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We show that the self-interaction-corrected (SIC) local spin-density (LSD) approximation can

describe localization ln a system where the Coulomb interaction is large compared with the band-

width. In contrast with the normal LSD approximation, the SIC approximation can be used for a
band with orbital degeneracy, even if the band is not half 6lled. The method is applied to the
one-dimensional Hubbard model for which there is an exact solution. The total energy, the band

gap, the local moment, and the momentum distribution are substantially better described than in

the LSD approximation. For some of these properties the SIC approach is shown to compare
favorably with the Gutzwiller ansatz.

The basic physics of localization in, e.g., a Mott insula-
tor or in the c-y transition in Ce, is well understood.
The quantitative description of these effects in an ttb initio
theory, such as the density functional (DF) formalism, is,
however, difficult. In the a phase of Ce the 4f spin is
screened by the conduction electrons due to the Kondo
mechanism. This increases the cohesive energy and gives
a negative contribution to the pressure. ' In the y phase,
on the other hand, the 4f contribution to the cohesion is
very small. ' In a DF calculation in the local spin-density
(LSD) approximation, Glotzel found that Ce becomes
ferromagnetic at a lattice parameter which approximately
corresponds to y Ce.z Minority spin 4f electrons in bond-
ing states are then transferred to less bonding majority
spin states, and there is a partial loss of the 4f contribu-
tion to the pressure. Since, however, the 4f band is far
from being half full, the spin-up band in the ferromagnet-
ic phase is only partly occupied and a substantial 4f pres-
sure remains. The total pressure is far from zero, and the
LSD approximation does not predict a stable y phase. 2 In
the 3d-oxide series, the 3d electron shows localized behav-
ior in MnO and in the systems to the right of MnQ. In
the LSD approximation the corresponding loss of cohesion
is well described as an increase in the lattice parameters. 3

In MnO, which has a half-filled 3d band, the 3d pressure
is negligible, and the gap is sizable. For FeO, CoO, and
NiO, where the 3d-band is more than half full, the gap is,
however, much too small or zero. In analogy to MnO,
the LSD approximation seems to describe localization
well for Am, which has a half-filled Sfshell. 5

An alternative way of describing localization in the DF
formalism is provided by the self-interaction-corrected
(SIC) LSD approximation. The exchange-correlation
(XC) energy functional is approximated as
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Egg [n}-EP'[n] -g

+„d'r n;(r)ex'(n;(r), 0)

where n;(r) is the charge density corresponding to orbital
i and axe(n t, n~) is the XC energy of a homogeneous sys-
tem with the spin densities nt and nt The .second term
subtracts the nonphysical Coulomb interaction of an elec-
tron with itself as well as the corresponding LSD XC en-

ergy. The corresponding XC potential for orbital i with
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where vs (n t, n 1) is the LSD XC potential. An impor-
tant property of the SIC potential is its orbital depen-
dence, which may lead to broken-symmetry solutions,
where, for instance, one orbital localizes on each site. In
contrast, the LSD approximation gives delocalized solu-
tions for periodic systems. To be more specific, let us as-
sume that there is one electron and one orbital with the
degeneracy M per atom. The on-site Coulomb interaction
is U and the hopping integral is t. We now form a trial
solution, where the ith one-particle solution of the Kohn-
Sham equation is assumed to be the nt;th orbital on the
i;th site. The potential for the ith solution is then zero on
the I;th site and repulsive on all other sites. In the first
iteration this solution expands somewhat and it obtains
weight on neighboring sites. This raises the potential on
the central site and lowers it on the neighboring sites. If
U» t the solution can, however, stay essentially localized
when the problem is iterated to convergence. This solu-
tion reduces the Coulomb interaction at the cost of an in-

crease in kinetic energy, as one expects for the proper
solution in this U&&t limit. This approach works also for
a band filling which differs from —,

' (here 1/M), since the
M —1 unoccupied orbitals feel a repulsive potential on all
sites and form extended states at higher energies than the
occupied ones. In the limit t 0 for the simple model
discussed above, SIC gives the exact result for the interac-
tion energy and the ionization potential, while the LSD
approximation in particular fails for the latter property.
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Similar arguments apply to systems with several electrons
per atom.

To study the SIC approach we perform calculations for
the monoatomic hydrogen solid as a function of the lattice
parameter. This system often serves as a model for a
Mott insulator. Kelly, Rice, and Andersen and Min,

I

Oguchi, Jansen, and Freeman have studied the hydrogen
solid within the LSD approximation. Of particular in-

terest is the Hubbard model of a hydrogen solid, since for
the one-dimensional version there is an exact solution to
compare with. Thus we study the one-dimensional Ham-
iltonian

N N N

H g g sont +tg (tit,t~t t)t; +H.c.) +Up n;tn;l,
cr i 1 i~] i 1

(3)

where so is the energy of the Is level, t is the hopping integral, and U is the Coulomb interaction. We use a cyclic chain,
i.e., N+1 stands for 1 in (3). The N ~ model was solved exactly by Lieb and Wu. 9 We choose so —1 Ry and
U 0.945 Ry, since in the atomic limit t 0 these parameters give the correct ionization energy and affinity energy of a
H atom. 'o We use a discrete version of the DF formalism, "where the XC energy is a functional of the occupation num-

bers n; =&n; )—For .the LSD functional we take the form

Ex) [n; ] Ug(n;t+n;I) [ a ——b[(1+(;) +(1—g;) —2]/(2 —2)], (4)

where (; (n;t n;I)/—(n;I+n;I). We use a 0.3S40 and
b 0.0705, since the functional (4) then reproduces the
LSD results for the total energy (E —0.96 Ry) and for
the position of the spin-down eigenvalue s~, t -0.20 Ry
of a free H atom. ' The adjustment to s&, t is important,
since it determines the affinity level for large lattice pa-
rameters.

The SIC potential (2) is orbital dependent, and the cor-
responding eigenstates are not automatically orthogonal.
We therefore have to find an extremum of the SIC-LSD
functional under the subsidiary condition that the orbitals
are orthogonal. In the SIC N-electron state one localized
orbital per atom is occupied. We find that the lowest en-
ergy is obtained for an antiferromagnetic (AF) occupa-
tion with a spin-up electron on every second site. The
lowest LSD solution is also an AF solution. In Fig. 1 we
compare the SIC total energy with the exact solution and
the AF-LSD solution. The SIC-LSD solution is very close

to the exact result over the whole parameter range, while
the AF-LSD solution is too low in energy for small values
of U/(4t) and too high for large values. The error for
large values of U/(4t) represents the well-known LSD er-
ror for an H atom, where the LSD approximation in-

correctly gives a weak interaction of the electron with it-
self. '3 The SIC-LSD calculation is exact in the atomic
limit (t 0), and the behavior for t 0 is well described.
The binding energy per atom goes as At z/—U for small t,
where A 2.77 and 2.35 in the exact and SIC-LSD calcu-
lations, respectively. The Gutzwiller ansatz, without the
introduction of any further approximations in the evalua-
tion of the expectation values, t4 gives a nonanalytical be-
havior —1.621t /[Uln(trU/4t)] for small t. A modifica-
tion of the Gutzwiller approximation has been shown to
give an analytical behavior with A 2.75. ts Also for
large values of t the SIC-LSD functional gives substan-
tially better results than the AF-LSD calculation. The
energy goes as —4t/tt+kU, where k 0.250, 0.250,
0.247, and 0.116 in the exact, the Gutzwiller, the SIC-
LSD, and the AF-LSD calculations, respectively.

In Fig. 2 the energy gap Es is shown as a function of
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FIG. 1. The total energy E(N)/N per site as a function of

U/(4t), where 4t is a measure of the bandwidth in a one-particle
calculation and N 256. The full curve shows the SIC-LSD re-
sult, the dashed curve represents the exact result for an infinite
chain (Ref. 9), and the dashed-dotted curve represents the AF-
LSD result. Here U 0.945 Ry and ep —1 Ry.
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FIG. 2. The band gap Es as a function of U/(4t).
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FIG. 3. The local moment Lo lsee (6)] as a function of
U/(4r ) The .notations are the same as in Fig. 1. The Gutzwiller

(GW) result (Ref. 14) is shown by the dotted curve.

Lo (5 ) 4 (Bjf +fgjt 21ljf1lj 1) (6)

which is a measure of the localization. For a completely
localized system (rt;tn;1) 0 and Lo —', , while ror
r » U & rt;trt;I) =0.25 and Lo = f . The SIC-LSD results

U/(4r ), where Es is defined as

Eg p+ p—

E(N+1) -E(N) —lE(N) -E(N- 1)l, (5)
and E(K) is the energy of a system with E electrons. In
the SIC N+1 electron state, an itinerant state is occupied
in addition to the N localized states. For r 0, this state
has weight only on atoms where the localized state has the
opposite spin, and its energy is given by the LSD energy
eigenvalue a&, 1

-0.20 Ry (Ref. 12) of a free H atom.
For r 0, py s~, l according to both the AF-LSD and
SIC-LSD calculations, which differs by 0.14 Ry from the
exact result -0.06 Ry. 'o For the N-1 electron SIC
state, we find that, except for very small values of r, the
lowest energy is obtained for a state with the occupation
tl'Il '' l fl f. Here" "denotes a spin-up solution,
which is essentially localized to two sites. In the limit
t 0 the SIC calculation gives p- —1 Ry, which is the
exact result, while the AF-LSD result is p- 0.63 Ry.
Figure 2 shows that the SIC-LSD functional correctly
predicts a gap for the whole parameter range. The gap
goes to zero too slowly for small values of U/(4r ) and it is
somewhat too small for large values of U/(4t ). The latter
deviation refiects the error in /t+ discussed above. The re-
sults are substantially better than in the AF-LSD approxi-
mation. It has been found earlier that SIC improves the
gaps of ionic and rare-gas solids. In these cases, the
valence and conduction bands have different characters,
and the SIC improvement of the gap is due to the SIC
corrections being different for the different types of levels,
e.g., for the Ne 2p and 3s levels in a Ne rare-gas solid.
For the Hubbard model there is only one type of level, and
it is then crucial for the band gap that the $IC potential is
allowed to determine the spatial extent of the one-particle
solutions of the system.

Figure 3 shows results for the local moment defined as

FIG. 4. The momentum distribution leak) as a function of
k/kp for U/r 10 according to the SIC-LSD (full curve);
Takahashi ("Exact"), shown by the dashed curve (Ref. 16); the
AF-LSD, shown by the dashed-dotted curve; and the Gutzwiller

(GW) calculations, represented by the dotted curve (Ref. 14).

for Lo grow too slowly for small values of U/(4r ), but are
otherwise close to the exact ones. This is in contrast with

the AF-L$D solution, which has substantial errors for al-
most the whole parameter range. The Gutzwiller calcula-
tion ' agrees well with the exact results for small values of
U/(4r), but it gives too small values of Lo for intermediate
values of U and too large values for large U.

Figure 4 shows results for the momentum distribution

(nk) The S.IC-LSD, the AF-LSD, and the Gutzwiller'4

calculations are compared with a calculation of Taka-
hashi, 's which is correct to second order in r/U. The
SIC-LSD result is close to the calculation of Takahashi,
which should be very close to the exact results for the
small value of r/U ( 0.1) considered here. The Gutzwil-

ler calculation incorrectly gives a large discontinuity, al-

though the system is an insulator.
We have shown that the SIC-LSD approximation can

describe localization for a system with one (or several)
electron(s) per atom, even if the system has a band with

orbital degeneracy. This appears to be the greatest advan-

tage over the traditional LSD approximation. In the
present paper we have applied the formalism to the one-

dimensional Hubbard model without orbital degeneracy,
for which the exact solution is known, and demonstrated
that also in this case the SIC-LSD approximation gives
substantially more accurate results than the LSD approxi-
mation for quantities such as the total energy, the energy

gap, the local moment, and the momentum distribution.
For some of these properties a comparison was also made
with the Gutzwiller ansatz. ' While the Gutzwiller ansatz
gives accurate results for small values of U/(4r), the
SIC-LSD calculation is generally more accurate for large
values of U/(4r) In a futur. e publication we plan to show

results for the two-dimensional Hubbard model, a hydro-

gen solid, and Ce metal, where the latter case is an exam-

ple of a system with orbital degeneracy.

We want to thank O. K. Andersen, A. M. Oles,
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