at % of a hydrogen vibration period. The
double arrows between the X and Y plots identify NN jumps.
Note the excursion at 0.8 ps which satisfies the criteria for an
excursion to a tetrahedral site. (b) A similar plot but using posi-
tions averaged over % of a hydrogen vibration period, and over
a longer time period. Visual determination of many of the
jumps is very tedious. The arrows as in (a) indicate the times at
which the computer algorithm called jumps. This sample con-
tains no true NNN jumps, but in several instances the NN
jumps are barely resolved.

jumps is supported by Gillan’s observation that the aver-
age density of H at the S point is nearly an order of mag-
nitude smaller than at any point along the diagonal path
0—S,—T.

We analyzed the jumps using the hydrogen coordinates
averaged over 10 time steps as in Fig. 6(b). The first posi-
tions were used to assign the H atoms to octahedral sites.
If the reduced coordinates fell within a cube of side a /2
centered at an octahedral site, they were assigned to that
octahedral site. If these initial positions were not in such
cubes (which means they are in cubes of the same size
centered on the Pd sites) the hydrogen atom was assigned
to the nearest octahedral cube. Subsequently, the posi-
tion of the hydrogen relative to its assigned site was mon-
itored at intervals of 10 time steps. These coordinates
were rounded to integer multiples of a/2, and the
changes in the rounded coordinates relative to the last as-
signed octahedral site were examined. When these
changed in a way which indicated a jump to a new octa-

FIG. 7. The structure of fcc Pd. Small circles are tetrahedral
sites, large solid circles, Pd; large open circles are octahedral
sites favored by H. Paths shown by heavy solid and dashed
lines are described in text.
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hedral site, a jump was recorded and the assigned octahe-
dral site changed. There are nuances in the criteria for
response to the changes which are discussed in Appendix
A, but these nuances do not affect 95% of the jumps
which fall easily into a pattern in which two coordinates
change by ta /2 and one does not change. This is strong
justification for our subsequent modeling and analysis
based on NN hopping. The remaining less than 5% of
the jumps may nonetheless be of some interest for further
theoretical, simulation, or high-resolution experimental
studies, so their analysis is treated in Appendix A. That
Appendix should also be useful to a reader interested in
the problem of how jumping processes can efficiently be
extracted from an overabundance of trajectory data.

The small fraction of non-NN jumps cannot explain
the g dependence of I'; and in fact can be ignored within
the statistical precision of ours or Gillan’s simulation re-
sults for experimental quantities such as I';. The key to
non-CE instead lies in the distribution of the time be-
tween jumps, the residence time. Figure 8 displays the
distribution of residence times obtained from the jump
analysis. For the CE model the distribution of times
would be a single exponential. The curve shown deviates
from this in two obvious ways. First, there is a finite rise
time (about one vibration period of hydrogen) which
reflects the finite time to traverse the distance between
two sites. The second effect is a decidedly nonexponen-
tial decay. The plot of the logarithm of the distribution
function shown in Fig. 9 indicates that a reasonable fit
can be obtained with two exponentials, with time con-
stants of 0.13 and 1.00 ps at 975 K and of 0.18 and 4.00
ps at 700 K. The fast time constant is approximately the
same at both temperatures whereas the long-time con-
stant decreases by a factor almost as large as the decrease
in the diffusion coefficient. The solid lines in Fig. 9 are
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FIG. 8. The distribution of residence times for 975 K. The
data have been analyzed with a variable bin width, represented
by the time spacing between points. The points have been con-
nected by lines to guide the eye. The nonexponential character
of the decay and the finite rise time are evident.
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fits with the two-step model discussed in the next section.

The above nonexponential distributions will produce a
much stronger impression of “burst of jumps” than a CE
distribution, but the jumps do not appear to be correlat-
ed. A measure of correlation between successive jumps is
given by the function

C,=({17,) = (1) (. )) /({7 ()} . (5

Here 7 is the residence time after a given particle makes
an arbitrarily selected jump and 7, is the residence time
for the same particle after it has made v further jumps,
i.e., v=1 corresponds to the very next jump. If the joint
probability of successive jumps P,(7,7,) is the same as
the product of the independent probabilities P(7)P(T,),
the jumps are uncorrelated and C,=0 for v>0. We find
from our simulations that |C,;| <0.0l. Thus the
difference from the CE model is in the jump distribution
function and correlations are negligible.

The concept of independent jumps is reinforced by the
distribution of the cosines of the angles between succes-
sive jumps. The average of this quantity for all jumps in
the 975-K sample was —0.009+0.004 indicating very lit-
tle correlation. However, it does appear that the jumps
separated by times less than one hydrogen vibration
period have a significant positive value for the average,
and this appears to be compensated by a negative average
for the jumps which follow in the next hydrogen vibra-
tion period. Thus the lack of randomness in direction is
lost in a very short time, and will not affect the QNS
linewidth which reflects the behavior over longer times.

The two-exponential fits suggest that jumping is a two-
step process. It is physically plausible to postulate that
the first and slow step is the activation of a hydrogen
atom from typical thermal energy to values which allow
jumping over the barrier. The second and rapid step cor-
responds to the energetic atom finding an energetically al-
lowed path to adjacent sites. It is recognized that the
barriers to jumping are not static and the motion of the
Pd atoms play a role in the “finding” of a path as well as
in the transfer of energy to and from the hydrogen. The
mathematics of a model with these features is developed
in the next section. We also argue there that the degree
of non-CE behavior is strongly affected by how soft the
Pd-H potential is at short distances and we present fur-
ther simulation data in support of this.

III. SIMPLE HOPPING MODEL

The two processes, energy transfer to the lattice and
hopping while in the excited state, can be described
schematically by sorting the classical continuum of states
into two groups. One group comprises all states of typi-
cal thermal energy and localized about an equilibrium
site. The states in this group which are localized at a
given site will be referred to as the group states of a single
hydrogen atom at that site. The second group includes
all states which have sufficient energy to hop between
sites. We consider these states also to be localized at an
equilibrium site, but to have a transition rate W to other
states of this group localized on neighboring sites.
Members of the second group localized at a particular
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site will be referred to as the excited states of an individu-
al hydrogen atom at that site. In this model, the process
of energy transfers between the hydrogen and the lattice
are described by the transition rates w’ from the ground
state to the excited state and w for the reverse process.
Detailed balance requires that w’'/w =(N/N e Ak8T
where N and N’ are respective numbers of states in the
excited and ground groups, and A is the effective energy
difference for the two groups. A is nearly the same as the
activation energy for diffusion. The ratio N/N' can be
quite large for kzT <<A since N=kgTp(A) and
N'=kgTplkpgT) where p(E) is the density states, which
increases rapidly with E owing to much less localization
at the saddle point. A similar two-step model has been
proposed as a possible explanation for non-CE behavior
seen in NbH, o, at high temperature.® As noted in the
discussion following Eq. (10), there is physical similarity
between this model and that of hopping between traps’
which has been used to explain scattering data in impure
systems. Indeed a one-to-one correspondence exists be-
tween parameters of the two models, as shown below.
We also note that the deep level of the well could be a
self-trapping state induced by lattice distortions instead
of the static level pictured here, without altering the basic
equations.

The two-level picture is an extreme simplification of
the classical simulation model in which there is a contin-
uum of states. It nonetheless can provide physical insight
and reproduces features of the simulation remarkably
well. We regard this as evidence that, even in the classi-
cal model, the concept of excitation to “hopping states”
is useful. One obvious shortcoming, however, is that the
model uses time-independent transition probabilities in
equations given below. Such probabilities can be valid
only for times long compared to vibrational periods or
transit times and thus preclude description of the finite
time required and seen in the simulations before any
jump can occur.

The rate equations for the model are

dm;/dt = —(W +wm;+w'n; +(W/Z) I m; , (6)
J

dn;/dt=—w'n; +wm, . (7)

Here n; and m; are, respectively, probabilities of finding a
particle at site i in the ground and any one of the excited
states and the summation is over the Z sites j which are
neighbors of i. The equations are readily solved in terms
of the wave-vector components m, =3 ; m jelq'rj , with a
similar definition for n, and the sum going over all sites
r;. Both m;, and n, have a two-exponential decay
characterized by a fast rate I’ q+ and slow rate I'; given by

Iy =1w+w + Wl—y )]t { [w+w + W(1—y )]
___4wrW(1_,yq)}l/2 ,
(8)

where v, is the same as in Eq. (1). The relative ampli-
tudes of the fast and slow components in the decay of

m,(t) and n,(t) depend on the initial conditions. An ini-
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tial Boltzmann distribution corresponds to wm,(0)
=w’n,(0). Since the probability that a particle is at site /
at time ¢ is given by p;(t)=m;(¢t)+n;(¢), it follows that
the decay of a thermal equilibrium density fluctuation
S, ()={p,(1)p_,(0))/{p,(0)p _,(0)), where the tri-
angular brackets indicate thermal average, is given by
—l‘;t

S,(D=c,e " +(1—¢, e ©)

q9 q

For the Boltzmann initial conditions given above
and corresponding to thermal equilibrium, we
have g, =[W(l—y w'/(w+w')-T /(7 -T7). If
w'/w << 1, corresponding to low temperature, or for
g—0 it is easy to see that €, <<1 so that the decay is
nearly single exponential at the slow rate I';. It in fact
turns out that €, ~ <0.1 for all of the cases where we
have fit the model to data, even for large ¢ and w’'/w
comparable to unity. It is also valid to expand the square
root in Eq. (8) for almost all cases of interest, so an ade-
quate approximation is to take the decay rate

I,=0;=Q(1—y)/[1+f(1—7,)], (10

where Q=w'W/(w'+w) and f=W/(w+w’). Equa-
tion (10) reduces to the CE Eq. (1) for f << 1, but shows
strong departure from CE for large ¢ (1—y, not small) if
f 21, as illustrated in Fig. 4. The coefficient of f is negli-
gible for ¢ —0, and there is diffusion with a coefficient
D =(8%/6) w'W /(w'+w) [see discussion under Eq. (1)
for relation between D and Q].

The above solutions are formally equivalent to those
for hopping in the presence of traps.” Here the ground
states play the role of traps, w /(w + W) is the probability
of getting trapped before hopping to another site, and w'’
is the rate to escape from a trap. If one makes the re-
placements w’'=1/75, w =1/7,, and W(l1—y, )=A(Q),
the decay rates in Eq. (8) are seen to be the same as in Eq.
(20) of Ref. 8, and the expression for ¢, given under Eq.
(8) is identical to R, given in Eq. (21) of Ref. 8.

The distribution of residence times is obtained from the
solution of Egs. (6) and (7) with the final term on the
right-hand side of Eq. (6) set to zero, since it represents
returns to the initial site which are not considered in cal-
culation of the probability for making a single jump. The
initial conditions are m (0)=1 and n(0)=0, since ¢t =0
now is the time a particle arrives at a site, in which case it
must be in an excited state. The quantity p(¢)
=m (t)+n (1) represents the probability that the particle
has not jumped up to time ¢, so —(dp /dt)8t is the proba-
bility that the particle jumps between time ¢ and ¢ + 8¢,
and we therefore take P,= —dp /dt to represent the dis-
tribution of residence times, whereby

P,=A,e* '+Be*", (11)

where Af=L(w +w'+ W)t [(w +w'+ W) —4w' W]'"?
are the same as the rates derived from Eq. (7) with y,=0.
The coefficients are in the ratio 4,/B,=(AT—w')/
(w'—A7). In contrast to the situation for Sq(t), the
coefficient of the fast exponential can be appreciable at all
temperatures. This is because the distribution is given by
dp /dt, which enhances importance of the fast exponen-
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tial. In the w'/w << 1 limit, 4,/B,=(1+f) w/w’. The
mean residence time is given by T,=(A4,/A%
+B,/k‘2)/(A,/k++B,/k“), which may be shown to
give 7,=(w'+w)/w’'W. By comparison with the expres-
sion under Eq. (10) we see that 7,=1/( so that, as ex-
pected, the diffusion coefficient is proportional to the in-
verse of the mean residence time.

As shown in Figs. 4 and 9, the model gives a reason-
able fit to I'y and the time distributions in spite of its sim-
plicity. The complete expression in Eq. (8) was used for
[, rather than the approximation of the second equality
in Eq. (10) for the fitting routine and in the figures. The
distribution was fit only for times greater than the time ¢,
at which it peaks, since the transit time effect is not in-
cluded in the model. The fitting constants were con-
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FIG. 9. Semilogarithmic plots of the residence time distribu-
tions. The solid curve is the sum of two exponentials with pa-
rameters obtained by a coordinated fitting of the distribution
function and I'j data with the two-step model as described in
the text: (a) 975 K and (b) 700 K.
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strained so that the total number of jumps (and thus the
average residence time) is given correctly by assigning the
jumps before ¢, to a single bin centered at #,/2. The
fitted exponentials and amplitudes were consistent with
the following values for parameters of the model: At 975
K, W=37+0.4 ps~!, w=24%0.5 ps~', and
w'=1.9%+0.1 ps~!. At 700 K, W =2.110.5 ps—},
w=2.5+0.5 ps~!, and w’'=0.61+0.05 ps~!. The ratio
of A,/B, calculated from these data agree well with that
from the jump distribution if the time 7, is considered the
zero of time for the exponential distribution, as if there
were a constant delay. (The deconvolution of a distribu-
tion of transit times would be more realistic.) The fits in
Fig. 9 are meaningful only for points after the peak.

The above rate parameters give small values of ¢, (less
than 0.13 in all cases). The effect of nonzero ¢, for long
times is to change the intercept in the semilog plot of Eq.
(3) from (u?)q® to (u?)g’—In(1—¢,). Our fits give
values for (u?) not significantly different from experi-
ment, and the correction due to €q I8 less than the com-
bined errors of the experiments and our simulation data.

The large uncertainty in W and w is due to the strong
correlation in the effects of these two parameters. The fit
requires w’' and w to be comparable even though the
Boltzmann factor e ~8/k T<<1 at the temperatures con-
sidered. This is explained by a large value for N/N’ as
was anticipated. The temperature variation of the ratio
w'/w yields a A=0.24 eV, somewhat lower than the 0.29
eV activation energy for diffusion determined from the
simulation. The diffusion coefficient in this model, as
noted above, is proportional to w'W /(w +w’) which
does have a temperature variation consistent with 0.29
eV. The temperature dependence of W corresponds to an
activation energy of 0.12 eV. A more realistic model
would have a group of levels, so the activation energies of
w' and W in the overly simplified two-level system
represent averages which should not be taken too literally
in view of the crudity of the model, which was designed
primarily to give a simple physical picture.

The crucial parameter in determining the departure of
I, from CE is f=W/(w +w’). Our simulations (Fig.
10) show that a harder-core metal-hydrogen potential
gives much better agreement with CE than the relatively
soft one used by Gillan and in our first studies. This im-
plies that, within the context of the model, the stronger
repulsion at short distance leads to a reduction of f
which may be understood as follows. The hopping pro-
cess requires trajectories which enter a narrow channel
between larger site volumes in which the particle resides
most of the time. For hopping between interstitial sites
in the fcc lattice these “channels” are through the saddle
point at the center of a triangle (face of tetrahedron) of
close-packed metal ions. f is the ratio of the probability
that an excited particle will pass through the channel to
the probability that it will drop into the ground state by
energy loss. Because of the much shorter metal-hydrogen
distance at the saddle point than at the equilibrium octa-
hedral site, the dominant effect of increasing the repul-
sion at short distances is effectively to shrink the cross
section of the channel. This leads to a reduced probabili-
ty for transitions out of the site and thus a reduced f.
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FIG. 10. The effect of a harder core on I';. The CE result
and the results for the Gillan potential are as in Fig. 1. The
value of Q for the harder-core potential was adjusted to agree
with that of the Gillan potential at small g.

Figure 10 shows the effect of a harder core on the QNS
linewidth. The harder core was implemented by chang-
ing the exponential relaxation length of Vp, y by a factor
of 15 for distances less than 1.65 A while maintaining
continuity of the potential and the force. The distance
1.65 A is slightly smaller than the unrelaxed equilibrium
Pd-H distance at the saddle point S,. Thus the changes
in potential do not affect the static barrier minimum nor
the low amplitude vibrational frequency of the H.
Within the context of the two-level model and the above
discussion, the major effect should be to decrease W
without changing w or w'. Thus, according to the results
and definitions given in conjunction with Eq. (10), f and
D should be decreased by the same amount. This is fairly
well borne out. The data in Fig. 10 are consistent with f
having decreased by a factor of 1.8 in going to the harder
core, the value of D was found to have decreased by the
factor 2.1 from analysis of (r?) versus t.

IV. SUMMARY AND DISCUSSION

We have done a molecular-dynamics (MD) simulation
of hydrogen hopping in PdH, with both the same poten-
tials used by Gillan and a modified hydrogen-metal one
with a harder core. We have further established criteria
for identifying when jumps occur and defining residence
times. For the same potentials, our results for the
diffusion coefficient D and width I'; of the quasielastic
neutron scattering (QNS) peak agree with Gillan, but we
have a different interpretation. Gillan attributed the
difference between I'j and the simple Chudley-Elliott
(CE) result for nearest-neighbor hopping to a preponder-
ance of non-nearest-neighbor jumps (or correlated
nearest-neighbor jumps). Our statistical examination of
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the jumps, however, reveals mostly uncorrelated nearest-
neighbor jumps, but the distribution of jump times is
highly nonexponential. We believe this accounts for the
non-CE behavior and have presented a simple two-level
hopping model in support of this contention.

The harder-core potential changes the wave-vector
dependence of T', considerably, bringing it into much
nearer agreement with CE. We presented a physical
reason for this based on the reduction of density of states
or classical paths for passage through the saddle point
when there is added short-distance repulsion. This de-
creases the probability of jumping to a new site relative to
the probability of a particle thermalizing at the site to
which it has just jumped. The ratio of these probabilities,
defined as f, is a crucial parameter of the two-level mod-
el. CE behavior requires f << 1.

Thus we conclude that disagreement between the MD
simulations and QNS data which show a CE I, for PdH
does not necessarily reflect quantum or electronic effects
but only a high sensitivity of the dynamics to the choice
of potentials. It is not clear, however, whether all of the
non-CE behavior is due to the relatively soft core, since
we have not been able to achieve complete agreement
with CE even by going to a very hard-core potential.
There are two obvious possible difficulties which could
make MD invalid even with the correct potentials and
without the electronic effects which Gillan speculated
might be important. The first is quantum effects, which
can be much more severe with hydrogen in metals than,
say, with fluorine in superionic conductors because of the
large mass difference. The main quantum effect on hop-
ping is tunneling. Tunneling of hydrogen in metals, at
least from excited states, is well known to occur at low
temperatures.'® But it seems unlikely to be important in
PdH, at the highest temperature of the simulation, 975
K, which is larger than #iw/ky =766 K where w is the
hydrogen vibrational frequency in Pd. The observed Ar-
rhenius behavior of D in this temperature range with a
prefactor of the order of magnitude of the vibrational fre-
quency also argues in favor of purely classical over-
barrier hopping. A further point is that, in terms of our
two-level model, tunneling might be expected to increase
f and thus give even stronger departure from CE.

A second possible problem with MD is the small sam-
ple size. Our main argument against this is the observed
size-independence of the results. We have also given
some analytical consideration to the effect of the finite
number of lattice phonon modes as described in Appen-
dix B. The conclusion reached there is that the sample
should have been large enough effectively to treat the
number of modes as infinite. However even for an infinite
lattice the light mass or equivalently high vibration fre-
quency of hydrogen makes for relatively inefficient energy
transfer between the metal lattice and hopping intersti-
tial, which is at the heart of non-CE behavior.

We conclude that wave-vector dependence of QNS
might be non-CE even in a regular lattice with nearest-
neighbor jumps, which has already been suggested® in
work on NbH, o,. It is worthwhile to ask which lattice
types favor non-CE and why PdH, does seem to give CE.
According to our physical arguments, CE behavior will
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be observed if the density of states for a particle localized
at an equilibrium site but in an excited state near the top
of the well is large compared with the density of states
at the saddle point. A simple measure of this could be
the ratio (r,/r,)* where r, and r, are the respective
hydrogen-metal distances (unrelaxed) at the equilibrium
and saddle points: the larger r, /r,, the more likely CE to
be obeyed. For fcc, assuming the saddle point to be at
the center of the face of a tetrahedron as mentioned
above, we have (r, /r,)*=1.49, 1.12 for equilibrium octa-
hedral (o) and tetrahedral (¢) sites. For hopping between
t sites in bec, the ratio is (7, /r;)>=1.10. On this basis, it
may not be surprising that PdH,, where the jumps are
between o sites in fcc, gives agreement with CE. The
small value for bcc is consistent with the above-
mentioned data® in Nb. However, quantum effects are
much more important in the bcc metals and may cloud
the issue, so the most clear-cut test might be a QNS study
of metals such as ThH, or LaH, where the a phase is fcc
and the hydrogen is thought to reside at ¢ sites. It also
should be noted that although a QNS study of I'; may
provide the most direct evidence, comparison between
diffusion and NMR relaxation or internal friction could
also be useful. This is because the latter two are most
affected by single jump processes and thus tend to mea-
sure I’ o, near the zone boundary, whereas diffusion probes
I, for ¢g—0.

A final comment is that, in the simplest view, the 20%
concentration used in these simulations should have re-
duced the jump rate W in our model by 20% owing to
blocking effects, but had no effect on w or w’. One would
therefore expect that lower concentrations would lead to
a larger f in the model and thus show even more devia-
tion from the CE model. Preliminary results indicate this
to be the case.
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APPENDIX A: APPROXIMATION
OF THE DIFFUSION MOTION
BY DISCRETE JUMPS

We describe here in detail the criteria that we have in-
vestigated for determining the occurrence of a jump. As
described in Sec. II the hydrogen atoms are initially as-
signed to octahedral sites nearest their true positions.
Subsequently the averaged displacements from the last
assigned site rounded to multiples of a /2 are examined.
These displacements include metal-ion sites as well as the
octahedral sites at which hydrogen normally resides. The
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first six of these are shown in Fig. 11 and enumerated as
a-f. More distant ones are grouped into a class g. Our
program responds to these signals so to track the position
of the hydrogen by assigning NN and NNN jumps in a
manner as follows. Class-a displacements would indicate
a move into a Pd site and must be either noise from large
excursions or, as is more likely, a jump in progress. We
ignore these since if it is a jump in progress, it will evolve
to a higher class. Events belonging to the remaining
classes are regarded as jump events, so the assigned octa-
hedral site is changed. As seen in Fig. 11, the new site
cannot be assigned unambiguously for classes ¢ and e,
and this can lead to problems in subsequent tracking of
the particle’s motion and thereby assignment of displace-
ments into the proper classes.

For events of class b the response is obvious. This is
the signature of a NN jump between octahedral sites.
When this event occurs a single jump is recorded and the
hydrogen is assigned to the indicated nearest-neighbor
site. For each of the jumps called by the program, the
time since the last jump and the cosine of the angle be-
tween the current jump vector and the last jump vector
are recorded.

Events of class ¢ probably represent a NN jump and a
second jump that is in progress. The program arbitrarily
treated such events as a NN jump corresponding to the x
and y coordinates, thus reducing the residual to a class a.

1 !
i '
e J—=

(c) (d)

i 1/
e x —

Q= Q===
(e) (1)

FIG. 11. Closest six displacements in units of a /2 into which
position changes are grouped. Initial position is indicated by 0.
In g, ¢, and e the final position is at a metal atom site denoted by
X . In these cases possible (but not necessarily unique) locations
of the octahedral site to which particle is assigned are shown as
solid circles. Solid lines with arrows indicate NN jumps, while
dashed lines are NNN jumps. Different possible combinations
of NN and NNN jumps to reach the same final site are shown
for d and f.
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We could equally well have assigned the new site to one
of the two for which the z coordinate changes, so this
presents an ambiguity as noted above.

Class-d events could either be direct NNN jumps via
the 0—»S,->T—>S—>T"—S,"—0" path which avoids
nearest-neighbor octahedral sites, or be two unresolved
NN jumps, as indicated in Fig. 11. Having identified and
followed several trajectories, we believe that most class-d
events are of the former type, and therefore all class-d
events are taken as NNN jumps except where noted oth-
erwise.

Events of class e can be interpreted two ways: as a
NNN jump and another jump in progress, or as a NN
jump and another jump in progress. Likewise, events of
class f can be interpreted as a NNN jump and an over-
lapping NN jump, or as two NN jumps. The events are
so rare that the distinction is not important, but we have
results for both interpretations.

For events of class g, our program records the unusual
occurrence and assigns a NN jump which will reduce the
residuals. The sparsity of these events (see Table I and
accompanying discussion) did not warrant more sophisti-
cated analysis. Also as seen in Table I, the total number
of events not in classes a, b, or d, which lead to ambigui-
ties, fortunately is quite small.

In all responses, errors can be made because of noise.
If a class-b signal is noise, a spurious jump will be as-
signed and then its exact inverse applied on the next eval-
uation cycle. In all cases the presence of noise will tend
to produce an excess of jumps and bias the average of the
cosine of the angle between jumps toward negative
values.

In addition to the nuances in the response to the rare
events there is another fine-tuning effect that should be
considered in relation to noise. Observations of the tra-
jectories show that hydrogen atoms often make excur-
sions to the tetrahedral sites which do not result in jumps
to octahedral sites. For such excursions the coordinate
changes are centered at a /4, and thus strict rounding to
nearest integer multiples of a /2 will frequently produce
a class-a event and with decreasing frequency class-b and
-c events. Such noise is reduced if the rounding is biased
so that a change of magnitude greater than 0.375a is re-
quired to produce a signal of a /2. We normally applied
this bias, but for comparison one set of results are shown
in Table I without the bias.
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Table I shows (cos6), the average of the cosine of the
angle between successive NN jumps and the number of
events obtained in each class in the analysis of 2 X 10° sets
of averaged hydrogen coordinates, for five variations in
the criteria and averaging times. Also shown in the table
is the total number of NN and NNN neighbor jumps as-
signed. These are related to the number in the bins ac-
cording to the responses to each class of events. The
simulation temperature was 975 K.

The first row, identified as analysis I, used NNN neigh-
bor jumps in the responses to classes d, e, and an NNN
plus an NN for class f and used biased rounding of the
coordinate changes. The results of analysis I are those
used for Fig. 9 and in comparisons with the two-step
model. The second row, analysis II, is the same as I ex-
cept unbiased rounding was used. For both analyses the
number of NN jumps is the sum of classes b, ¢, f, and g,
and the number of NNN jumps is the sum of classes d, e,
and f. The number of jumps in class b has changed by
only 1% but there is a change in (cosf) toward negative
values for analysis II, indicating more jumps that were
made and immediately reversed as expected from in-
creased noise. Also the number of events in class a, the
clear-cut noise indicator, is more than twice as large
without the bias. The actual jump distribution and the
approximation of the total motion by the NN jumps
alone is not significantly affected by the bias. For both of
these analyses the total number of NNN jumps assigned
is less than 2% of all jumps and they have an insignificant
effect on the calculation of I'y,. However, the following
analyses show that their inclusion in the jump analysis is
absolutely necessary for smooth tracking of the motion.

In analyses III-V summarized in Table I, the rounding
bias has been applied, but we have experimented with
variations in the responses to the class d, e, and f signals.
For 111, class-d events were taken as NNN as before, but
only NN jumps were used for ¢ and f. A more careful
analysis would then have assigned two NN jumps for
class f, as suggested by Fig. 11, but we assigned only one
NN jump to a site which minimized the residual. Thus
the number of NN jumps is now the sum of classes b, c, e,
f, and g while the number of NNN jumps is just the
number in class d. The actual effect on the approxima-
tion by single NN jumps alone and on the jump distribu-
tion is again not significantly affected by this change,
however the number of events in class a has increased

TABLE 1. Results of jump analyses for five variations of jump criteria, responses, and averaging times. The variations are
identified by Roman numerals in the first column and are defined in the text. The columns labeled NN and NNN are the number of
NN and NNN jumps assigned, {cosf) is average of the cosine of the angle between successive NN jumps, the columns labeled a - f
are the number of events in the six classes defined in Fig. 11, and column g represents all events not belonging to a —f.

NN NNN {cos@) a b c d e f g
I 8996 154 —0.0086 4374 8943 3 104 9 41 0
11 9075 364 —0.0327 16131 8845 103 229 94 31 2
111 8864 121 —0.0007 13922 8566 141 121 120 37 0
v 7643 0 + 0.0408 81603 5963 982 76 1127 47 364
\' 8183 415 + 0.0026 6704 7820 127 179 147 89 17
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dramatically which indicates inferior tracking of the
motion.

In analysis IV only single NN jumps are allowed,
whereby classes e and f are treated as in III but a class d
event is simply ignored as if it were perhaps a NN jump
in progress plus noise. The effect is dramatic as far as the
distribution among classes is concerned, but the change
in the number of NN jumps assigned which is now the
sum of all classes beyond class a is not especially large.
The value of {cos@) for these jumps has increased con-
siderably, because the tracking has been implemented
with fewer jumps so that they must show an increased
forward bias. Comparison of the diffusion constant cal-
culated with these NN jumps with that from the mean-
square distance versus time shows that there must also be
some forward correlation in this case that extends beyond
that of the successive jumps which is all that is indicated
by (cos6). The highly inferior tracking is shown by the
over 80000 class-a events. Perhaps surprisingly, the
residence time distribution for the NN jumps obtained in
analysis IV is not seriously altered from that shown in
Fig. 9.

For analysis V, the bias, and responses were the same
as for I, but the averaging time was made twice as long
(20¢,). The changes vis-a-vis I are entirely predictable.
The main effect is that the number of NNN jumps has in-
creased from 154 to 415 and the number of NN jumps
has decreased by about 800. This effect has arisen almost
entirely by the fact that jumps which in analysis I were
recorded as NN jumps with separations of 10z, will now
often be fused to give class-d, -e, and -f signals. Also the
value of {cosf) has increased somewhat as would be ex-
pected from the elimination of some pairs of canceling
jumps. The distribution of residence times for the NN
jumps is not significantly affected at times greater than
40t;. Of course the minimum residence time is now 20¢,
and the peak is shifted from 30z, to 40¢,. Neither these
changes nor the 5% of NNN jumps have an important
impact on the calculation of I';. It should be noted that
the effect of these additional NNN jumps is largely repli-
cated in analysis I by the extra NN jumps with short
residence times. The additional 3% of so-called NNN
jumps produced by analysis V represent trajectories
which have actually passed rather close to an intermedi-
ate octahedral site (such as the path singled out by an ar-
row in Fig. 5), and the description as two NN jumps with
a small time separation is a more accurate representation
of the actual trajectory. In the comparison with the
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two-step model we have used the results of analysis I
which includes 98% of all jumps as NN, and ignored the
few NNN jumps. The small number of events outside of
class b did not warrant more sophisticated treatment
than discussed above, at least in this first largely explora-
tory effort. More precise analysis techniques could be
developed along the lines we have used should the neces-
sity arise to consider beyond-NN hopping in detail.

As pointed out in Sec. III, the model does not accu-
rately represent the finite rise time of the residence time
distribution, and for comparison with available QNS data
the details of the initial parts of the distribution function
are unimportant so long as the distribution after several
H vibration periods is accurately predicted.

APPENDIX B: ENERGY TRANSFER
FROM DISCRETE PHONON MODES

The hopping process requires the hydrogen to acquire
sufficient energy from the vibrating metal lattice. If the
frequency spacing between lattice modes is large, it might
not be possible to establish the resonance conditions
needed for effective interaction. Since the spacing is of
the order of wp /N where wp is the debye frequency and
N the number of metal atoms, small sample size can be
important. To examine this question we have studied
solution to the equation

d*x/dt*+wix =F (1), (B1)

where F(t)=(1/N)3¥_, Aycos(wyt +¢;) in which the
phases ¢, are random. This can describe the initial ac-
quisition of energy from the lattice modes when the hy-
drogen position x is sufficiently near to equilibrium that it
can be described by a harmonic oscillator of frequency
wy. For simplicity we took a one-dimensional spectrum
o, =wpsin(mk /2N), A, independent of k and con-
sidered various values of N and wy/w,,. The probability
Q (x,1) of the particle being at x at time ¢ can be shown to
be Gaussian in the limit ¥ — . Our computations of
Q (x,t) at various x,? show that for N =100, roughly cor-
responding to the simulation if only longitudinal modes
are considered, there is better than 1% agreement with
the exact N— « expression, and even for N as small as
10 there are no major deviations. Hence we conclude,
consistent with the size independence of the MD results,
that discreteness of the finite-sample lattice modes should
not be a problem.
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