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We have used local-density-functional theory to calculate the energy bands, heat of formation,
and core-level shift in the classic ordering alloy Cu;Au. Contrary to expectations we find that the d
bands are largely nonoverlapping with the gold region extending from —4 to —7 eV relative to the
Fermi level. The copper d levels are concentrated in the range —1 to —4 eV. Addition of spin-
orbit splitting strongly mixes the gold states, producing features which are predominantly j = % and
j =% with the % level split weakly by the residual crystal-field effects. This agrees with the interpre-
tation of photoemission data by Eberhardt et al. The total energy yields a heat of formation of
—0.048 eV/atom compared with the experimental value of —0.07 eV/atom. The Au 4f core-level
position was calculated using a total-energy approach. The fully relaxed shift was found to be 0.3
eV (to larger binding energy) compared with the experimental value of 0.48 eV. The absolute value
of the core-level binding energy was calculated to be 84.1 eV, compared to 84.40 eV experimentally.

I. INTRODUCTION

The copper-gold system is one of the most interesting
alloy systems for study. It is a classical example of an
order-disorder transition! and shows a whole range of
long-period structures.? It has motivated a large body of
work on the Ising antiferromagnet, to which it is
equivalent.3~° In addition, its surface properties have re-
cently been investigated®—® and photoemission spectros-
copy’~!? has been done on the valence and 4f core levels.

Despite this there have been relatively few self-
consistent calculations of the electronic structure of the
copper-gold system.!*~16 A non-self-consistent calcula-
tion by Skriver and Lengkeek has explored the energy
bands.!” Stimulated by recent photoemission work, we
have calculated the heat of formation, energy bands, and
core-level shift of one member of this series Cu;Au.

The crystal structure is cubic and may be obtained
from fcc copper by replacing each of the atoms at the
cube corners by gold with the atoms at the face centers
remaining copper.

The plan of this paper is as follows: In Sec. II we de-
scribe the calculational techniques, in Sec. III we discuss
the total energy and heat of formation, in Sec. IV the en-
ergy bands including the density of states and spin-orbit
splitting, and in Sec. V the core-level shift. Section VI
contains a summary and in the Appendix we describe the
calculation of the spin-orbit splitting.

II. CALCULATIONS

We have used the density-functional theory to calcu-
late the energy bands and total energies of fcc, Cu, Au,
and Cuj;Au. To solve the density-functional equations,
we have used the recently developed linear augmented-
Slater-type-orbital method.'®!® In this method we utilize
a Bloch sum of Slater-type orbitals (STO’s) to span the
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space between nonoverlapping spheres centered on each
atom. Then,

Yintm (1) = Eexp(ik'ks )nim (r—Ry—7;) , (1

(Nc)l/z .

where the sum s extends over all the cells of the system
and ¢ is a Slater-type orbital,

¢nlm(r)= Anlrn ~le —§’Y1m (t) . @)

In Eq. (2), A is the normalization constant. To span the
space inside the spheres, the Bloch sum is matched onto
numerical solutions of the spin-orbit-less Dirac equation
(see Appendix). As in other linear methods,?® we use the
functions g (r) and their energy derivatives g(r) so that
inside the jth sphere

1
Yinim (T) = W % [Bw, ;a8 (r))

+ay ;a8 (r))1Y (1), (3)

where N is a composite index giving (i,n,/,m) and A is a
composite index giving (A,u). The sum in Eq. (3) was ex-
tended to A <8. Actually, it is much more convenient to
use the reciprocal-lattice representation of Eq. (1),

1
Yinim (T)=""—"777 exp[i(k+gs)-(r—‘r,-)]
: AR

1~
X .6¢nlm(k+gs) ’ )

where (2 is the unit-cell volume, g, is a reciprocal-lattice
vector, and ¢,,, is the Fourier transform of ¢. The
Fourier transform of a STO is known analytically.'8

In our calculations the {’s were chosen to minimize the
total energy of the metallic element. Our § values for
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copper and gold are given in Table I.

In all cases we used the experimental lattice constants.
given in Table I. The sphere sizes (also in Table I) were
chosen to be touching in the compound. When comput-
ing the heat of formation, we used the total energy of the
metallic elements obtained with the same sphere radii.
These radii were slightly smaller than the touching
sphere radii (defined by the elemental metals).

The density and total energy were obtained by sam-
pling the Brillouin zone at a relatively small number of
special points. In such a procedure it is important to
broaden the levels slightly; we use a broadening function

e—¢g,
2k, T

y(e—gg)= sech? (5)

1
4k T
because its integral is the Fermi-Dirac distribution func-
tion. For these calculations we used k5 T=0.001 hartree
(1 hartree=27.212 eV). The potential is sphere and
volume averaged to a muffin-tin form. This should be a
good approximation for such a close-packed system.

In using the reciprocal-lattice representation, Eq. (4),
all reciprocal-lattice vectors with |g,| <g., Wwere in-
cluded. For copper and gold we took g, =8w/a. This
corresponds to 65 reciprocal-lattice vectors at the center
of the Brillouin zone for Cu or Au; or, since the radius of
touching spheres in the fcc lattice is R, =a /2V'2, it cor-
responds to R.g.,,=8.89. For Cu;Au, g, =8m/a yields
256 reciprocal-lattice vectors at the zone center. Another
way of characterizing the cutoff is to give the energy of a
plane wave with wave vector g.,. This is #’g2, /2m or
6.79 hartree for Cu.

As we have indicated previously,?! the (reciprocal-) lat-
tice sums are not completely converged with such values
of g In fact, the total energy passes through a shallow
minimum at g, =87 /a. To be sure that we indeed have
found the correct value for the heat of formation, we ex-
tended the basis set by adding a second set of s, p, and d
functions (leading to a 72 X 72 secular matrix for Cu;Au).

TABLE 1. Parameters used in the calculations.

(ag=0.529 A)

¢ (units of ag!)

Cu 3d 1.72 4d 222
4s 0.68 5s 1.85
4p 1.37 5p 2.22
Au 5d 2.50 6d  2.66
6s 2.70 s 2.32
6p 2.00 Tp 2.66

Lattice constants (units of a,)

Cu 6.831
Au 7.707
Cu;Au 7.070

Sphere sizes (units of ag)

Cu 2.348
Au 2.649
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TABLE II. Cohesive energies (in eV). (4k) implies four spe-
cial points in the Brillouin-zone sums for Cu;Au and ten points
for Cu and Au. (10k) implies ten points for Cu;Au and 28
points for Cu and Au.

1 (4K) 1£ (10k) 2¢ (4K) Expt.
Cu —3.865 —3.907 —4.137 349
Au —3.355 —3.406 —3.444 381
Cu;Au —15094  —15273  —16.048  —14.58
AH —0.144 —0.146 —0.193 —0.297
AH/4 —0.036 —0.037 —0.048 —0.074

With these “double-£” basis sets, no such minimum is ob-
served and the heat of formation is changed by only 0.01
eV/atom (from —0.036 to —0.048 eV/atom; experiment
is —0.074 eV/atom).

In our calculations the core levels are not frozen, but
are recalculated in each iteration. However, they are
treated as atoms in a potential given by the spherical po-
tential inside the spheres and by the constant (muffin-tin
zero) at large radii. The core charge which is outside the
muffin-tin radius is simply added to the interstitial densi-
ty.

Finally, we have used the Hedin-Lundqvist?? form for
the correlation energy.

III. TOTAL ENERGY

The total energy of the various metals is quite large
owing to the large contribution from the cores. It is
more physical to think in terms of the valence energy,
which we obtain by subtracting the energy of an ion with
all the valence electrons removed. This energy is roughly
the same as what would be obtained in a pseudopoten-
tial®® or frozen-core calculation,?* except that it does not
assume frozen cores in the solid and, therefore, is a quan-
tity which can, in principle, be compared with experi-
ments. For copper the energy of the ion with eleven elec-
trons removed is —43644.411 eV. The total energy of
the copper atom is —44961.324 eV and, therefore, the
valence energy is —1316.913 eV. For gold we find a
valence energy of —907.058 eV. These calculations were
spin restricted. To obtain the cohesive energies for
copper and gold, it is necessary to add the spin-
polarization energy that we have taken from other calcu-
lations. For copper the result of Janak, Moruzzi, and
Williams® is —0.24 eV, while for gold Brooks and
Johansson?® give —0.12 eV. The cohesive energies are
given in Table II.

IV. ENERGY BANDS

A. Density of states

An overview of the band structure of Cu;Au has al-
ready been given by Skriver and Lengkeek.!” Basically,
one finds a broad s-p —band crossing and hybridizing with
the d bands, just as occurs for pure copper and gold. The
Fermi level lies above the d complex as in any noble met-
al. This is illustrated in Fig. 1, which shows the density



<10 -8 -6 -4 -2
E(eV)

(=]
oo

FIG. 1. Density of states (DOS) for Cu;Au. The top panel is
the total DOS, while the middle and lower panels are the partial
densities for gold and copper, respectively. The partial DOS is
defined by projection into the muffin-tin spheres.

of states for the compound as well as the projected densi-
ties of states in the gold and copper spheres. These state
densities were obtained by calculating the energy bands
at 35 points in the irreducible wedge of the Brillouin zone
and then broadening each eigenvalue with a Gaussian
with a full width at half maximum of 0.25 eV. The in-
teresting feature of the projected state densities is that the
gold states are very largely concentrated in a relatively
narrow band between —4 and —7 eV with respect to the
Fermi energy. This is somewhat surprising since copper
and gold (being both noble metals) have been expected to
form a single heavily hybridized d band. In fact, previous
calculations”!%!” have also shown that the deeper states
are predominantly of gold character. In a similar way it
can be seen that the copper d band lies very largely in the
range —1to —4 eV.

For comparison, the density of states (DOS) for pure
gold is shown in Fig. 2. It can be seen that the states ex-
tend from about —2 to —8 eV, which is quite different
from CujAu. We have also carried out a separate calcu-
lation on simple-cubic gold with a lattice constant equal
to that of Cu;Au. In this case the d-band DOS consists
of a single peak with a full width at half maximum of
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g 5 Our scalar-relativistic bands along the A line (i.e.,
=) along the z axis) from I" to X are given in Fig. 3. For
0

clarity only the bands of A, (s, p,, d,2) and As (p,, p,, d;,
d,,) symmetry are shown. This should be an aid to un-
derstanding photoemission data along the [001] direction
since in the absence of spin-orbit splitting only states of
these two symmetries contribute to normal photoemis-
sion. In the “gold region” near —6 eV there are also A,
(dxz_yz) and A, (dxy) states which are nearly degenerate
with the A; and A, states shown in the figure. Therefore,
there is a complete set of Au d states in this energy range.
The Mulliken population?’ for these states ranges from
roughly 65% to 85% gold. If a state were uniformly dis-
tributed and using the Wigner-Seitz radius of pure gold
(3.01 a.u.=1.6 A), we find that the fraction of the unit-
cell volume occupied by gold is ~32%. Therefore, these
states may be characterized as predominantly gold states,
although there is a significant admixture of copper as
well.

In Fig. 4 we compare the states at the zone center of
Au and CujAu. It can be seen that the ordering at I' is
reversed from that in pure gold (and other fcc metals).
That is the I';, (e,) level lies at higher binding energy
than the T',s (2,5) level. This is what would be observed
for the splitting of a d level in a cubic crystal field or in a
simple-cubic lattice and is further testimony to the essen-
tially atomic character of these states.

Finally, we note that the states between 0 and —5 eV
are described reasonably well by taking the bands of pure
fcc copper and folding them at k=w/a, which corre-
sponds to the zone boundary in Cu;Au but is only half-
way to the fcc zone boundary. This is further testimony
that the bands in this energy range are essentially copper
1n nature.
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FIG. 3. Scalar-relativistic energy bands of Cu;Au from I'-X.
The X point is at w/a. For clarity, only states of A; and A5 sym-
metry are shown. The A, and A; states near —6 eV are predom-
inantly of gold character, as discussed in the text. Also there is
a goldlike A, state (dx2—y2) nearly degenerate with the A, state
near —7 eV, and a A, state (d,,) nearly degenerate with the As
state near —6eV.

C. Spin-orbit splitting

In atomic gold the experimental spin-orbit splitting of
the d level is 1.50 eV. This is larger than the t,,-e, split-
ting for the “gold’ states at the zone center of our scalar-
relativistic calculation, which is 0.95 eV. Therefore, it is
important to investigate the spin-orbit interaction for
these bands. We have done this following McDonald,
Pickett, and Koelling?® —the details are in the Appendix.

The result is that the spin-orbit interaction can be ob-
tained by starting from Eq. (3), multiplying by a spin
function and forming the spin-orbit Hamiltonian

1 ldV
M22rdr

Hgo= (¢.n,,,.<r>x Ls ¢,~',.mm'xs>. (®)

Here, L is the orbital and s the spin angular momentum.
This doubles the size of the matrix to be diagonalized, but
since our matrices are relatively small (3636 for the
single-{ basis) it is not an undue expense. In evaluating
Eq. (6) the contributions from the interstitial vanish be-
cause dV /dr =0 there. It is customary to define a spin-
orbit—interaction parameter by

’
£y= 22fg"()l‘”’ 2dr @)
In an atom this completely specifies the splitting. How-
ever, in a solid it is more complicated because from Eq.
(3), the basis functions contain energy derivatives of g and
are summed over A with k-dependent coefficients B and
a. For an isolated atom the spin-orbit splitting of the d
level is 3&,. The calculated splitting in the atom is 1.61
eV, in reasonable agreement with experiment (1.50 eV).
This implies §;=0.64 eV. For Cu;Au the calculated
splitting parameters are 0.62 eV for gold and 0.11 eV for
copper. Both of these within 0.02 eV of those calculated
for the isolated atom.

As a test of our theory, we have calculated the splitting
of the bands in fcc gold. The result at T is shown in Fig.
4 where it is compared with the result for Cu;Au. The
splittings are in good agreement with other relativistic
calculations.?’

The spin-orbit-split energy bands from I'-X are shown
in Fig. 5. They have been labeled according to the stan-
dard double-group notation.® In this figure we have
shown all the bands because, as a result of the spin-orbit
interaction, they all contribute to the normal photoemis-
sion. While the band structure has become more compli-
cated, certain general features emerge. First, the range O
to —5 eV is not perturbed nearly as much as the range
—5to —7 eV. This again reflects the fact that the states
nearer the Fermi level are largely of copper origin and
the spin-orbit effects are much less for copper than gold.

The states from —5 to —7 eV are strongly perturbed.
In fact, the ordering at I' reflects a “weak-crystal-field”
situation®' in which the atomic d,, state shifts and car-
ries a I'g, label and the ds,, state splits into I';, and
| P

To illustrate the essential physics, we have considered
a model Hamiltonian which consists of a crystal-field-
split d level plus the spin-orbit interaction. The Hamil-
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FIG. 4. States at the zone center for Au and Cu;Au, both
with and without spin-orbit splitting.

tonian is then a 10X 10 matrix. However, using the fol-
lowing basis functions, it can be block-diagonalized into
two 3 X 3 and two 2 X 2 matrices: for basis functions

(Yy, o X1, Yo oX1, Yy X))
or

(Y1 X1, Yo X, Yo _0X)),

we have
—p—§ —5p §
3 0 dp+£/2

and for basis functions
(Y3,0X1> Yp,0X))
or
(Y5, _1X1, Yy 0Xy) s
we have

4p—£/2 (V'6/2)E
(V6/2)E

_6P

Here the Y’s are the usual spherical harmonics and the
X’s are spin functions. p is the crystal-field-splitting pa-
rameter and § is the spin-orbit-splitting parameter.

This model spans the range from no spin orbit (§=0)
to no crystal field (p =0). For £=0 we obtain a #,, level
at 4p and an e, level at —6p. Fitting to our scalar-
relativistic bands at I', we obtain 10p=0.95 eV or p=0.1
eV. The other limit, p =0, yields a sixfold-degenerate
level at £ which is a d5,, atomic level and a fourfold level
at —3£ which is a d;,, atomic level. Therefore, the

atomic spin-orbit splitting is 3£, and fitting to the isolated
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atom yields £=0.62 eV.
The behavior as a function of £ for fixed p=0.1 eV is

shown in Fig. 6. Examination of the eigenvectors shows
that the CujAu case, £=0.62 eV, is close to the atomic

Er=0 T T T T

E-Eg (ev)

0.1 0.2 0.3 0.4 0.5
r k(2w/a) X

FIG. 5. Spin-orbit splitting of the energy bands for Cu;Au
from I'-X.
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limit. In fact, the state at —1.1 eV is 90% j =2, the state
at 0.58 eV is 90% j =3, and the state at 1.1 eV is 100%
j=3. Christensen® has described the spin-orbit splitting
in fcc gold as a perturbation on the band splitting. He
notes, however, that for slightly larger separation, the
perturbation theory would break down. Here we see an
example of this where it is best to treat both on an equal
footing. The cohesive energy should not be sensitive to
spin orbit because the bands which split are filled.

V. CORE-LEVEL SHIFT

We have also calculated the core-level binding energy
for the gold 4f,,, level. This is the energy required to
take an electron from the 4f orbital up to the Fermi level.
Our procedure involves a self-consistent calculation of
the total energy of Cuj;Au with a core hole placed on
every gold site. This assumes that the final-state relaxa-
tion, or screening, is sufficiently short ranged that these
holes do not interact with each other. We have previous-
1y*3 tested this assumption by calculating the core-level
binding energy of pure gold using the CujAu crystal
structure and placing the core hole at each cube corner.
By extrapolating to infinite spacing, we showed that the
error in such a calculation due to the proximity of adja-
cent holes is only 0.07 eV. In this way we find that the
binding energy of the 41, level is 84.1 eV. The same-
size supercell in pure gold (i.e., with the Cu;Au structure)
yields 83.8 eV. Therefore, the core-level shift is + 0.3
eV. This compares with the experimental value of the
shift, which is + 0.48 eV (from 83.92 eV for bulk gold to
84.40 eV for Cu;Au).

In previous work®® we have shown how to partition
this shift into an initial- and a final-state part by calculat-

ENERGY (eV)

o 1.0 2.0 3.0 . 4.0
E(ev)

FIG. 6. Energy bands at zone center in CusAu vs spin-orbit
interaction parameter £. Levels obtained from the model Ham-
iltonian as described in the text.
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ing the change in energy with a frozen charge density. In
that work we found that for gold the initial-state shift be-
tween the atom and the solid was given accurately by the
change in eigenvalue of the core level. We assume that
the same is true here. The change in eigenvalue (relative
to the Fermi level) between gold and Cu;Au implies a
change in binding energy of + 1.0 eV for the single-§
basis and + 0.8 eV for the double-{ basis. Since the fully
relaxed change is only 0.3 eV, there is a differential relax-
ation of 0.5-0.7 eV between gold and Cu;Au. That is to
say, CujAu has a larger relaxation energy than gold does.

Since gold is much more electronegative than copper,
it might be thought that there would be charge transfer
onto the gold, causing the core level to move to lower
binding energy. However, it has been known for some
time>* that this can be explained as being due to compen-
sating s and d charge transfer. There is, in fact, an in-
crease in the s-like charge at the gold site. This is ap-
parent in our calculations by examining the charge densi-
ty near the nucleus and in experiments from the
Mossbauer isomer shift. However, the site remains near-
ly neutral, implying a decrease in d-like charge which has
a larger Coulomb interaction with the 4f levels and leads
to the observed increase in binding energy. Similar re-
sults were found in our previous work on gold 5d alloys.'°

VI. DISCUSSION

Copper and gold are both noble metals with d!%
configurations in the atom. Therefore, one might expect
that they would form a compound with a common heavi-
ly hybridized d band. DiCenzo and co-workers'!!? have
suggested that the density of states of CujAu should,
therefore, resemble a superposition of pure gold and pure
copper densities of states. This is not the case. As was
apparent from the calculations of Skriver and
Lengkeek,!” the band structure consists of distinct gold
and copper 5d bands. We have illustrated this using self-
consistent calculations of the electronic structure which
are in somewhat better agreement with experimental pho-
toemission studies.!®~ 12 Analysis of the bands using
Mulliken populations, spin-orbit splitting, and projected
densities of states all suggest the essentially “split-band”
character of the states. In addition, we have calculated
the heat of formation and Au 4f core-level shift and ob-
tained good agreement with experiments.

Note added in proof. After submission of this paper,
we became aware of similar calculations by G. K.
Wertheim, L. F. Matheiss, and D. N. E. Buchanan (un-
published).
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APPENDIX: SPIN-ORBIT SPLITTING

We have generally followed Koelling and Harmon*® in

constructing a ‘“‘spin-orbit-less” Dirac equation for the
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valence states. The core states are treated fully relativist-
ically. This leads to a second-order Hamiltonian for the
radial function g (r),

h(r)g,(r)=¢g,(r), (Al)
where
e B 42 24 1041
ner= 2M | dr? r dr r2
#? av d
T aM? ar dr+V( r). (A2)

Here, M=m[14+(e—V)/2mc?] and the other symbols
have their usual meaning. We then form

¥ ,=8/(nY,, TX,,

where Y, is a spherical harmonic and X, is a spin func-
tion. We take this to be a trial solution for the large com-

(A3)

ﬁ2

21(1+1)
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ponent of the Dirac equation. A full trial solution would
be

(A4)

V4 ]
Up

where ¥5 is the small component. For a true Dirac spi-
nor

1
Yp= M PV (AS5)

where 0-p=0,p, +0,p,+0,p, and the o’s are the stan-
dard Pauli matrices. We have assumed here an isolated
atom with a single (/,m) value. In the solid equation (A3)
would be replaced by Eq. (3) multiplied by a spin func-
tion. However, to keep the algebra simple we will stay
with the atom.

Using Egs. (A3)-(A5) it is possible, though tedious, to
construct the particle density

=o' og 2
n(r) lp'/) gl‘Ym|+4M22 ar]|YIm|+

At the suggestion of McDonald, Pickett, and Koelling,
we have retained the first two terms in this expression to
define the charge density. However, the last two are of
the same order in 1/¢? and, as such, should be included.
The last term would vanish for closed-shell systems and
the third term would vanish for s states but might be im-
portant for p states.

The energy eigenvalues may also be calculated by ex-
plicitly evaluating the expectation value of the Dirac
Hamiltonian:

Hp=ca-p+(B—1)mc*+V, (A7)

where a and B are the usual 4 X4 Dirac matrices and we
have explicitly subtracted the rest energy of the electron.
Then,

Yy
(W Hp |9)=[WluHp |, |dr
=e(¢|¢) (A8)
and
S 22a(VV><p>¢Ad3
g'=eg+ (A9)

f (Y0, +vhys)dr

am2 ¥

stixfylm o-LY, X,

2__
| Ylm l 2M2 2, or

(A6)

f

The second term is just the spin-orbit interaction since,
for a spherical potential,

vw=L19, (A10)
r dr
and
rXp=L.

Equation (A10) can be rewritten for an arbitrary basis
function and is given in Eq. (6). Note that Eq. (6) is writ-
ten in terms of s=7%/2 0. The importance of this result is
that the spin-orbit term is to be evaluated using the large
component only. Therefore, in our calculations on solids
it is necessary to double the basis set and evaluate Eq.
(A9). There are several types of terms because the radial
functions are formed from g (r) and the energy derivative
£(r) and also because the basis functions contain mix-
tures of different / values.

We also note that the dV /dr form for the spin-orbit in-
teraction follows from the assumed one-electron Dirac
Hamiltonian. In reality there are two electron parts, and
Blume and Watson® have shown that for these dV /dr is
not a particularly good approximation. As discussed in
Sec. IVC, there is, however, reasonable agreement be-
tween the calculated and measured spin-orbit splittings
for the valence levels of atoms.
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