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The electronic structure of an 800-atom realistic model of a Ca7A13 glass is calculated with use of
the tight-binding linear muffin-tin-orbitals (TB LMTO) scheme in conjunction with the recursion
method. Results are compared with those obtained in a self-consistent standard LMTO calculation
for 60-atom supercells of this glass. The total and partial densities of states (DOS's) obtained in the
two calculations show quantitative agreement and the results at the Fermi level agree with the ex-

perimentally available information. The recursion results for the 800-atom model show less struc-

ture, but retain all the essential features in the DOS obtained via the supercell calculation, indicat-

ing that a tight-binding description of (s,p)-bonded metallic systems is indeed possible. Minor
differences in the DOS's are believed to be primarily due to the difference between the standard
LMTO Hamiltonian and the Hamiltonian used in the recursion calculation, the latter being less ac-
curate than the former at energies away from the reference energies E„'s. Computational efforts

needed for the supercell (k-space) and the recursion (real-space) calculations are compared.

I. iNTRODUCTION

The interplay between the atomic and the electronic
structure is of fundamental importance in the study of
metallic glasses. The (s,p)-bonded metallic glasses play a
key role in such a study for two reasons. The first is that
the generalization of the Hume-Rothery rules (which
correlate phase stability and valence-electron concentra-
tion) to amorphous alloys is based on nearly-free-electron
arguments' and hence is expected to hold best for the
(s,p)-bonded alloys. In analogy to the crystalline phase,
the stability of the glass is thought to be associated with
the existence of a structure-induced minimum in the elec-
tronic density of states near the Fermi level. The second
reason is that a discussion of the interplay between the
atomic structure and the electronic structure requires, in
principle, a self-consistent calculation of both. For the
moment, this is an impossible task due to the lack of a
method for deducing the interatomic forces from the
electronic structure of a glass. However, since the ions
scatter the electrons only weakly in (s,p)-bonded metals,
the effective interatomic potentials can be deduced from
the response of the conduction electrons to the perturb-
ing electron-ion potentials. These effective interatomic
interactions can then be used for the construction of real-
istic structural models using computer-simulation tech-
niques. The Ca-Al system has been chosen for the
present study because of its outstanding structural, ther-
modynamic, and electron-transport properties.

Electronic-structure calculations for amorphous sys-
tems are performed mainly in two different ways. One of
these involves calculations in k space for clusters of
atoms as large as the available computer can handle.
Typically less than a hundred atoms can be considered in

such calculations. These "supercell" calculations are un-
doubtedly accurate for the given clusters of atoms but
may suffer from the drawback of small size. Spurious
(i.e., not pertaining to the bulk material) features in the
density of states (DOS) may result from the assumed
periodicity of the structure. In practice, one has to con-
sider supercells of various sizes in order to discover the
features in the DOS originating from this periodicity.
Averaging over several supercells reduces the error. The
alternatives to the supercell calculations are the real-
space techniques, such as the recursion and moment
methods. These offer a complementary scheme where the
emphasis is on the local electronic structure. The aver-
age DOS for the bulk amorphous material is obtained by
summing the densities of states projected on to various
atoms in the model cluster. Using these techniques it is
possible to carry out calculations involving large clusters
of atoms (from a few hundred to one or two thousand).
However, there are errors due to the finite cluster size
and the various possible ways of extrapolating the results
for a finite cluster to that of an infinite system.

The choice between the supercell and the real-space
calculation is dictated by factors such as the available
cluster size, the spatial extent of the basis orbitals, and
the quantities to be calculated. Supercell calculations can
operate with long-ranged basis functions since for small
periodic structures one can use the Ewald procedure to
calculate the Bloch sums. Real-space calculations involv-
ing large clusters, however, rely on having well-localized
basis functions. The matrix elements of the Hamiltonian
or, more precisely, of 0 'H or 0 '~ HO '~ (where H
is the Hamiltonian and 0 the overlap) must decay rapidly
in space in order that the real-space schemes may be ap-
plied eSciently and without appreciable error.
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Because of a lack of first-principles tight-binding
methods, most real-space calculations for large amor-
phous clusters have so far relied on empirical or sem-
iempirical tight-binding schemes. Often in such schemes
the transferability of the parameters entering the Hamil-
tonian matrix elements is assumed without proper
justification. The chemical pseudopotential scheme of
Anderson and co-workers has indeed provided an impor-
tant advancement in the theory. Apart from providing a
set of atomiclike orbitals suitable for a tight-binding
description of the solid, this scheme was able to show

why some empirical tight-binding schemes seemed to
work so well. However, in practice, this scheme is
difficult to use in its full form, ' and the approximate
forms used for the matrix elements may lead to
significant loss of accuracy in the calculated results.
Also, although the scheme yields the matrix elements of
0 'H directly, these are not necessarily short ranged. In
recursion calculations involving this scheme, the matrix
elements beyond a certain number of near neighbors are
simply ignored.

The tight-binding linear-mufin-tin-orbital (TB LMTO)
scheme "developed during the past few years seems to
have overcome most of the problems related to accurate
electronic-structure calculations for large amorphous
clusters. It provides a procedure for self-consistent '
ab initio electronic-structure calculations, but can also be
used, under suitable circumstances, as a semiempirical
tight-binding scheme. The one-electron Hamiltonian is
expressed in terms of some "potential parameters" and a
"hopping matrix" that depends only on the structure,
i.e., the arrangement of the atoms. ' The potential pa-
rameters are local quantities, obtained from the solution
of the one-electron wave equation inside the atomic or
the Wigner-Seitz spheres surrounding the atoms. The en-
vironment dependence of the Hamiltonian matrix ele-
ments enters primarily through the hopping matrix (also
called the structure matrix), which can be calculated ex-
plicitly without any approximation. The potential pa-
rameters can be calculated exactly for the system under
study. However, they can also be borrowed from some
reference system that has already been studied (e.g., from
a pure system to an alloy). In this case the scheme be-
comes similar to an empirical tight-binding scheme. If
need be, changes in the potential parameters due to the
change in the environment relative to the reference sys-
tem can be estimated and these estimates turn out to be
fairly accurate. ' '

In this paper we calculate the electronic structure of a
realistic model of a Ca7A13 glass by the TB LMTO recur-
sion scheme using potential parameters derived from
self-consistent LMTO-superceB calculations. It wi11 be
shown that the TB LMTO method can be used with the
ease and efficiency of any other tight-binding scheme, and
produce accurate results. The system we have chosen is
nontrivial both from the tight-binding and recursion
points of view. Recursion will actually be carried out
with the Lowdin-orthonormalized Hamiltonian
0 ' HO ', truncating a series representation in
terms of a two-center tight-binding Hamiltonian. Within
the LMTO formalism the effect of such a truncation is

well understood, with precise error estimates.
The remainder of this paper is divided into sections as

follows. In Sec. II we discuss the construction of the
800-atom model of the Ca7A13 glass. In Sec. III we

briefly describe the supercell calculation and the TB
LMTO method. Results of the two calculations are com-
pared in Sec. IV and summarized in Sec. V.

II. ATOMIC-STRUCTURE CALCULATIONS

Since the details of these calculations are already given
elsewhere, only a brief outline of the procedure is given
here. ' ' The construction of the structural model is
based on pseudopotential-derived interatomic forces,
molecular dynamics, and potential-energy-mapping
techniques. The pseudopotentials are based on an
orthogonalized-plane-wave expansion of the conduction-
electron states in the alloy. The pseudopotential is opti-
mized to achieve an optimal convergence of the perturba-
tion expansion, a procedure equivalent to folding down
higher-order contributions. ' The resulting interatomic
potentials are strongly composition dependent. The most
relevant chemical binding effects rejected in the intera-
tomic potentials are a strong compression of the Ca—Ca
bonds and the nonadditivity of the potentials upon alloy-
ing with Al. The compression of the Ca pseudoatoms is
due to the intraatomic charge redistribution primarily
from the extended s to the localized d states. ' The
nonadditivity of the potentials is manifest in a pro-
nounced preference for the formation of Ca-Al pairs at
the composition of the Lgves-phase CaAlz compared to
that at the Ca-rich glass-forming composition.

A difficult step in any modeling algorithm of a glass is
the equilibration with respect to the local chemica1 com-
position. Since the approach to equilibrium is controlled
by the interdiffusion process, it is extremely slow at low
temperatures. We follow a two-step procedure in our
model construction. First, we perform a molecular-
dynamics simulation for the high-temperature liquid
phase. Here the local chemical equilibrium is easily
achieved on the time scale of a computer experiment.
Parallel to the molecular-dynamics run, the instantane-
ous configurations of the liquid are periodically mapped
onto the local minima of the potential energy via a
steepest-gradient descent on the potential-energy hyper-
surface. This potential-energy mapping results in a sub-
stantial image enhancement of the local order. A
configuration average over a large number of "mapped"
configurations is found to be independent of the thermo-
dynamic conditions before the quench. ' The mapping
is essentially equivalent to an infinitely rapid quench with
no subsequent relaxation. It has been shown that this
procedure yields realistic models for the structure of
amorphous metals ' and semiconductors.

The computer simulations have been performed for
samples of 800 atoms in a periodically repeated box with
the shape of a rhombic dodecahedron, and our structural
model is in very good agreement with the available
diffraction data. Small cubes containing about 60 atoms
were cut out of the large models for the supercell
electronic-structure calculations. The smaller models
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the local-density approximation to the exchange-
correlation potential is made.

Usually, supercell calculations are done for the zone
center of the Brillouin zone only and a continuous DOS
is derived from the discrete spectrum by an appropriate
Gaussian broadening (we use a Gaussian of width 0.2
eV}. Because of the rather large dispersion of the free-
electron-like bands in the (s,p)-bonded metals, the four
corners of the irreducible wedge of the Brillouin zone are
used as well in the DOS calculations. The statistical rep-
resentation of the electronic structure of the glass is fur-
ther improved by taking the average over two different
60-atom models taken from independently mapped
configurations. Only two models were considered in the
averaging here because the changes produced by the
second model were quite small.

A TB LMTO basis orbital of (collective) angular-
momentum index L =(I,m}, centered at site R, can be
expressed as

&RL (r R)=&—RL (r R)+ Itp—RL (r R)—
+ y y;L(r R}hg,-„,

R', L'

where K, the envelope function ofX, is truncated inside
all the muffin-tin spheres and the (() and the P functions
are truncated outside the sphere at R and R', respective-
ly. The envelope function represents the solution of the
one-electron wave equation in the interstitial region. ((}RL
is the solution inside the sphere of radius sz at R for
some reference energy E„RI and is normalized within the
sphere,

(()RL«r —R}=(()RI(ErR }~I

rR= /r —Rf (2)

FIG. 1. Partial pair-correlation functions g;J.(R) for amor-
phous CaTA13. We smooth lines show the computer-simulation
result obtained by the potential-energy mapping of 20 indepen-
dent conSgurations of the 800-atom sample. The histograms
represent the correlation functions of a single 60-atom model
prepared out of one of these con6gurations.

were relaxed to eliminate stresses across the surfaces of
the cube after periodic repetition. The partial pair-
correlation functions of a single 60-atom model compare
well with those based on a configuration average over 20
independent 800-atom models, as shown in Fig. 1.

III. EL'.l'RONIC-STRU(=l'LJRE CALCULATIONS

Since the supercell-LMTO (Refs. 19 and 22) and TB
LMTO (Refs. 8 and 12) methods have been discussed ex-
tensively in some recent publications, a brief discussion is
given here for the sake of completeness.

In the LMTO method space is divided into muffin-tin
spheres centered at various atomic sites R. In open
structures with a large interstitial region, additional
spheres in the interstitial region may also be needed. The
potential inside the spheres is assumed to be spherically
symmetric, while outside the spheres it is assumed to be
constant. The potential is calculated using the density-
functional theory of Hohenberg, Kohn, and Sham, and

&I E,rr r=1,
0

4'RL(r R}=NRL(E Rl

The function P is given by

pRL(r R)=QRI(rR)—&l ((r—R)l lr —R
I »

NRI( R} Oil( R }+NRI( R) Rl

where

BItIRI(E, rR )
rR)=

E =EvgI

The constants o are chosen to give P the same radial
logarithmic derivative at the sphere radius sz as the tail
of the envelope function K . The multiplication by h in
Eq. (1}inakes the augmentation of the envelope function
K continuous at the sphere boundary.

The envelope ERL(r —R), before augmentation by the

P functions, can be expanded in a spherical-harmonics
series about a neighboring site R', and the expansion
coeScients Sz L zL are the so-called screened structure
constants. These depend only on the sphere positions
and not their type or radii. Unlike the bare canonical
structure constants Sz.L zL that are long ranged, the
screened structure constants can be made short ranged
with a suitable choice of a "screening matrix" a. The
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structure constants S and S are related via the Dyson
equation

~a ~0 c& ~0
RLR'L' RLR 'L' + ~ RLR "L"8 "I" R "L"R'L'

g tl LII

In matrix notation,

S =S +S aS =S (1—aS )

—i[( —i So)—i a]a —i

(8)

(9)

where a is a diagonal matrix with elements a&I.
Different choices of the screening matrix a are discussed
in Ref. 10. The augmentation of the envelope function
E at the sphere boundary relates the coefficients h in
(1) to the screened structure matrix elements S and the
relation can be expressed as

hRLR'L' ( Rl vRI +RR'fiLL'

+ ( RL ) RLR'L'( R'L' ) (10)

where cgi and de are potential parameters to be ob-
tained from the P and P functions at the sphere bound-
ary.

In the present work we will use the atomic-sphere ap-
proximation (ASA), in which one replaces the muffin-tin

spheres by space-filling atomic spheres and neglects the
remaining interstitial region. In this approximation the
first term on the right-hand side (rhs) of (1) drops out.
The Hamiltonian and the overlap matrices receive no
contribution from the interstitial region and are given
b 9—12

0.3485, 0.05303, 0.010714 for l =0, 1,2

and (16)

in the orthonormal representation is approximately twice
that of the two-center tight-binding Hamiltonian and the
resulting DOS features will have positions correct to
second order in their distance from E . Thus, within the
LMTO formalism the effect of truncating the range of the
Hamiltonian is well defined and can be controlled. From
the relation (10) and the fact that the S are short ranged,
we see that the first-order Hamiltonian itself is short
ranged. With proper choice of the screening matrix a,
the matrix elements of H"' connecting atoms beyond the
second shell of neighbors in all close-packed structures
can be made to vanish.

Equations (10), (14), and (15}define the Hamiltonians
that will be used in conjunction with the recursion
method for the electronic-structure calculation. Calcula-
tion of the Hamiltonian matrices involves two steps: (i)
calculating the potential parameters c, d, and 0, and
(ii) calculating the screened structure matrix S . Rela-
tions that can be used to obtain the potential parameters
are discussed in the Appendix. The screened structure
matrix S can be calculated from the unscreened struc-
ture matrix S, available in analytic forms, by iterating
the Dyson equation (8) to self-consistency or by matrix
inversion using the last expression on the rhs of (9).

The screening matrix a used in this work is a site-
independent but I-dependent set with only three distinct
nonzero elements:

H =h+hoh +(1+ho)E„(1+oh),

0=&X
~
X& =(I+h )(1+oh), (12)

0 for l)3 .

In (12) we have neglected terms involving a small param-
eter, which is the integral of the function P" within the
atomic sphere. In (11) and (12), 1 is the unit matrix and
we have consistently dropped the subscripts R and l as
well as the superscript a. The Lowdin-orthonormalized
Hamiltonian in the ASA assumes the form

H=O '"HO '"=E„+h(1+oh)

=E„+h—hoh +
=H'" —hoh+

(13)

(14)

where

H"'—=E„+h .

Thus the Lowdin-orthonormalized Hamiltonian can be
expressed as a power series of a matrix h =H —E„(1)

which is an effective, two-center tight-binding [see Eq.
(10)] Hamiltonian, H"', minus an energy E„, chosen at
the center of interest. If the power series is truncated
after the first-order term, the Hamiltonian in the ortho-
normal representation is approximated by the two-center
tight-binding Hamiltonian H"' and the resulting energy
positions of the features in the densities of states are
correct to first order in the deviations from the energies
E„. If, on the other hand, the truncation is performed
after the second-order term, the range of the Hamiltonian

Vo =(4m/3)w (17)

The off-site elements of the structure matrix S can
also be obtained from an interpolation formula for the
"Slater-Koster" terms S&& (d }, where the intersite separa-
tion d=R —R' is along the z axis. The interpolation for-
mula' '" that has been found suitable for arbitrary homo-
geneous structures is of the form

SI ~(d)= Aa e z=~n d/w . ' (18)

The values of the constants A and P for the various
Slater-Koster terms sso. , spo, . . . depend on the screen-
ing matrix a. For the set (16) these values are available in
Table II of Ref. 10 and Table I of Ref. 11.

The on-site elements of the screened structure matrix
depend sensitively on the local arrangement of atoms.
There is no simple interpolation formula for these, but
they can be calculated using the off-site elements of S in
the Dyson equation

It has been found that, with nonzero screening on all sites
in the solid for l =0, 1, and 2, these a values give rise to
the most localized LMTO basis orbitals and short-ranged
structure matrix elements for all reasonably homogene-
ous and close-packed structures. The structure constants
S involve a length parameter w, which is determined by
the density of the screening multipoles. Thus we can cal-
culate w from the volume per atom V0 using
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~0
RLRL' ~ RLR "L"R "I" R "L"RL'

R II Ltl
(R "~R)

(19)

The importance of evaluating these on-site elements
correctly has been discussed in Ref. 12.

In an amorphous system every atom sits in an environ-
ment that is di8'erent from the environment of any other
atom. Thus the potential in each sphere is di8'erent and,
in principle, one is required to calculate as many sets of
potential parameters as there are spheres. Since this is
computationally cumbersome, one can resort to an ap-
proximate treatment. For example, potential parameters
for a small number of spheres can be calculated exactly
and for the rest some average potential parameters can be
used '2

Usually, all spheres of a given type are assumed to have
a fixed radius. The ratio of the radii of the two types of
spheres in a binary system can be determined by consid-
ering small variations about the ratio of the Goldschmidt
radii of the corresponding atoms. The ratio for which
the overlap of the spheres is minimized should finally be
chosen. The actual values of the radii are to be deter-
mined by conserving the total volume. Instead of the
Goldschmidt radii, one can consider the positions of the
first peaks in the partial pair distribution functions for
the alloy. A detailed polyhedron analysis may also be
carried out in order to determine the optimum sphere ra-
dii. However, the electronic-structure results are not sen-
sitive to the sphere radii as long as the overlap is within
20%, i.e., s, +s2 & 1.20d, where s, and s2 are the radii of
the two spheres whose centers are separated by distance

The potential parameters c,d, and o', and the struc-
ture constants S, are all that is needed for a calculation
of the DOS. In a self-consistent calculation' one further
calculates the charge density in the various spheres.
From an admixture of the old and the new charge densi-
ties, a new potential is calculated, and, from this, a new
set of potential parameters, which is used in the subse-
quent DOS calculation. The cycle is iterated until self-
consistency in the charge distribution is achieved. The
reference energies E are chosen to lie at the centers of
gravities of the occupied parts of the respective 1 bands,
and are updated in each cycle of the iteration.

Our object here is to perform the simplest possible TB
LMTO calculation that would yield accurate results for
the DOS. Since we want a calculation that is comparable
in speed to any other tight-binding scheme, we will resort
to some approximations in calculating the structure ma-
trix and the potential parameters. Our results will indi-
cate that these approximations are indeed reasonable.

From the final self-consistent result of the standard
LMTO (Ref. 22) supercell calculation, we choose the po-
tential parameters for one representative set of Ca and Al
spheres. These standard LMTO parameters are then
converted to TB LMTO parameters c, d, and o,
which are listed in Table I. The relations used for this
conversion are given in the Appendix.

For calculations involving a binary (AB) alloy, the po-
tentials in the A and 8 spheres are usually not available
a priori. In this case one can start from the parameters
for the pure A and the pure 8 solids without performing
a self-consistent (supercell) calculation for a representa-
tive cell. Standard LMTO parameters for pure Ca (solid)
are available in Table III of Ref. 9, where the results for
33 elemental metals are listed. The procedure to estimate
the parameters for the alloy from those for the pure solid
by performing appropriate corrections due to the change
in the atomic- and the average Wigner-Seitz sphere radii
is described in Ref. 10.' We found that the parameters
for the Ca sphere in the Ca7A13 alloy estimated from the
pure calcium parameters are reasonably close to the
values obtained in the standard LMTO alloy calculation.
This indicates transferability of these quantities from the
pure crystalline system to an amorphous alloy. Since the
parameters for pure crystalline Al are not included in
Ref. 10, a transferability test for aluminum was not per-
formed.

Sob et al. have developed a technique to calculate the
screened structure constants using the inversion of the
matrix (a ' —S ) as indicated in Eq. (9). However, for
reasonably accurate results for the DOS one can also use
the interpolation formula (18). The advantage of this in-
terpolation scheme is that it can generate the screened
structure constants in an order of magnitude (-10 times)
less time than is needed by the matrix-inversion tech-
nique. Quantitative accuracy of the results obtained by
using the interpolation scheme is discussed in Ref. 10.
We have thus used Eqs. (18) and (19) to obtain the on-site
elements of the structure matrix. With given values for
the potential parameters and the interpolation formula
for the hopping integrals, the TB LMTO scheme acquires
the speed of an empirical tight-binding scheme. An im-
portant point is that in most tight-binding schemes the
on-site elements are held fixed, whereas in the TB LMTO
scheme these are determined by the environment of the
atom.

Recursion calculations for the 800-atom cluster (in the

TABLE I. Potential parameters for the Ca7A13 glass (in units
of rydbergs).

C a) —1

IV. RESULTS FOR THE Ca7A13 GLASS

The atomic-sphere radii for Ca and Al in our calcula-
tion were taken to be the same as in the LMTO supercell
calculation of Hafner and Jaswal, where these were de-
rived from the minima in the pair potentials. Since we
are interested in the simple TB LMTO recursion calcula-
tion, we consider just one set of potential parameters for
all the Ca spheres and one set for all the Al spheres.

S

P
d

S

P
d

Calcium (signer-Seitz radius 3.9789 a.u. )
—0.2889 0.0763 —0.8382
—0.0145 0.0278 —0.6336
—0.0300 0.0124 —0.6833

—0.3318
—0.2949
—0.2756

Aluminum (Wigner-Seitz radius 3.3720 a.u. )
—0.6163 0.0668 18.7606 —0.4933
—0.4211 0.0419 —3.5520 —0.2844
—0.3643 0.0135 —1.3537 —0.2633
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shape of a truncated dodecahedron) were carried out us-

ing periodic boundary conditions and the "linear predic-
tor terminator" due to Allan. 500 recursion coefficients
were extracted, typically from 10 s, 15 p, and 20 d calcu-
lated coefficients, following the scheme of Allan. The cal-
culated and the extracted coefficients were used, together
with the constant chain terminator, to compute the diag-
onal matrix elements of the Green's function, from which
local densities of states were obtained. The number of
calculated coefficients used to extract the subsequent part
of the chain was lowered from the figures quoted above,
whenever it was necessary to do so. We found that the
calcium local densities of states were rather insensitive to
the number of extrapolated coefficients used prior to in-
troducing the constant chain terminator. In other words
the oscillations in the calcium coefficients were quite
damped and, most often, 30 extrapolated coefficients, to-
gether with the constant chain terminator, were sufficient
to yield convergence in the corresponding partial local
DOS. The aluminum coefficients showed pronounced os-
cillatory behavior and at least 100 coefficients needed to
be extrapolated before using the constant chain termina-
tor. Since increasing the number of extrapolated
coefficients in the Allan scheme does not significantly in-
crease the time needed to compute the local DOS, we
used 500 extrapolated coefficients for all the aluminum as
well as calcium local densities of states.

The local densities of states obtained by using the first-
order TB LMTO Hamiltonian H"', with the E 's chosen
at the centers of the occupied part of the bands, showed
considerable difference from the standard LMTO results.
The bottom of the band was 3-4 eV too low and the
maximum in the density of states following the Fermi lev-
el (for the calcium projected DOS) too high. The stan-
dard LMTO Hamiltonian is accurate to third order in de-
viations from the reference energies (the E 's). The re-
sults for the first-order Hamiltonian 8'" thus differ in-
creasingly from the standard LMTO results as the devia-
tions from the reference energies increase. This
difference is even more pronounced in case of calcium,
for which the overlap parameters o are rather high (see
Table I), or the parameters (o )

' too low. The (o )

parameters, with dimensions of energy, provide a mea-
sure of the energy window about the reference energies
E, for which the DOS results obtained from H" ' are reli-
able. These parameters are large for aluminum, but too
small for calcium to yield accurate results for the occu-
pied part of the valence band. Another way of looking at
this problem is that since the o parameters for calcium
are all larger than unity, higher-order terms such as hoh
in the formal series expansion (14) are not negligible.
Thus to obtain an accurate DOS such terms must be in-
cluded in the Hamiltonian used in the recursion calcula-
tion.

Successive terms in the series expansion (14) connect
more and more distant neighbors. However, the recur-
sion method can operate efficiently and without apprecia-
ble error (due to finite cluster size) only as long ais the
Hamiltonian matrix elements connect an atom to a mod-
est number of neighbors. We therefore include only the
"hoh" term in the series expansion for H. Furthermore,

(a)
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(/)
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0-8 -6
I

-2
I
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BINDING ENERGY (E-Ep) (eV)
FICJ. 2. Calculated density of states for Ca7A13 glass using (a)

the LMTO supercell method and (b) the TB LMTO recursion
method. (Ez———2.3936 eV.)

only the nonzero terms of H"' are updated due to the in-
clusion of this correction. Atoms that were unconnected
via H"' are still left unconnected. Our results indicate
that even this approximate treatment of the "hoh" term
yields substantial improvement in the calculated DOS.
Since all of the calcium and two of the aluminum o pa-
rameters are negative, the effect of adding the "hob" term
is to add a positive shift to almost all the eigenvalues.
This shifts the bottom of the band to a higher energy,
bringing the results in reasonable agreement with the
standard LMTO results. Since almost all eigenvalues
away from the reference energies E„are shifted upwards
in energy, the DOS at energies above the E„'s is de-
creased. The maximum in the DOS following the Fermi
level is brought down to a value in close agreement with
the standard LMTO result.

It is clear that the inclusion of the higher-order terms
in the Hamiltonian would further improve the results.
However, because of their long range, such terms are
difficuIt to include in the recursion calculation. Also, cal-
culating these higher-order terms for large clusters such
as the one used here would require either enormous com-
putation time or huge storage and the corresponding gain
in accuracy is perhaps not worth the cost involved.

In Fig. 2 we compare the result of the recursion calcu-
lation [Fig. 2(b)] with the self-consistent LMTO supercell
calculation [Fig. 2(a)]. The two DOS's in Fig. 2 show re-
markable similarity. The DOS at the Fermi level and the
maximum in the DOS are almost identical. In the recur-
sion calculation the position of the maximum is a little
higher and the bottom of the band is 0.5 eV lower than in
the supercell calculation. This difference is similar to,
but much smaller than, that due to H"' alone. Thus the
inclusion of the higher-order terms in Eq. (14) should fur-
ther improve the agreement between the two methods.
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FIG. 3. Partial density of states for Ca in Ca7A13 glass using
(a) the LMTO supercell method and (b) the TB LMTO recur-
sion method.

The DOS in Fig. 2(b) is calculated by considering 36 cal-
cium and 12 aluminum local densities of states. This
DOS, calculated via the recursion method and for a clus-
ter much larger than that used to obtain the result of Fig.
2(a), shows less structure than the latter, but contains all
the essential features.

In Figs. 3 and 4 we show the partial calcium and
aluminum contributions to the total DOS shown in Fig. 2
for the two calculations. The average d partial DOS for
calcium is almost identical for the supercell and the re-
cursion calculations. This demonstrates the effectiveness
of the recursion method in being able to treat the d band,
or, in general, narrow bands, accurately. The s and p
bands are usually harder to deal with via the recursion
method. But our calculations show significant difference
(between the recursion and k-space results} only for the
aluminum s states. Even this difference is likely to dimin-
ish if an average over larger number of atoms in the re-
cursion calculation is considered. On the whole, we
found the aluminum s local DOS to be the most sensitive
to the particulars of the termination. Also, these local
DOS's showed the most pronounced variation from one
atom to another. This is expected on the basis of the
large magnitude of the s matrix elements in aluminum,
and the error can perhaps be reduced by increasing the
size of the cluster. Another reason for large fluctuations
in the local aluminum s DOS might be the lack of self-
consistency in the potentials in the various spheres.
Though this should affect all states, it is conceivable that
the aluminum s states are the ones most affected by this
non-self-consistency. Integrated properties are less sensi-
tive to the details of termination and the finite size of the
cluster used in recursion. Both the supercell and the re-
cursion calculations indicate negligible charge transfer,
on the average, from calcium to aluminum.
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FIG. 4. Partial density of states for Al in Ca7A13 glass using
(a) the LMTO supercell method and (b) the TB LMTO recur-
sion method.

It is worth comparing the computational efforts in-
volved in the two calculations. On a Cray machine the
DOS calculation for the 60-atom cell required 4 min for
each k point. Hence a total of 32 min was required to
produce the result of Fig. 2(a). For the recursion calcula-
tion computation time mainly depends on the size of the
cluster and the number of recursion coefficients calculat-
ed. We computed 20 recursion coefficients for each orbit-
al (initial recursion vector) considered. For a single
atom, i.e., nine orbitals, this used 1 min on the Cray. The
DOS calculation for each set of recursion coefficients, us-
ing the "linear predictor terminator" with 500 extrapo-
lated coefficients, takes less than a second. Hence the cal-
culation involving the average of 48 atoms to produce the
result in Fig. 2(b) used approximately 50 min. Of course,
this last figure depends on the number of atoms con-
sidered to obtain the average DOS and, if one were in-
terested only in integrated properties, then a much small-
er computation time would suffice. On a normal IBM
machine the computation would be approximately 10
times slower, but certainly the relative time requirement
for the two methods would remain unchanged.

V. CONCLUSIONS

We have shown that within the LMTO formalism it is
possible to provide a tight-binding description of an
(s,p)-bonded metallic glass such as Ca„A1& „. The
LMTO recursion calculation performed on an 800-atom
model of Ca7A13 is in good agreement with a standard
LMTO 60-atom supercell (k-space} calculation. Minor
differences between the two results can be explained
within the LMTO theory. In carrying out the LMTO re-
cursion calculation, we have resorted to approximations
that make this scheme comparable, in terms of computa-
tional ease, to other (semi)empirical tight-binding
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schemes. However, while the accuracy of these latter
tight-binding schemes is usually doubtful, the TB LMTO
scheme, with some modification, is shown to possess an
accuracy comparable to that of the standard LMTO
method.

The TB LMTO results confirm the conclusions drawn
on the basis of the LMTO supercell calculations. There
is no indication of a structure-induced minimum in the
electronic DOS close to the Fermi level. The DOS at the
Fermi level is considerably enhanced over the free-
electron value due to a substantial contribution from the
Ca 3d states. However, this Ca 3d contribution is not
strong enough to support an interpretation of the unusual
electron-transport properties in terms of strong d-state
scattering. The most relevant feature of the electronic
structure of Ca-Al glasses seems to be the incipient dehy-
bridization of the conduction band: a pronounced DOS
minimum separates an Al 3s band (which shows only
very small admixture of other states) from an Al 3p band
(which strongly interacts with the Ca spd states). The de-
viation of the Hall constant from the free-electron value
can be explained if we assume that the electrons in the
band below the minimum in DOS do not contribute to
the transport process. The recently established correla-
tion between the electrical resistivity and the deviation of
the Hall constant from its free-electron value support the
assumption that the incipient localization of the electrons
plays a key role in the electron-transport processes. In
this respect, Ca-Al glasses are similar to other strong-
scattering disordered systems like the liquid alloys of al-
kali metals with the heavy polyvalent metals.

APPENDIX

The parameters c and d can be obtained from the
solutions P alone. Thus a calculation involving the
first-order, two-center, tight-binding Hamiltonian H'"
can be performed without calculating the energy deriva-

tive functions P . However, these are needed to calculate
the parameter o . Calculation of these parameters is dis-
cussed in detail in Refs. 9—12. In the following we pro-
vide the relations that can be used to convert the stan-
dard LMTO parameters, as discussed in the monograph
by Skriver and tabulated for the elemental metals in
Ref. 9, into the parameters used in the LMTO recursion
calculation. These are

C =E„+to(—),
b, =—,'(s/w) '+'s4 ( —),

y=[ —,'(21+1)](s/w)" +'@(—)/4(+ ),
(+) /+to(+) jr

4( —) =/+to( —)P

I —D lkl
4r 1 —Dld"rl

—1 —1 D I Q]—
P r —I —1 D{(( ]r-

D [ P] =sf'(s)/P(s), D t P rj =sf r(s)'/P r(s),

to(+)=—

to( —) =—

(A 1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(Ag)

(A9)

(o') =to( —)
(y —a) '

(da)]n c Ev a ——
y

(g)' C Edl g—

(A 10)

(A 1 1)

Here, s and w are the atomic- and the average Wigner-
Seitz —sphere radii, respectively. P and P r are defined in
Sec. III [Eqs. (2)—(6)]. Note that, in Skriver's notation, 2

Dtg) =D„, DIQ I=rD„
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